Pythium Ultimum Species Complex

Total Page:16

File Type:pdf, Size:1020Kb

Pythium Ultimum Species Complex Resolving thePythium ultimum species complex by Quinn Eggertson A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs partial fulfillment of the requirements for the degree of Master of Science in Biology Carleton University Ottawa, Ontario ©2012 Quinn Eggertson Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-93569-9 Our file Notre reference ISBN: 978-0-494-93569-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Canada Q. Eggertson 2012 A b s t r a c t The Pythium ultimum species complex is comprised of two morphological varieties: var. ultimum and var. sporangiiferum. Previous efforts to resolve whether the two varieties are genetically distinct have produced conflicting results. Using 29 isolates of Pythium ultimum - twelve isolates of var. sporangiiferum and seventeen isolates of var. ultimum, multi-gene genealogies were created from both newly identified highly variable genes and previously identified genes. Observed conflict between species estimates given by nuclear and mitochondrial gene regions resulted in two separate studies. The first examined multiple nuclear genes to resolve the species complex, while the second tested the suitability of mitochondrial genes for phylogenetic analysis. Nuclear multi-gene genealogies found that the Pythium ultimum species complex is comprised of four genetically distinct species, while mitochondrial multi-gene genealogies indicate that the mitochondrial genome of Pythium ultimum is single copy, non-recombinant and uniparentally inherited. Q. Eggertson 2012 A cknowledgement I would like to thank C. Robin Buell and John Hamilton from Michigan State University for providing me with SNP data and allowing me access to the P. ultimum genome website before it was released. I would also like to express sincere gratitude towards Andre Levesque for being a supportive and engaged supervisor, Tara Rintoul for her support, patience and always appreciated advice, Gregg Robideau for his general helpfulness and for kindly lending me his primers for OCM1, and Rafik Assabgui, Julie Chapados, and Kasia Dadej for their quick sequencing. I’d also like to acknowledge Myron Smith, who taught me the basics of both genetics and mycology and Nicolas Rodrigue whose willingness and patience in explaining the nuances of bioinformatics software was appreciated. Last but not least, I would like to thank my family and friends for their support, encouragement and for only looking slightly pained when I tried to explain my research. Q. Eggertson 2012 T able of Contents Resolving the Pythium ultimum species complex .................................................................. i Abstract ............................................................................................................................ ii Acknowledgement .........................................................................................................iii Table of Contents ..........................................................................................................iv List of Tables .................................................................................................................. vi List of Figures ................................................................................................................. vi List of Appendices ..........................................................................................................vii Thesis Introduction .................................................................................................................... 1 Chapter 1: Resolving the Pythium ultimum species complex using nuclear multi-gene genealogies under the GCPSR ............................................................................................... 5 Introduction .....................................................................................................................5 Materials and Methods ................................................................................................ 7 In house BLAST, Identification and Selection o f Isolates ...........................................7 Acquisition o f Strains and Culture Conditions............................................................9 DNA Extraction............................................................................................................... 9 SNP Analysis and Gene Selection ............................................................................... 12 Primer Design :......................................... 13 Gene Amplification with PCR ......................................................................................15 Gel-Electrophoresis......................................................................................................15 Sequencing.....................................................................................................................18 Outgroups......................................................................................................................18 Sequence Editing, Alignment and Phylogenetic Analysis .........................................19 Gene and Species Tree Visualization ..........................................................................20 Results ............................................................................................................................. 23 Preliminary Screening of Isolates ............................................................................... 23 PCR and Sequencing Primer Performance............................................................... 23 Sequencing and Sequence Editing.............................................................................. 24 Sequencing Ambiguities............................................................................................... 25 Phylogenetic Trees........................................................................................................25 Discussion ........................................................................................................................33 - iv - Q. Eggertson 2012 Chapter 2: Examining mitochondrial and nuclear gene tree conflict in species level analysis of Pythium ultimum............................................................................................. 48 Introduction .................................................................................................................. 48 Materials and Methods .............................................................................................. 53 Selection of Isolates .................................................................................................. 53 SNP Analysis and Gene Selection ............................................................................ 53 Primer Design ........................................................................................................... 54 Gene Amplification with PCR ...................................................................................54 Sequencing.................................................................................................................54 Outgroups..................................................................................................................54 Sequence Editing, Alignment and Phylogenetic Analysis .......................................56 Pairwise Distances.................................................................................................... 57 Results .............................................................................................................................59 Gene Selection .................................................................................................... 59 Primer Design
Recommended publications
  • Phytopythium: Molecular Phylogeny and Systematics
    Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses.
