Metalaxyl-M-Resistant Pythium Species in Potato Production Areas of the Pacific Northwest of the U.S.A

Total Page:16

File Type:pdf, Size:1020Kb

Metalaxyl-M-Resistant Pythium Species in Potato Production Areas of the Pacific Northwest of the U.S.A Am. J. Pot Res (2009) 86:315–326 DOI 10.1007/s12230-009-9085-z Metalaxyl-M-Resistant Pythium Species in Potato Production Areas of the Pacific Northwest of the U.S.A. Lyndon D. Porter & Philip B. Hamm & Nicholas L. David & Stacy L. Gieck & Jeffery S. Miller & Babette Gundersen & Debra A. Inglis Published online: 3 April 2009 # Potato Association of America 2009 Abstract Several Pythium species causing leak on potato information is lacking on the distribution of MR isolates in are managed by the systemic fungicide metalaxyl-M. the Pacific Northwest. Soil samples from numerous fields Metalaxyl-M-resistant (MR) isolates of Pythium spp. have (312) cropped to potatoes in Idaho (140), Oregon (59), and been identified in potato production areas of the U.S.A., but Washington (113) were assayed using metalaxyl-M- amended agar for the presence of MR isolates of Pythium in 2004 to 2006. Altogether, 1.4%, 42.4% and 32.7% of the L. D. Porter (*) fields from these states, respectively, were positive for MR Vegetable and Forage Crops Research Unit, USDA-ARS, Pythium. Isolates of Pythium ultimum that were highly 24106 N. Bunn Road, Prosser, WA 99350, USA resistant to metalaxyl were recovered from 53 fields e-mail: [email protected] representing ID, OR, and WA. Greater than 50% of the : Pythium soil population consisted of MR isolates in ten of P. B. Hamm S. L. Gieck 64 fields from Oregon and Washington. Nine species of Department of Botany & Plant Pathology, Hermiston Agricultural Research and Extension Center, Pythium were recovered from soil samples, of which MR P. Oregon State University, ultimum and P. spinosum were identified. Isolates of MR P. 2121 South First Street, ultimum recovered from soil were pathogenic on potato Hermiston, OR 97838, USA tubers and may pose a serious threat to the management of P. B. Hamm Pythium leak and seed rot of diverse crops rotated with e-mail: [email protected] potato. N. L. David Department of Plant Sciences, Resumen Varias especies de Pythium que causan la North Dakota State University, pudrición acuosa en papa son controladas por el fungicida NDSU, Dept. # 7670, sistémico metalaxilo-M. Cepas de metalaxilo-M-resistente P.O. Box 6050, Fargo, ND 58108, USA e-mail: [email protected] (MR) de Pythium spp. han sido identificadas en áreas de producción de papa de los Estados Unidos, pero no hay J. S. Miller información de la distribución de cepas MR en el Pacifico Miller Research LLC, Noroeste. Muestras de suelo de numerosos campos (312) 1175 E. 800 N, Rupert, ID 83350, USA cultivados con papa, en Idaho (140), Oregon (59), y e-mail: [email protected] Washington (113) fueron ensayadas utilizando agar : metalaxilo-M-enmendado para la presencia de Pythium B. Gundersen D. A. Inglis MR del 2004 al 2006. En total, 1.4%, 42.4% y 32.7% de NWREC, Washington State University, 16650 State Route 536, los campos de estos estados, respectivamente, dieron Mount Vernon, WA 98273, USA positivo a Pythium MR. Cepas de Pythium ultimum B. Gundersen altamente resistentes al metalaxilo fueron recuperadas de e-mail: [email protected] 53 campos representando a Idaho, Oregon y Washington. D. A. Inglis Más del 50% de la población de Pythium del suelo, e-mail: [email protected] consistió de cepas MR en 10 de los 64 campos de Oregon 316 Am. J. Pot Res (2009) 86:315–326 y Washington. Nueve especies de Pythium fueron recuper- Metalaxyl is a racemic fungicide that contains both R- and adas de muestras de suelo, de las cuales fueron identifica- S-enantiomers. Metalaxyl-M which contains 98% of the R- das P. ultimum y P. spinosum MR. Cepas de P. ultimum enantiomer (Nuninger et al. 1996) replaced metalaxyl as the resistente al metalaxilo-M recuperadas del suelo fueron