Nrc Regulatory Issue Summary 2005-23 Clarification of the Physical Presence Requirement During Gamma Stereotactic Radiosurgery Treatments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rulemaking for Enhanced Security of Special Nuclear Material
Rulemaking for Enhanced Security of Special Nuclear Material RIN number: 3150-AJ41 NRC Docket ID: NRC-2014-0118 Regulatory Basis Document January 2015 Table of Contents 1. Introduction and Background .............................................................................................. 1 2. Existing Regulatory Framework .......................................................................................... 3 2.1 Regulatory History ............................................................................................................. 3 2.2 Existing Regulatory Requirements .................................................................................... 8 3. Regulatory Problem .......................................................................................................... 13 3.1 Generic Applicability of Security Orders .......................................................................... 13 3.2 Risk Insights .................................................................................................................... 16 3.3 Consistency and Clarity .................................................................................................. 27 3.4 Use of a Risk-Informed and Performance-Based Structure. ........................................... 29 4. Basis for Requested Changes ........................................................................................... 30 4.1 Material Categorization and Attractiveness ..................................................................... 30 4.2 -
PART I GENERAL PROVISIONS R12 64E-5.101 Definitions
64E-5 Florida Administrative Code Index PART I GENERAL PROVISIONS R12 64E-5.101 Definitions ................................................................................................. I-1 64E-5.102 Exemptions ............................................................................................. I-23 64E-5.103 Records ................................................................................................... I-24 64E-5.104 Tests ... ................................................................................................... I-24 64E-5.105 Prohibited Use ........................................................................................ I-24 64E-5.106 Units of Exposure and Dose ................................................................... I-25 64E-5 Florida Administrative Code Index 64E-5 Florida Administrative Code Index PART II LICENSING OF RADIOACTIVE MATERIALS R2 64E-5.201 ...... Licensing of Radioactive Material .............................................................. II-1 64E-5.202 ...... Source Material - Exemptions .................................................................... II-2 R12 64E-5.203 ...... Radioactive Material Other than Source Material - Exemptions ................. II-4 SUBPART A LICENSE TYPES AND FEES R12 64E-5.204 ..... Types of Licenses ..................................................................................... II-13 SUBPART B GENERAL LICENSES 64E-5.205 ..... General Licenses - Source Material ......................................................... -
Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation. -
Nuclear Regulatory Commission § 70.5
Nuclear Regulatory Commission § 70.5 section 51 of the act, determines to be intermediates, which are unsuitable for special nuclear material, but does not use in their present form, but all or include source material; or (2) any ma- part of which will be used after further terial artificially enriched by any of processing. the foregoing but does not include Strategic special nuclear material source material; means uranium-235 (contained in ura- Special nuclear material of low strategic nium enriched to 20 percent or more in significance means: the U235 isotope), uranium-233, or pluto- (1) Less than an amount of special nium. nuclear material of moderate strategic Transient shipment means a shipment significance as defined in paragraph (1) of nuclear material, originating and of the definition of strategic nuclear terminating in foreign countries, on a material of moderate strategic signifi- vessel or aircraft which stops at a cance in this section, but more than 15 United States port. grams of uranium-235 (contained in Unacceptable performance deficiencies uranium enriched to 20 percent or more mean deficiencies in the items relied in U-235 isotope) or 15 grams of ura- on for safety or the management meas- nium-233 or 15 grams of plutonium or ures that need to be corrected to en- the combination of 15 grams when com- sure an adequate level of protection as puted by the equation, grams = (grams defined in 10 CFR 70.61(b), (c), or (d). contained U-235) + (grams plutonium) + United States, when used in a geo- (grams U-233); or graphical sense, includes Puerto Rico (2) Less than 10,000 grams but more and all territories and possessions of than 1,000 grams of uranium-235 (con- the United States. -
