HENDRIKS-THESIS-2020.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

HENDRIKS-THESIS-2020.Pdf Novel insights into the infection mechanism of oomycete Pythium spp. in the host Arabidopsis thaliana. A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Biology University of Saskatchewan Saskatoon, Canada By: Wilhelmina Gerarda Hendrica Maria Hendriks (Anouk Hendriks) 2020 © Copyright Wilhelmina Gerarda Hendrica Maria Hendriks, July 2020. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use, which may be made of any material in my thesis. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Biology College of Graduate and Postdoctoral Studies University of Saskatchewan University of Saskatchewan 112 Science Place OR 116 Thorvaldson Building, Saskatoon, Saskatchewan S7N5E2 Saskatoon, Saskatchewan S7N 5C9 Canada Canada i ABSTRACT Phytopathogenic Pythium spp. cause seedling damping-off of a wide range of plant species worldwide and are traditionally considered necrotrophs. In this study, novel pathogenicity was discovered involving the oomycete Pythium cryptoirregulare and the model plant Arabidopsis thaliana. This pathogen was isolated from A. thaliana seedlings that were showing damping-off symptoms and was later identified as Pythium cryptoirregulare based on morphological and molecular characterization alongside reference species P. irregulare and P. ultimum var. ultimum. To examine its infection strategy, A. thaliana was inoculated with P. cryptoirregulare and studied using a microscopy approach. Viable colonized cells were observed based on neutral red uptake and the ability to undergo cell plasmolysis after infection. This biotrophic interaction contradicts the previously reported necrotrophic lifestyle of Pythium spp., which is characterized by killing the host cells prior to colonization. In addition, inhibition of root growth was detected prior to colonization by P. cryptoirregulare, suggesting that P. cryptoirregulare secreted growth inhibitors. Potentially, these inhibiting metabolites facilitate infection by delaying plant development and, thereby, extending the seedling stage that is targeted by this pathogen. Notably, P. cryptoirregulare culture filtrates disturbed transport and distribution of auxins, indicated by altered GFP expression in the A. thaliana lines PIN1-GFP, PIN2-GFP, PIN3-GFP, PIN7-GFP and DR5::GFP which visualize the auxin efflux. This disturbance was further confirmed by a reduced inhibitory effect on the auxin-insensitive A. thaliana mutants axr1-3, axr4-2, and aux1-7. Metabolic activity assay results suggested that P. cryptoirregulare secretes auxin-related metabolites that are involved in reprogramming plant growth. Overall, the characterization of P. cryptoirregulare as a novel pathogen on A. thaliana gives new insights into understanding the pathogenic mechanisms and interactions between oomycetes and plants. Keywords: Pythium (cryptoirregulare), infection strategy, hemibiotrophy, metabolic activity, auxin homeostasis ii ACKNOWLEDGEMENTS First, I would like to thank my supervisor, Dr. Yangdou Wei, for his guidance, support, and knowledge in my journey to obtaining an M.Sc degree. He was and still is a very knowledgeable mentor, and I am very thankful for sharing his knowledge with me during my project. Secondly, I would like to thank my advisory committee, Drs. Sabine Banniza and Art Davis for their guidance and advice in my course work, my research project, and other related matters. Also, I would like to thank Dr. Zamir Punja for acting as an external examiner during my thesis defence. Confocal microscopy techniques were taught by Dr. Guosheng Liu, who taught me how to use the Confocal 510 and Confocal 880 microscope, and Dr. Chris Ambrose, who taught me how to use the Confocal 880 and how to analyse the pictures with the imaging software “ImageJ”. They are therefore greatly thanked for their support. I would also like to thank my lab members Dr. Lijiang Lui and Li Qin, who practically helped whenever and wherever this was requested. The National Research Council (NRC) Canada is also appreciated for supporting this project financially and Agriculture and Agri-Food Canada (AAFC) for providing the two Pythium reference strains from their Canadian Collection of Fungal Cultures (DAOMC). Finally, I would like to thank my family, friends, colleagues, and remaining Biology faculty and staff for all their care, support, and patience throughout my graduate studies by creating a home away from home. Of this list, special thanks go to my parents and other family members who were my greatest motivators to complete this degree at the University of Saskatchewan in Canada. iii TABLE OF CONTENTS PERMISSION TO USE ................................................................................................................. i ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................ iii TABLE OF CONTENTS ............................................................................................................ iv LIST OF FIGURES .................................................................................................................... vii LIST OF TABLES ........................................................................................................................ x LIST OF ABBREVIATIONS .................................................................................................... xii CHAPTER 1 GENERAL INTRODUCTION ...................................................................... 1 1.1 Research objectives .......................................................................................................... 2 CHAPTER 2 LITERATURE REVIEW ............................................................................... 4 2.1 An overview of plant-pathogen interactions .................................................................... 4 2.1.1 Biotrophy .................................................................................................................. 