active ingredient in Ridomil Gold EC (Syngenta Crop patogénicas en tubérculos de papa y pueden representar una Protection, Greensboro, NC) in 1997 and continues to be seria amenaza en el manejo de la pudrición acuosa por commonly used to manage Pythium and other oomycete Pythium y la pudrición de la semilla en diversos campos pathogens on potatoes. Metalaxyl-M is considered to be rotados con papa. more effective than the S-enantiomer in controlling oomy- cete plant pathogens (Hubele et al. 1983). The efficacy of Keywords Mefenoxam . Fungicide resistance . metalaxyl-M against Pythium leak has been called into Pythium paroecandrum . Pythium inflatum question under challenge inoculations because wounding appears to break the peripheral tuber barrier of metalaxyl and allows Pythium infection and leak symptoms to occur Introduction (Taylor et al. 2004). However, certain metalaxyl-M appli- cation methods have demonstrated some leak control, but it Several Pythium spp. are soilborne oomycete plant patho- is questionable whether the cost-benefit ratio of using gens that can cause major problems in potato production by metalaxyl strictly to manage Pythium leak is economically rotting potato seed pieces, and tubers in the field, at harvest favorable to potato growers (Taylor et al. 2004). or in storage facilities (Powelson et al. 1993; Salas and Resistance to metalaxyl in oomycete pathogens was first Secor 2001). Pythium ultimum is considered to be the reported in isolates of Pseudoperonospora cubensis recov- primary Pythium species causing Pythium leak on potato ered from greenhouse-grown cucumber plants in Israel in (Salas and Secor 2001). P. ultimum reportedly requires a 1980 (Reuveni et al. 1980) and under field conditions in wound to enter a potato tuber (Taylor et al. 2004), making isolates of P. infestans isolated from potatoes in 1981 in both tubers highly vulnerable to infection during harvest, Ireland (Dowley and O’Sullivan 1981) and the Netherlands transport and loading of potatoes into storage facilities. (Davidse 1981). Development of resistance to metalaxyl in In the Pacific Northwest (PNW; Idaho, Oregon and commercial agricultural fields or orchards has been con- Washington), potatoes are rotated with a diverse array of firmed in at least seven species of Phytophthora (Bruin and crops including: peas, carrots, corn, beans, onions and Edgington 1981;FerrinandKabashima1991; Taylor et al. cereals that are susceptible to Pythium seed and seedling rot 2002; Timmer et al. 1998; Chauhan and Singh 1987;and (Higginbotham et al. 2004; Kraft and Burke 1971; Pscheidt Seemuller and Sun 1989); and in six other genera in the and Ocamb 2007; Paulitz and Adams 2003; Broders et al. order Peronosporales including Pythium (Taylor et al. 2002; 2007; Davis and Nunez 1999; Sumner et al. 1997; Hendrix Mazzola et al. 2002; Falloon et al. 2000; Wiglesworth et al. and Campbell 1973). The systemic fungicide metalaxyl-M 1988; Schettini et al. 1991; Herzog and Schuepp 1985; is commonly used as a foliar or in-furrow application to Molinero-ruiz 2003; Mazzola et al. 2002; White et al. 1988; manage Pythium leak and pink rot on potato, cavity spot on Cook et al. 1983;Hammetal.2004). Since the development carrot, and as a seed treatment to manage Pythium pre- of metalaxyl resistance is common among oomycete plant emergence damping off on most vegetable seed and cereal pathogens, it is important to assess the Pythium population in crops grown in crop rotation with potato in the PNW potato production areas where metalaxyl is used, to (Pscheidt and Ocamb 2007). Therefore in the PNW, determine the current and future opportunity to effectively soilborne populations of Pythium spp. can be exposed to use this fungicide not only to help manage Pythium leak on metalaxyl in the soil on an annual basis. In some cases, potato but Pythium damping off on other crops in rotation where growers are planting two or more crops in the same