611130 Outgoing Amendment No. 52 to Curium US LLC to License No
NRCFORM374 PAGE 1 OF 5 PAGES U.S. NUCLEAR REGULATORY COMMISSION Amendment No. 52 MATERIALS LICENSE Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and Title 10, Code of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 70 and 71, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations, and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below. Licensee In accordance with letter dated 4. Expiration Date: July 31, 2022 Janua~22...2.0J», 1. Curium US LLC ~~t\ Kt:G t----------..iii-,..iii-,--1 5. Docket No.: 030-10801 2. 2703 Wagner Place 3. license No.: 24-04206-05f\A[() Reference No.: Maryland Heights, MO 63043 is amended in Its entirety to re~ as follows: i!" 1 ~i\il'W, 6. Byproduct, source, 7. Chemical ahttor physical form 8. Maximum amount that lice~e·~ 9. Authorized use and/or special nuclear may possess at any one tfmel material this license A. -
NRC Submittal Rule Text for Oklahoma Title 252, Chapter
TITLE 252. DEPARTMENT OF ENVIRONMENTAL QUALITY CHAPTER 410. RADIATION MANAGEMENT SUBCHAPTER 1. GENERAL PROVISIONS 252:410-1-7. Incorporation of federal regulations by reference (a) 10 CFR. References in this Chapter to Title 10 of the Code of Federal Regulations (10 CFR) mean the January 1, 2016January 1, 2019 publication of 10 CFR. (b) 40 CFR. References in this Chapter to Title 40 of the Code of Federal Regulations (40 CFR) mean the July 1, 1998 publication of 40 CFR and 64 Fed. Reg. 5574 (February 3, 1999). (c) Citations incorporated. When a provision of the Code of Federal Regulations is incorporated by reference, all citations contained therein are also incorporated by reference. SUBCHAPTER 10. RADIOACTIVE MATERIALS PROGRAM PART 1. GENERAL PROVISIONS 252:410-10-1. Radioactive Materials Program (a) Scope. (1) The rules in this Subchapter establish license requirements for the following categories of radioactive materials: byproduct material, source material and special nuclear material. (2) License requirements incorporated by reference from 10 CFR are applicable requirements for all categories of radioactive materials within the scope of this Subchapter. (b) Exclusions. Responsibility for the following regulatory requirements remains with the NRC: (1) In 10 CFR 20. Exemptions to labeling requirements, § 20.1905(g); Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits at nuclear power plants, § 20.2203(c); Reports of individual monitoring, § 20.2206(a)(1), (a)(3), (a)(4) and (a)(5); (2) In 10 CFR 30. Activities requiring license, § 30.3(b); Definitions, 30.4 "Commencement of construction" paragraph (2), "Construction" paragraph (9)(ii), and "Quantities of concern"; Application for specific licenses, § 30.32(k); Terms and conditions of licenses, § 30.34 (d), (e)(1), (e)(3) and (1); Transfer of byproduct material, § 30.41 (b)(6); Tritium reports, § 30.55; (3) In 10 CFR 32. -
Radiosurgery Or Fractionated Stereotactic Radiotherapy Plus Whole-Brain Radioherapy in Brain Oligometastases: a Long-Term Analysis
ANTICANCER RESEARCH 35: 3055-3060 (2015) Radiosurgery or Fractionated Stereotactic Radiotherapy plus Whole-brain Radioherapy in Brain Oligometastases: A Long-term Analysis MARIO BALDUCCI1, ROSA AUTORINO1, SILVIA CHIESA1, GIANCARLO MATTIUCCI1, ANGELO POMPUCCI2, LUIGI AZARIO3, GIUSEPPE ROBERTO D’AGOSTINO1, MILENA FERRO1, ALBA FIORENTINO1, SERGIO FERSINO1, CIRO MAZZARELLA1, CESARE COLOSIMO4, VINCENZO FRASCINO1, CARMELO ANILE2 and VINCENZO VALENTINI1 Departments of 1Radiation Oncology, 2Neurosurgery, 3Physics and 4Radiology, Catholic University of the Sacred Heart, Rome, Italy Abstract. Aim: To analyze the outcome of patients with number, size, location, the patient’s Karnofsky performance brain oligometastases treated by radiosurgery (SRS) or status (KPS), age, extent of systematic disease and primary fractionated stereotactic radiotherapy (FSRT) after whole- disease status (4, 5). brain radiotherapy (WBRT). Patients and Methods: Overall Patients with one or two brain metastases and with survival (OS) and local control (LC) were