5 2.1.2 Necrotrophy .............................................................................................................. 6 2.1.3 Hemibiotrophy .......................................................................................................... 6 2.2 Infection mechanism and host-response .......................................................................... 8 2.3 Plant-oomycete pathosystems .......................................................................................... 9 2.4 Plant-Pythium interactions ............................................................................................. 10 2.4.1 The genus Pythium .................................................................................................. 11 2.4.2 The life cycle of Pythium species ........................................................................... 15 2.4.3 Infection strategy of Pythium species ..................................................................... 16 2.4.4 Pythium interaction with the host Arabidopsis thaliana ......................................... 17 2.4.5 The importance of damping-off and root rot disease caused by Pythium species .. 23 2.4.6 Management strategy .............................................................................................. 24 CHAPTER 3 ISOLATION, GROWTH, AND IDENTIFICATION OF PYTHIUM CRYPTOIRREGULARE ............................................................................................................. 26 3.1 Introduction .................................................................................................................... 26 iv 3.2 Materials and methods ................................................................................................... 28 3.2.1 Plant and pathogen materials .................................................................................. 28 3.2.2 Isolation of Pythium cryptoirregulare from Arabidopsis thaliana ......................... 31 3.2.3 Media optimization to induce Pythium structure development .............................. 31 3.2.4 Morphological characterization and identification ................................................. 32 3.2.5 Molecular characterization and identification ........................................................ 33 3.3 Results ...........................................................................................................................
Recommended publications
  • Phytopythium: Molecular Phylogeny and Systematics
    Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses.
    [Show full text]
  • Pythium Root Rot to Always Act the Same
    pests & diseases DON’T EXPECT PYTHIUM ROOT ROT TO ALWAYS ACT THE SAME Cornell University trials are teaching researchers more about this troublesome pathogen, how it interacts with the plants it infects and how it is becoming more difficult to control — and what they’ve learned may surprise you. Seedling geraniums inoculated with Pythium may be stunted or killed. By Gary W. Moorman (Photos courtesy of Margery Daughtrey) and Margery L. Daughtrey ne new development impor- tems because it has a swimming spore stage. pasteurization could lead to Pythium outbreaks. tant to our understanding of Pythium irregulare also forms swimming spores Second, Pythium ultimum favors cool greenhouse Pythium species comes from and is isolated from a very wide variety of temperatures: the minimum for growth is 41° F, the findings of molecular greenhouse crops, almost any crop grown. It is maximum 95° F and optimum 77-86° F. When geneticists. We have long less aggressive than P. aphanidermatum, often other organisms are inhibited by cool tempera- thoughtO of Pythium as a “water mold fun- causing stunting but seldom killing plants quick- ture, P. ultimum can prosper. gus”— now it has been reclassified according to ly. Pythium ultimum, very commonly noted in P. aphanidermatum has a higher minimum tem- information gained from comparing gene simi- old clinic records, is much less common but is perature (50° F) than P. ultimum and a very high larities…and Pythium is no longer a fungus! still isolated from chrysanthemums, verbenas, optimum temperature at 95-104° F. This Pythium DNA analysis has shown us that Pythium is geraniums and sometimes poinsettias.
    [Show full text]
  • Title Development of Simple Detection Methods of Plant Pathogenic Oomycetes( 本文(Fulltext) ) Author(S) FENG, WENZHUO Report N
    Development of Simple Detection Methods of Plant Pathogenic Title Oomycetes( 本文(Fulltext) ) Author(s) FENG, WENZHUO Report No.(Doctoral Degree) 博士(農学) 甲第708号 Issue Date 2019-03-13 Type 博士論文 Version ETD URL http://hdl.handle.net/20.500.12099/77944 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) 2018 The United Graduate School of Agriculture Science, Gifu University Science of Biological Environment (Gifu University) FENG WENZHUO Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) FENG WENZHUO INDEX PREFACE .......................................................................................................... 1 CHAPTER 1 Establishment of simple LAMP procedures with detection of Pythium irregulare in field samples ................................................................... 12 MATERIALS AND METHODS ..................................................................................... 13 RESULTS ................................................................................................................... 17 1. Primer design and specificity ............................................................................... 17 2. Sensitivity of LAMP ............................................................................................. 18 3. Practical detection of P. irregulare in field samples .............................................. 18 DISCUSSION ............................................................................................................