with potato. Development of metalaxyl resistance in the field within the same growing season (i.e. peas and corn), Pythium population is particularly important in the PNW or where repeated foliar applications are used, isolates of where 550,500 acres of potatoes were grown in 2007 Pythium spp. may be exposed to metalaxyl-M multiple accounting for 56.6% of the commercial potato production times in a single growing season. in the USA (USDA-NASS 2008). Metalaxyl is a highly effective systemic fungicide with a Metalaxyl-resistant (MR) isolates of P. ultimum were single-site mode of action that inhibits ribosomal RNA previously recovered from 1 of 11 and 1 of 5 tubers with polymerases (Davidse et al. 1983) of several oomycete leak-like symptoms in Washington and Idaho in 1998 and pathogens. Metalaxyl has been used in the PNW since 1982 2000, respectively (Taylor et al. 2002). MR isolates of P. to manage oomycete pathogens on potatoes such as ultimum were also recovered from 5 of 57 infected tubers with Phytophthora infestans (cause of late blight), Phytophthora leak-like symptoms from Minnesota in 2000 (Taylor et al. erythroseptica (cause of pink rot), and Pythium ultimum. 2002), and from potato tubers located near Hermiston, OR in Am. J. Pot Res (2009) 86:315–326 317 2002 displaying abnormal development of severe symptoms all cropped to potatoes at the time samples were taken from prior to harvest (Hamm et al. 2004). Lack of additional the fields. A standard soil probe (2.9 cm diameter) was used effective fungicides to manage this tuber and seed-rotting to collect the subsamples from each sample point from the pathogen and unusually severe symptoms associated with MR surface to a soil depth of 30.5 cm. Pythium population isolates in Oregon prior to harvest without evidence of densities for each soil sample were assessed for both MR wounding, make development of MR isolates of P. ultimum Pythium isolates and total colony forming units of Pythium an important issue in the PNW.
Recommended publications
  • Phytopythium: Molecular Phylogeny and Systematics
    Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses.
    [Show full text]
  • Efficacy of Various Biological Control Agents and Biorationals Against
    that two products based on two vascular system exposed. Although P. Efficacy of different species of Streptomyces, ultimum var. ultimum seldom pro- Various Mycostop and Actino-Iron, were as duces zoospores, the motile propagules effective as metalaxyl at reducing the produced by oomycetes such as symptoms associated with pythium Pythium, the fungus has been isolated Biological root rot when artificially inoculated with Pythium ultimum var. ultimum from reservoirs where the fertilizer so- Control Agents compared to the control plants. Many lutions are stored (J.A. Gracia-Garza, roots remained functional throughout unpublished) and can easily be dis- and Biorationals the duration of the experiments and seminated throughout a greenhouse the overall appearance and number of operation that uses a recirculating subir- against Pythium bracts of commercial quality of the rigation system. Root Rot in plants were similar for the three Several chemical products are rec- treatments mentioned above. In an ommended for use against this patho- Poinsettia additional experiment, Mycostop was gen. In Ontario, metalaxyl (Subdue, tested in combination with a single Syngenta Crop Protection Canada Inc., application of metalaxyl either at 3, 7, or 11 weeks after transplanting. Guelph, Ont., Canada) and fosetyl- J.A. Gracia-Garza,1,5 Plants inoculated with P. ultimum aluminum (Aliette, Rhone-Poulenc var. ultimum and treated with Canada, Mississauga, Ont., Canada) 2 3 M. Little, W. Brown, metalaxyl either on week 3 or 7 after are two chemicals registered for the 4 1 transplanting in combination with control of root rot caused by Pythium T.J. Blom, K. Schneider, two applications of Mycostop, had in ornamental crops.