evaluated in favorable prognostic features have a relatively favorable patients (patients) with 1-2 brain metastases. Results: Forty- survival; thus, the treatment is frequently more aggressive seven patients were selected. They were submitted to WBRT than for patients with multiple brain metastases (5). (median dose=3,750 cGy) followed by SRS (17 patients; Radiosurgery (SRS) delivered as a single fraction to median dose=1,500 cGy) or FSRT (30 patients; median individual intracranial lesions has been the most common dose=2,000 cGy). Median follow-up was 102 months technique used to dose-escalate on lesions following whole (range=17-151); the median survival was 22 months for the brain radiotherapy (WBRT) and considered as safe SRS group and 16 months for the FSRT group. -
DOE-OC Green Book
SUBJECT AREA INDICATORS AND KEY WORD LIST FOR RESTRICTED DATA AND FORMERLY RESTRICTED DATA U.S. DEPARTMENT OF ENERGY AUGUST 2018 TABLE OF CONTENTS PURPOSE ....................................................................................................................................................... 1 BACKGROUND ............................................................................................................................................... 2 Where It All Began .................................................................................................................................... 2 DIFFERENCE BETWEEN RD/FRD and NATIONAL SECURITY INFORMATION (NSI) ......................................... 3 ACCESS TO RD AND FRD ................................................................................................................................ 4 Non-DoD Organizations: ........................................................................................................................... 4 DoD Organizations: ................................................................................................................................... 4 RECOGNIZING RD and FRD ............................................................................................................................ 5 Current Documents ................................................................................................................................... 5 Historical Documents ............................................................................................................................... -
A Roadmap for Replacing High-Risk Radioactive Sources and Materials
1 Permanent Risk Reduction: A Roadmap for Replacing High-Risk Radioactive Sources and Materials Miles A. Pomper James Martin Center for Nonproliferation Studies The National Academies of Sciences Radioactive Sources: Applications and Alternative Technologies Meeting January 31, 2020 2 Overview • CNS Workshops and Studies • Materials of Security Concern • Uses of Current High-Risk Materials ▫ Medicine ▫ Oil and gas industry • Strategy for Replacing High Activity Sources • Replacement Priority • Encouraging Replacement: Actions • Conclusions 3 CNS Workshops and Studies Since 2008, CNS has led a series of workshops and studies: . Alternatives to High-Risk Radiological Sources: The Case of Cesium Chloride in Blood Irradiation (2014) . Permanent Risk Reduction: A Roadmap for Replacing High-Risk Radioactive Sources and Materials (2015) . Treatment Not Terror: Strategies to Enhance External Beam Cancer Therapy in Developing Countries While Permanently Reducing the Risk of Radiological Terrorism (2016) . Additional material since: for NYC, NTI, and IAEA ICONS, draft language for 2016 NSS 4 Important Current Uses for High-Risk Materials, Existing Alternatives and Challenges, and Suggested Next Steps 5 High-Risk Sources • A task force report by the NRC listed 1. Americium-241 (Am-241) 2. Am-241/Beryllium (Be) 16 radionuclides as those of principal 3. Californium-252 (Cf-252) concern when considering the 4. Cesium-137 (Cs-137) problems they would cause if used in a 5. Cobalt-60 (Co-60) radiological dispersion device (RDD) 6. Curium-244 (Cm-244) • Considered an immediate danger only 7. Gadolinium-153 (Gd-153) when found in large enough amounts 8. Iridium-192 (Ir-192) to threaten life or cause severe 9. -
Highly Enriched Uranium: Striking a Balance