    [Show full text]
  • U.S. EPA, Pesticides, Label, V-10161 4 SC, 4/20/2011
    --- -..:.--~--- ~- ~- >- --=---==-- -"--====- c· ott! 2£lll C '" . zo( UNITED STATES ENVI~ONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFElY AND POLLUTION PREVENTION APR 2 0 20H Robert Hamilton Valent USA Corporation Registration & Regulatory Affairs 1101 14th Street, N.W., Suite 1050 Washington, DC 20005 SUBJECT: Label Amendment V-101614SC EPA Reg. No. 59639-140; Decisions 409896; 420444; 9F7617 (D420455) Submissions Dated April 30, 2009; September 16, 2009 Dear Mr. Hamilton: The revised master and supplemental labels (your version 3/15/2011) referred to above, submi~ed in connection with registration under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA), as amended, to add carrot, potato, and sugarbeet which, with existing crops allows listing of the entire "Root and Tuber Vegetables-Crop Group 1"; and which adds "Brassica, Leafy Greens Subgroup 5B" which, with existing crops allows listing the entire "Bras sica (Cole) Leafy Vegetables, Crop Group 5", all of this in detail as per final rule published 4/20/2011, are acceptable provided the following label changes and conditional data are satisfied '­ by specified due dates: 1. At the top of page 1 delete the right and left parentheses from "(Fungicide)" because the rest of this label does the same and we understand the primary brand name to be the "V-10161 4SC Fungicide"; also add a comma after "(Except Brassica Vegetables)," and on page 2 in the First Aid section in the subheading "If on skin or Clothing", make the "C" in "Clothing" lower case and add a period at the end of the last bullet. 2. On page 3 in the Agricultural Use Requirements box, first line; add "(WPS)" after "Worker Protection Standard".
    [Show full text]
  • Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
    plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens.
    [Show full text]
  • Pythium Species Associated with Rooibos, and the Influence of Management Practices on Disease Development
    PYTHIUM SPECIES ASSOCIATED WITH ROOIBOS, AND THE INFLUENCE OF MANAGEMENT PRACTICES ON DISEASE DEVELOPMENT By AMIRHOSSEIN BAHRAMISHARIF Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriSciences at the University of Stellenbosch Supervisor: Dr. Adéle McLeod Co-supervisor: Dr. Sandra C. Lamprecht March 2012 Stellenbosch University http://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Amirhossein Bahramisharif Date:……………………….. Copyright © 2012 Stellenbosch University All rights reserved Stellenbosch University http://scholar.sun.ac.za PYTHIUM SPECIES ASSOCIATED WITH ROOIBOS, AND THE INFLUENCE OF MANAGEMENT PRACTICES ON DISEASE DEVELOPMENT SUMMARY Damping-off of rooibos (Aspalathus linearis), which is an important indigenous crop in South Africa, causes serious losses in rooibos nurseries and is caused by a complex of pathogens of which oomycetes, mainly Pythium, are an important component. The management of damping-off in organic rooibos nurseries is problematic, since phenylamide fungicides may not be used. Therefore, alternative management strategies such as rotation crops, compost and biological control agents, must be investigated. The management of damping-off requires knowledge, which currently is lacking, of the Pythium species involved, and their pathogenicity towards rooibos and two nursery rotation crops (lupin and oats). Pythium species identification can be difficult since the genus is complex and consists of more than 120 species.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • ABSTRACT REEVES, ELLA ROBYN. Pythium Spp. Associated with Root
    ABSTRACT REEVES, ELLA ROBYN. Pythium spp. Associated with Root Rot and Stunting of Winter Field and Cover Crops in North Carolina. (Under the direction of Dr. Barbara Shew and Dr. Jim Kerns). Soft red winter wheat (Triticum aestivum) was valued at over $66 million in North Carolina in 2019, but mild to severe stunting and root rot limit yields in the Coastal Plain region during years with above-average rainfall. Pythium irregulare, P. vanterpoolii, and P. spinosum were previously identified as causal agents of stunting and root rot of winter wheat in this region. Annual double-crop rotation systems that incorporate winter wheat, or other winter crops such as clary sage, rapeseed, or a cover crop are common in the Coastal Plain of North