    [Show full text]
  • Pythium Ultimum Species Complex
    Resolving thePythium ultimum species complex by Quinn Eggertson A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario ©2012 Quinn Eggertson Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-93569-9 Our file Notre reference ISBN: 978-0-494-93569-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Title Development of Simple Detection Methods of Plant Pathogenic Oomycetes( 本文(Fulltext) ) Author(S) FENG, WENZHUO Report N
    Development of Simple Detection Methods of Plant Pathogenic Title Oomycetes( 本文(Fulltext) ) Author(s) FENG, WENZHUO Report No.(Doctoral Degree) 博士(農学) 甲第708号 Issue Date 2019-03-13 Type 博士論文 Version ETD URL http://hdl.handle.net/20.500.12099/77944 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) 2018 The United Graduate School of Agriculture Science, Gifu University Science of Biological Environment (Gifu University) FENG WENZHUO Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) FENG WENZHUO INDEX PREFACE .......................................................................................................... 1 CHAPTER 1 Establishment of simple LAMP procedures with detection of Pythium irregulare in field samples ................................................................... 12 MATERIALS AND METHODS ..................................................................................... 13 RESULTS ................................................................................................................... 17 1. Primer design and specificity ............................................................................... 17 2. Sensitivity of LAMP ............................................................................................. 18 3. Practical detection of P. irregulare in field samples .............................................. 18 DISCUSSION ............................................................................................................
    [Show full text]
  • Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Pythium: Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Urrea Romero, Keiddy Esperanza, "Pythium: Characterization of Resistance in Soybean and Population Diversity" (2015). Theses and Dissertations. 1272. http://scholarworks.uark.edu/etd/1272 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Pythium: Characterization of Resistance in Soybean and Population Diversity A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science by Keiddy E. Urrea Romero Universidad Nacional de Colombia Agronomic Engineering, 2003 University of Arkansas Master of Science in Plant Pathology, 2010 July 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________________ Dr. John C. Rupe Dissertation Director ___________________________________ ___________________________________ Dr. Craig S. Rothrock Dr. Pengyin Chen Committee Member Committee Member ___________________________________ ___________________________________ Dr. Burton H. Bluhm Dr. Brad Murphy Committee Member Committee Member Abstract Pythium spp. are an important group of pathogens causing stand losses in Arkansas soybean production. New inoculation methods and advances in molecular techniques allow a better understanding of cultivar resistance and responses of Pythium communities to cultural practices.
    [Show full text]
  • Enhancing the Potentiality of Trichoderma Harzianum Against Pythium Pathogen of Beans Using Chamomile (Matricaria Chamomilla, L.) Flower Extract
    molecules Article Enhancing the Potentiality of Trichoderma harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla, L.) Flower Extract Abeer Abdulkhalek Ghoniem 1, Kamar M. Abd El-Hai 2, Ayman Y. El-khateeb 3, Noha M. Eldadamony 4, Samy F. Mahmoud 5 and Ashraf Elsayed 6,* 1 Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; [email protected] 2 Department of Leguminous and Forage Crop Diseases, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 3 Department of Agricultural Chemistry, Faculty of Agriculture, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt; [email protected] 4 Seed Pathology Department, Plant Pathology Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 5 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 6 Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt * Correspondence: [email protected] Abstract: Our present study was designed to investigate the role of both Trichoderma harzianum and Citation: Ghoniem, A.A.; Abd chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium El-Hai, K.M.; El-khateeb, A.Y.; ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Eldadamony, N.M.; Mahmoud, S.F.; Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect Elsayed, A. Enhancing the of T. harzianum against P. ultimum reached 81.6% after 120 h.