    [Show full text]
  • Efficacy of Various Biological Control Agents and Biorationals Against
    that two products based on two vascular system exposed. Although P. Efficacy of different species of Streptomyces, ultimum var. ultimum seldom pro- Various Mycostop and Actino-Iron, were as duces zoospores, the motile propagules effective as metalaxyl at reducing the produced by oomycetes such as symptoms associated with pythium Pythium, the fungus has been isolated Biological root rot when artificially inoculated with Pythium ultimum var. ultimum from reservoirs where the fertilizer so- Control Agents compared to the control plants. Many lutions are stored (J.A. Gracia-Garza, roots remained functional throughout unpublished) and can easily be dis- and Biorationals the duration of the experiments and seminated throughout a greenhouse the overall appearance and number of operation that uses a recirculating subir- against Pythium bracts of commercial quality of the rigation system. Root Rot in plants were similar for the three Several chemical products are rec- treatments mentioned above. In an ommended for use against this patho- Poinsettia additional experiment, Mycostop was gen. In Ontario, metalaxyl (Subdue, tested in combination with a single Syngenta Crop Protection Canada Inc., application of metalaxyl either at 3, 7, or 11 weeks after transplanting. Guelph, Ont., Canada) and fosetyl- J.A. Gracia-Garza,1,5 Plants inoculated with P. ultimum aluminum (Aliette, Rhone-Poulenc var. ultimum and treated with Canada, Mississauga, Ont., Canada) 2 3 M. Little, W. Brown, metalaxyl either on week 3 or 7 after are two chemicals registered for the 4 1 transplanting in combination with control of root rot caused by Pythium T.J. Blom, K. Schneider, two applications of Mycostop, had in ornamental crops.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Pythium: Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Urrea Romero, Keiddy Esperanza, "Pythium: Characterization of Resistance in Soybean and Population Diversity" (2015). Theses and Dissertations. 1272. http://scholarworks.uark.edu/etd/1272 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Pythium: Characterization of Resistance in Soybean and Population Diversity A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science by Keiddy E. Urrea Romero Universidad Nacional de Colombia Agronomic Engineering, 2003 University of Arkansas Master of Science in Plant Pathology, 2010 July 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________________ Dr. John C. Rupe Dissertation Director ___________________________________ ___________________________________ Dr. Craig S. Rothrock Dr. Pengyin Chen Committee Member Committee Member ___________________________________ ___________________________________ Dr. Burton H. Bluhm Dr. Brad Murphy Committee Member Committee Member Abstract Pythium spp. are an important group of pathogens causing stand losses in Arkansas soybean production. New inoculation methods and advances in molecular techniques allow a better understanding of cultivar resistance and responses of Pythium communities to cultural practices.