Carolina. Stunting and root rot reduce yields of clary sage, and limit stand establishment and biomass accumulation of other winter crops in wet soils, but the role that Pythium spp. play in root rot of these crops is not understood, To investigate species prevalence, isolates of Pythium were collected from stunted winter wheat, clary sage, rye, rapeseed, and winter pea plants collected in eastern North Carolina during the growing season of 2018-2019, and from all crops except winter wheat again in 2019-2020. A total of 534 isolates were identified from all hosts. P. irregulare (32%), P. vanterpoolii (17%), and P. spinosum (16%) were the species most frequently recovered from wheat. P. irregulare (37% of all isolates) and members of the species complex Pythium sp. cluster B2A (28% of all isolates) comprised the majority of isolates collected from clary sage, rye, rapeseed, and winter pea.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Plant Pathology and Environmental Microbiology CHARACTERIZATION OF Pythium and Phytopythium SPECIES FREQUENTLY FOUND IN IRRIGATION WATER A Thesis in Plant Pathology by Carla E. Lanze © 2015 Carla E. Lanze Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science August 2015 ii The thesis of Carla E. Lanze was reviewed and approved* by the following Gary W. Moorman Professor of Plant Pathology Thesis Advisor David M. Geiser Professor of Plant Pathology Interim Head of the Department of Plant Pathology and Environmental Microbiology Beth K. Gugino Associate Professor of Plant Pathology Todd C. LaJeunesse Associate Professor of Biology *Signatures are on file in the Graduate School iii ABSTRACT Some Pythium and Phytopythium species are problematic greenhouse crop pathogens. This project aimed to determine if pathogenic Pythium species are harbored in greenhouse recycled irrigation water tanks and to determine the ecology of the Pythium species found in these tanks. In previous research, an extensive water survey was performed on the recycled irrigation water tanks of two commercial greenhouses in Pennsylvania that experience frequent poinsettia crop loss due to Pythium aphanidermatum. In that work, only a preliminary identification of the baited species was made. Here, detailed analyses of the isolates were conducted. The Pythium and Phytopythium species recovered during the survey by baiting the water were identified and assessed for pathogenicity in lab and greenhouse experiments. The Pythium species found during the tank surveys were: a species genetically very similar to P. sp. nov. OOMYA1702-08 in Clade B2, two distinct species of unknown identity in Clade E2, P.
    [Show full text]
  • Caracterización De Especies Fitopatógenas De
    CARACTERIZACIÓN DE ESPECIES FITOPATÓGENAS DE PYTHIUM Y PHYTOPHTHORA (PERONOSPOROMYCETES) EN CULTIVOS ORNAMENTALES DEL CINTURÓN VERDE LA PLATA-BUENOS AIRES Y OTRAS ÁREAS Y CULTIVOS DE INTERÉS TESIS PARA OPTAR AL TÍTULO DE DOCTOR EN CIENCIAS NATURALES FACULTAD DE CIENCIAS NATURALES Y MUSEO UNIVERSIDAD NACIONAL DE LA PLATA HEMILSE ELENA PALMUCCI DIRECTOR: ING. AGR. SILVIA WOLCAN CODIRECTOR: DRA MÓNICA STECIOW AÑO 2015 1 AGRADECIMIENTOS A la Facultad de Ciencias Naturales y Museo (FCNYM) por brindarme la posibilidad de realizar este trabajo A la Ing Agr Silvia Wolcan y a la Dra Mónica Steciow por sus sugerencias y comentarios en la ejecución y escritura de esta tesis. A la Dra Gloria Abad, investigadora líder en Oomycetes en el “USDA- Molecular Diagnostic Laboratory (MDL)”, por su invalorable y generosa colaboración en mi formación a través de sus conocimientos, por brindarme la posibilidad de llevar a cabo los trabajos moleculares en el MDL-Maryland-USA y apoyar mi participación en workshops internacionales y reuniones de la especialidad. A la Ing Wolcan por aportar su valiosa colección para realizar parte de las tareas de identificación y por los significativos aportes realizados desde su experiencia. A la Dra Gloria Abad, a la Ing. Agr. Silvia Wolcan, al Dr R. Dehley y al Ing. Agr. Carlos Carloni por la provisión de valiosas referencias bibliográficas. Al Ing Agr M Sc Pablo Grijalba por acompañarme en la ardua tarea de introducirnos al mundo de los Oomycetes a través de nuestras tesis doctorales y los proyectos de investigación que compartimos, y por sus consejos y colaboración en aspectos biomoleculares. A mis compañeros del Proyecto Ubacyt, Lic.