    [Show full text]
  • Two Species of Phytopythium (Pythiaceae, Pythiales) New to China
    Journal of Microbiology & Experimentation Research Article Open Access Two species of Phytopythium (Pythiaceae, Pythiales) new to China Abstract Volume 7 Issue 5 - 2019 Two oomycetes, Phytopythium mercuriale and Pp. sindhum were found in southern China, Jia-Jia Chen,1,2 Hui Feng,1 Xiaobo Zheng1 and they are newly recorded in China. These two species were both isolated from roots of 1Department of Plant Pathology, Nanjing Agricultural University, soybean. Pp. mercuriale is characterized by subglobose sporangia with conspicuous apical China papillae, and occasionally forming oogonia. And Pp. sindhum is identified from other 2College of Landscape Architecture, Jiangsu Vocational College Phytopythium species by its globose to sub-globose sporangia with conspicuous apical of Agriculture and Forestry, China papillae, large and smooth oogonia, monoclinous or diclinous antheridia, and plerotic or nearly plerotic and thick-walled oospores. Illustrations and descriptions of the two new Correspondence: Xiaobo Zheng, Department of Plant records are provided based on the materials from China. Pathology, Nanjing Agricultural University, Nanjing 210095, China, Tel 18362090654, Email Keywords: Cox1, ITS, Oomycota, Phytopythium mercuriale, Phytopythium sindhum Received: August 09, 2019 | Published: September 16, 2019 Abbreviations: BI, bayesian inference; BPP, bayesian posterior in China. The isolation procedure followed the method described by probabilities; BT, bootstrap; CMA, corn meal agar; CI, consistency Benard & Punja.11 Pieces of tissue 5–10mm were cut from the roots, index; Cox1, cytochrome c oxidase subunit 1; GTR, general time washed in tap water and superficially dried on a paper towel, and plated reversible; HI, homoplasy index; ITS, the internal transcribed spacer; on CMA containing rifampicin (50mg/L), phenamacril (5mg/L), MP, maximum parsimony; MPT, maximum parsimonious tree; NJAU, ampicillin (50mg/L), and pentachloronitrobenzene (50mg/L) and the College of Plant Protection, Nanjing Agricultural University; incubated at 25°C for 2–3d.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Biocontrol of Pythium Aphanidermatum by the Cellulolytic Actinomycetes Streptomyces Rubrolavendulae S4
    R ESEARCH ARTICLE ScienceAsia 39 (2013): 584–590 doi: 10.2306/scienceasia1513-1874.2013.39.584 Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4 Bajaree Loliama, Tsutomu Morinagab, Saipin Chaiyanana;∗ a Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140 Thailand b Department of Life System Science, Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 562, Nanatsuka, Shobara, Hiroshima, 727-0023, Japan ∗Corresponding author, e-mail: [email protected] Received 7 Jan 2013 Accepted 18 Sep 2013 ABSTRACT: Streptomyces rubrolavendulae (Yen) S4, isolated from a termite mound in Kanchanaburi, Thailand, was used to control the seedling damping-off disease of the horticultural plant Joseph’s coat caused by Pythium aphanidermatum (Edson) Fitz. In a previous study, S. rubrolavendulae S4 was shown to strongly inhibit the growth of P. aphanidermatum on potato dextrose agar. This study investigated the modes of the antagonistic action of S. rubrolavendulae S4 on P. aphanidermatum. On carboxymethyl cellulose medium, S. rubrolavendulae S4 produced the highest cellulase activity of 65 U/ml in 5 days. The S. rubrolavendulae culture supernatant, with and without heat treatment, was tested for fungal growth inhibition using an agar well-diffusion method. The inhibitory effect was retained with the heat inactivated culture supernatant, indicating that the inhibition was derived from an antifungal compound rather than an enzyme produced by S. rubrolavendulae S4. The parasitic activity of S. rubrolavendulae S4 upon P. aphanidermatum was demonstrated by light and scanning electron micrographs. Joseph’s coat (Amaranthus tricolor) seedlings were grown in peat mosses inoculated with S.
    [Show full text]
  • ABSTRACT REEVES, ELLA ROBYN. Pythium Spp. Associated with Root
    ABSTRACT REEVES, ELLA ROBYN. Pythium spp. Associated with Root Rot and Stunting of Winter Field and Cover Crops in North Carolina. (Under the direction of Dr. Barbara Shew and Dr. Jim Kerns). Soft red winter wheat (Triticum aestivum) was valued at over $66 million in North Carolina in 2019, but mild to severe stunting and root rot limit yields in the Coastal Plain region during years with above-average rainfall. Pythium irregulare, P. vanterpoolii, and P. spinosum were previously identified as causal agents of stunting and root rot of winter wheat in this region. Annual double-crop rotation systems that incorporate winter wheat, or other winter crops such as clary sage, rapeseed, or a cover crop are common in the Coastal Plain of North Carolina. Stunting and root rot reduce yields of clary sage, and limit stand establishment and biomass accumulation of other winter crops in wet soils, but the role that Pythium spp. play in root rot of these crops is not understood, To investigate species prevalence, isolates of Pythium were collected from stunted winter wheat, clary sage, rye, rapeseed, and winter pea plants collected in eastern North Carolina during the growing season of 2018-2019, and from all crops except winter wheat again in 2019-2020. A total of 534 isolates were identified from all hosts. P. irregulare (32%), P. vanterpoolii (17%), and P. spinosum (16%) were the species most frequently recovered from wheat. P. irregulare (37% of all isolates) and members of the species complex Pythium sp. cluster B2A (28% of all isolates) comprised the majority of isolates collected from clary sage, rye, rapeseed, and winter pea.