OFFICIAL USE ONLY - DRAFT GLOSSARY OF TERMS APPENDIX F GLOSSARY OF TERMS Accountability: That part of the safeguards and security program that encompasses the measurement and inventory verification systems, records, and reports to account for nuclear materials. Assay: Measurement that establishes the total quantity of the isotope of an element and the total quantity of that element. Atom: The basic component of all matter. Atoms are the smallest part of an element that have all of the chemical properties of that element. Atoms consist of a nucleus of protons and neutrons surrounded by electrons. Atomic energy: All forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon: Any device utilizing atomic energy, exclusive of the means for transportation or propelling the device (where such means is a separable and divisible part of the device), the principal purpose of which is for use as, or for development of, a weapon, a weapon prototype, or a weapon test device. Blending: The intentional mixing of two different assays of the same material in order to achieve a desired third assay. Book inventory: The quantity of nuclear material present at a given time as reflected by accounting records. Burnup: A measure of consumption of fissionable material in reactor fuel. Burnup can be expressed as (a) the percentage of fissionable atoms that have undergone fission or capture, or (b) the amount of energy produced per unit weight of fuel in the reactor. Chain reaction: A self-sustaining series of nuclear fission reactions. Neutrons produced by fission cause more fission. Chain reactions are essential to the functioning of nuclear reactors and weapons. -
How Nuclear Energy Is Collected and Distributed
Professor Max Powers’ Power Efficiency Project (PEP) is brought to you by the Kansas Corporation Commission and Kansas State University Engineering Extension. Funding provided by a grant from the U.S. Department of Energy. Professor Max Powers How Nuclear Energy is Collected and Distributed What is Nuclear Fission? Figure 1: Example of Nuclear Fission. An atom is the smallest unit of matter that maintains the Source: https://www.energy.gov/sites/prod/files/The%20History%20of%20 Nuclear%20Energy_0.pdf properties of a chemical element. It consists of a nucleus (which contains densely packed protons and neutrons) surrounded by electrons. When “bombarded” with a neutron, an atom can be split apart.1 A nuclear material is any element that splits apart easily. Hydrogen is the lightest element containing only one proton, and uranium is the heaviest naturally-occurring element with 92 protons. Since uranium is relatively larger, the bonds holding it together are much weaker and can be split more easily. Thus, isotopes of uranium are used in most nuclear power plants. A nuclear reactor combines neutrons with the nuclear material to cause a fission chain reaction. Fission is the process of splitting isotopes of an element to release energy as heat. A series of fission is called a chain reaction as seen in Figure 1. When enough isotopes are added to the process (termed the critical mass), the reaction becomes Using Nuclear Energy to Generate a self-sustaining chain reaction which releases enough energy Electricity to boil water and generate steam to turn turbines. There are two designs for nuclear reactors: pressurized water One advantage of using nuclear material for electricity reactor and boiling water reactor. -
Linac Based Radiosurgery and Stereotactic Radiotherapy
Linac Based Radiosurgery and Stereotactic Radiotherapy Thomas Rockwell Mackie Professor Depts. Of Medical Physics, Human Oncology, and Engineering Physics University of Wisconsin Madison WI 53706 [email protected] Conflict of Interest Statement: I have financial interest in TomoTherapy Inc. Acknowledgements Peter Hoban, TomoTherapy Inc. Steve Goetsch, San Diego Gamma Knife Center Fang-Fang Yin, Duke University Chet Ramsey, Thompson Cancer Survival Center Karen Rosser, Royal Marsden Wolfgang Ullrich, BrainLab Inc. Outline Definition of SRS and SRT Stereo Market Indications for SRS/SRT History of Linac-Based SRS/SRT Variety of Systems QA for SRS Localization Imaging Small Field Dosimetry Stereotactic Radiosurgery Usually single fraction delivery » One large dose instead of ~30 fractions as in standard radiotherapy » Usually called SRS Also multiple fraction delivery » Often hypo-fractionated – Small number of fractions (e.g., 5) » Often called stereotactic radiotherapy (SRT) or fractionated stereotactic radiosurgery (FSRS) US Stereotactic Market Dedicated Machines US Stereotactic Market Dedicated Machines In 2003, 83 sites report plans to purchase in next few years 32 units in 2004 85% Linac based 15% Gamma Knife US Stereotactic Market Dedicated Machines Half of all dedicated SRS installations are in last 3 years (to 2003) US Stereotactic Market 100 80 60 40 cumulative number 20 Web Site Claims To 2005 0 1987 1989 1991 1993 1995 1997 GammaKnife CyberKnife 1999 Novalis 2001 2003 2004 2005 Brain Tumors Primary brain tumors » Tumors