    [Show full text]
  • Root Rot of Carnation Caused by Pythium Irregulare and P. Aphanidermatum Etsuo KIMISHIMA*, Yoshinori KOBAYASHI* and Takeshi NISH
    日 植 病 報 57: 534-539 (1991) Ann. Phytopath. Soc. Japan 57: 534-539 (1991) Root Rot of Carnation Caused by Pythium irregulare and P. aphanidermatum Etsuo KIMISHIMA*,Yoshinori KOBAYASHI*and Takeshi NISHI** Abstract Root rots of carnations were found in Tokyo Metropolis and Chiba Prefecture, Japan, in March of 1984 and in July of 1989, respectively. The symptoms were characterized by root rot and discoloration of stems and leaves. The pathogens obtained from Tokyo and Chiba were identified as Pythium irregulare Buisman and P. aphanidermatum (Edson) Fitzp., respectively, on the basis of their morphological and physiological characteristics. This is the first report of the disease occurrence of carnations caused by Pythium spp. in Japan. (Received December 17, 1990) Key words: carnation, root rot, Pythium irregulare, Pythium aphanidermatum. INTRODUCTION In March of 1984 and in July of 1989, root rots were found on carnations, Dianthus caryo- phyllus L., in Tokyo Metropolis and Chiba Pref., Japan, respectively. The symptoms appeared on roots, leaves and stems. Pythium spp. were isolated from affected roots and stems as causal fungi. Root rot of carnation caused by Pythium ultimum Trow and P. vexans de Bary were reported in USA11). The causal fungi described here were different from those reported in USA. This paper describes the results of etiological studies including the symptoms, serolog- ical tests for detection of the causal organisms and their identification. A brief report of this work has been published elsewhere7). MATERIALS AND METHODS Serological tests. Four kinds of antisera6,8) prepared for Phytophthora erythroseptica Pethybridge, Ph. capsici Leonian, Pythium aphanidermatum (Edson) Fitzp.
    [Show full text]
  • Metalaxyl-M-Resistant Pythium Species in Potato Production Areas of the Pacific Northwest of the U.S.A
    Am. J. Pot Res (2009) 86:315–326 DOI 10.1007/s12230-009-9085-z Metalaxyl-M-Resistant Pythium Species in Potato Production Areas of the Pacific Northwest of the U.S.A. Lyndon D. Porter & Philip B. Hamm & Nicholas L. David & Stacy L. Gieck & Jeffery S. Miller & Babette Gundersen & Debra A. Inglis Published online: 3 April 2009 # Potato Association of America 2009 Abstract Several Pythium species causing leak on potato information is lacking on the distribution of MR isolates in are managed by the systemic fungicide metalaxyl-M. the Pacific Northwest. Soil samples from numerous fields Metalaxyl-M-resistant (MR) isolates of Pythium spp. have (312) cropped to potatoes in Idaho (140), Oregon (59), and been identified in potato production areas of the U.S.A., but Washington (113) were assayed using metalaxyl-M- amended agar for the presence of MR isolates of Pythium in 2004 to 2006. Altogether, 1.4%, 42.4% and 32.7% of the L. D. Porter (*) fields from these states, respectively, were positive for MR Vegetable and Forage Crops Research Unit, USDA-ARS, Pythium. Isolates of Pythium ultimum that were highly 24106 N. Bunn Road, Prosser, WA 99350, USA resistant to metalaxyl were recovered from 53 fields e-mail: [email protected] representing ID, OR, and WA. Greater than 50% of the : Pythium soil population consisted of MR isolates in ten of P. B. Hamm S. L. Gieck 64 fields from Oregon and Washington. Nine species of Department of Botany & Plant Pathology, Hermiston Agricultural Research and Extension Center, Pythium were recovered from soil samples, of which MR P.
    [Show full text]