    [Show full text]
  • Integrated Management of Damping-Off Diseases. a Review Jay Ram Lamichhane, Carolyne Durr, André A
    Integrated management of damping-off diseases. A review Jay Ram Lamichhane, Carolyne Durr, André A. Schwanck, Marie-Hélène Robin, Jean-Pierre Sarthou, Vincent Cellier, Antoine Messean, Jean-Noel Aubertot To cite this version: Jay Ram Lamichhane, Carolyne Durr, André A. Schwanck, Marie-Hélène Robin, Jean-Pierre Sarthou, et al.. Integrated management of damping-off diseases. A review. Agronomy for Sustainable De- velopment, Springer Verlag/EDP Sciences/INRA, 2017, 37 (2), 25 p. 10.1007/s13593-017-0417-y. hal-01606538 HAL Id: hal-01606538 https://hal.archives-ouvertes.fr/hal-01606538 Submitted on 16 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Agron. Sustain. Dev. (2017) 37: 10 DOI 10.1007/s13593-017-0417-y REVIEW ARTICLE Integrated management of damping-off diseases. A review Jay Ram Lamichhane1 & Carolyne Dürr2 & André A. Schwanck3 & Marie-Hélène Robin4 & Jean-Pierre Sarthou5 & Vincent Cellier 6 & Antoine Messéan1 & Jean-Noël Aubertot3 Accepted: 8 February 2017 /Published online: 16 March 2017 # INRA and Springer-Verlag France 2017 Abstract Damping-off is a disease that leads to the decay of However, this still is not the case and major knowledge gaps germinating seeds and young seedlings, which represents for must be filled.
    [Show full text]
  • Caracterización De Especies Fitopatógenas De
    CARACTERIZACIÓN DE ESPECIES FITOPATÓGENAS DE PYTHIUM Y PHYTOPHTHORA (PERONOSPOROMYCETES) EN CULTIVOS ORNAMENTALES DEL CINTURÓN VERDE LA PLATA-BUENOS AIRES Y OTRAS ÁREAS Y CULTIVOS DE INTERÉS TESIS PARA OPTAR AL TÍTULO DE DOCTOR EN CIENCIAS NATURALES FACULTAD DE CIENCIAS NATURALES Y MUSEO UNIVERSIDAD NACIONAL DE LA PLATA HEMILSE ELENA PALMUCCI DIRECTOR: ING. AGR. SILVIA WOLCAN CODIRECTOR: DRA MÓNICA STECIOW AÑO 2015 1 AGRADECIMIENTOS A la Facultad de Ciencias Naturales y Museo (FCNYM) por brindarme la posibilidad de realizar este trabajo A la Ing Agr Silvia Wolcan y a la Dra Mónica Steciow por sus sugerencias y comentarios en la ejecución y escritura de esta tesis. A la Dra Gloria Abad, investigadora líder en Oomycetes en el “USDA- Molecular Diagnostic Laboratory (MDL)”, por su invalorable y generosa colaboración en mi formación a través de sus conocimientos, por brindarme la posibilidad de llevar a cabo los trabajos moleculares en el MDL-Maryland-USA y apoyar mi participación en workshops internacionales y reuniones de la especialidad. A la Ing Wolcan por aportar su valiosa colección para realizar parte de las tareas de identificación y por los significativos aportes realizados desde su experiencia. A la Dra Gloria Abad, a la Ing. Agr. Silvia Wolcan, al Dr R. Dehley y al Ing. Agr. Carlos Carloni por la provisión de valiosas referencias bibliográficas. Al Ing Agr M Sc Pablo Grijalba por acompañarme en la ardua tarea de introducirnos al mundo de los Oomycetes a través de nuestras tesis doctorales y los proyectos de investigación que compartimos, y por sus consejos y colaboración en aspectos biomoleculares. A mis compañeros del Proyecto Ubacyt, Lic.
    [Show full text]