    [Show full text]
  • Enhancing the Potentiality of Trichoderma Harzianum Against Pythium Pathogen of Beans Using Chamomile (Matricaria Chamomilla, L.) Flower Extract
    molecules Article Enhancing the Potentiality of Trichoderma harzianum against Pythium Pathogen of Beans Using Chamomile (Matricaria chamomilla, L.) Flower Extract Abeer Abdulkhalek Ghoniem 1, Kamar M. Abd El-Hai 2, Ayman Y. El-khateeb 3, Noha M. Eldadamony 4, Samy F. Mahmoud 5 and Ashraf Elsayed 6,* 1 Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt; [email protected] 2 Department of Leguminous and Forage Crop Diseases, Plant Pathology Research Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 3 Department of Agricultural Chemistry, Faculty of Agriculture, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt; [email protected] 4 Seed Pathology Department, Plant Pathology Institute, Agricultural Research Center, Giza 12112, Egypt; [email protected] 5 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] 6 Botany Department, Faculty of Science, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt * Correspondence: [email protected] Abstract: Our present study was designed to investigate the role of both Trichoderma harzianum and Citation: Ghoniem, A.A.; Abd chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium El-Hai, K.M.; El-khateeb, A.Y.; ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Eldadamony, N.M.; Mahmoud, S.F.; Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect Elsayed, A. Enhancing the of T. harzianum against P. ultimum reached 81.6% after 120 h.
    [Show full text]
  • Effects of Temperature on the Incidence and Severity of Pre-Emergence and Post-Emergence Damping Off of Cowpea ( Vignaunguiculata L.) by Pythium Debaryanum
    Global Advanced Research Journal of Agricultural Science (ISSN: 2315-5094) Vol. 5(8) pp. 339-343, August, 2016 Issue. Available online http://garj.org/garjas/home Copyright © 2016 Global Advanced Research Journals Full Length Research Paper Effects of Temperature on the Incidence and Severity of Pre-Emergence and Post-Emergence Damping off of Cowpea ( Vignaunguiculata L.) By Pythium debaryanum 1Chadi, .M.,1 Auyo, M.I., 2Daniel, A.K., and 1Kutama, A.S., 1Department of Biological Sciences, Faculty of Sciences, Federal University Dutse, Jigawa State, Nigeria 2Department of Environmental Sciences, Faculty of Sciences, Federal University Dutse, Jigawa State, Nigeria Accepted 13 August, 2016 The focus of this study is on the effect of different temperature on the incidence and severity of pre-emergence and post-emergence damping off of cowpea (Vignaunguiculata) caused by Pythium debaryanum. This research was conducted using 130 viable cowpea seeds each for pre-emergence and post-emergence damping. Germinating and germinated seeds, as the case may be, were incubated in groups of 10 in three replicates at 20, 25, 30, 35 and 40 0C. A replicate of 10 samples each was observed as control for pre-emergence and post- emergence damping off. The findings of this research show clearly that the effect of temperature on the incidence and severity of damping off on Cowpea by Pythium debaryanum was significant for both pre-emergence and post- emergence damping off. In both cases, disease incidence for the lowest and highest treatment temperature was 70% and 96.7% respectively. This means that the incidence and severity of damping off increases with increased temperature in both seeds and seedlings.
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • Two Species of Phytopythium (Pythiaceae, Pythiales) New to China
    Journal of Microbiology & Experimentation Research Article Open Access Two species of Phytopythium (Pythiaceae, Pythiales) new to China Abstract Volume 7 Issue 5 - 2019 Two oomycetes, Phytopythium mercuriale and Pp. sindhum were found in southern China, Jia-Jia Chen,1,2 Hui Feng,1 Xiaobo Zheng1 and they are newly recorded in China. These two species were both isolated from roots of 1Department of Plant Pathology, Nanjing Agricultural University, soybean. Pp. mercuriale is characterized by subglobose sporangia with conspicuous apical China papillae, and occasionally forming oogonia. And Pp. sindhum is identified from other 2College of Landscape Architecture, Jiangsu Vocational College Phytopythium species by its globose to sub-globose sporangia with conspicuous apical of Agriculture and Forestry, China papillae, large and smooth oogonia, monoclinous or diclinous antheridia, and plerotic or nearly plerotic and thick-walled oospores. Illustrations and descriptions of the two new Correspondence: Xiaobo Zheng, Department of Plant records are provided based on the materials from China. Pathology, Nanjing Agricultural University, Nanjing 210095, China, Tel 18362090654, Email Keywords: Cox1, ITS, Oomycota, Phytopythium mercuriale, Phytopythium sindhum Received: August 09, 2019 | Published: September 16, 2019 Abbreviations: BI, bayesian inference; BPP, bayesian posterior in China. The isolation procedure followed the method described by probabilities; BT, bootstrap; CMA, corn meal agar; CI, consistency Benard & Punja.11 Pieces of tissue 5–10mm were cut from the roots, index; Cox1, cytochrome c oxidase subunit 1; GTR, general time washed in tap water and superficially dried on a paper towel, and plated reversible; HI, homoplasy index; ITS, the internal transcribed spacer; on CMA containing rifampicin (50mg/L), phenamacril (5mg/L), MP, maximum parsimony; MPT, maximum parsimonious tree; NJAU, ampicillin (50mg/L), and pentachloronitrobenzene (50mg/L) and the College of Plant Protection, Nanjing Agricultural University; incubated at 25°C for 2–3d.
    [Show full text]
  • Abbreviations
    Abbreviations AfDD Acriflavine direct detection AODC Acridine orange direct count ARA Arachidonic acid BPE Bleach plant effluent Bya Billion years ago CFU Colony forming unit DGGE Denaturing gradient gel electrophoresis DHA Docosahexaenoic acid DOC Dissolved organic carbon DOM Dissolved organic matter DSE Dark septate endophyte EN Ectoplasmic net EPA Eicosapentaenoic acid FITC Fluorescein isothiocyanate GPP Gross primary production ITS Internal transcribed spacer LDE Lignin-degrading enzyme LSU Large subunit MAA Mycosporine-like amino acid MBSF Metres below surface Mpa Megapascal MPN Most probable number MSW Molasses spent wash MUFA Monounsaturated fatty acid Mya Million years ago NPP Net primary production OMZ Oxygen minimum zone OUT Operational taxonomic unit PAH Polyaromatic hydrocarbon PCR Polymerase chain reaction © Springer International Publishing AG 2017 345 S. Raghukumar, Fungi in Coastal and Oceanic Marine Ecosystems, DOI 10.1007/978-3-319-54304-8 346 Abbreviations POC Particulate organic carbon POM Particulate organic matter PP Primary production Ppt Parts per thousand PUFA Polyunsaturated fatty acid QPX Quahog parasite unknown SAR Stramenopile Alveolate Rhizaria SFA Saturated fatty acid SSU Small subunit TEPS Transparent Extracellular Polysaccharides References Abdel-Waheb MA, El-Sharouny HM (2002) Ecology of subtropical mangrove fungi with empha- sis on Kandelia candel mycota. In: Kevin D (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 247–265 Abe F, Miura T, Nagahama T (2001) Isolation of highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034 Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6.
    [Show full text]
  • Biocontrol of Pythium Aphanidermatum by the Cellulolytic Actinomycetes Streptomyces Rubrolavendulae S4
    R ESEARCH ARTICLE ScienceAsia 39 (2013): 584–590 doi: 10.2306/scienceasia1513-1874.2013.39.584 Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4 Bajaree Loliama, Tsutomu Morinagab, Saipin Chaiyanana;∗ a Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-utid Road, Bangmod, Toongkru, Bangkok 10140 Thailand b Department of Life System Science, Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, 562, Nanatsuka, Shobara, Hiroshima, 727-0023, Japan ∗Corresponding author, e-mail: [email protected] Received 7 Jan 2013 Accepted 18 Sep 2013 ABSTRACT: Streptomyces rubrolavendulae (Yen) S4, isolated from a termite mound in Kanchanaburi, Thailand, was used to control the seedling damping-off disease of the horticultural plant Joseph’s coat caused by Pythium aphanidermatum (Edson) Fitz. In a previous study, S. rubrolavendulae S4 was shown to strongly inhibit the growth of P. aphanidermatum on potato dextrose agar. This study investigated the modes of the antagonistic action of S. rubrolavendulae S4 on P. aphanidermatum. On carboxymethyl cellulose medium, S. rubrolavendulae S4 produced the highest cellulase activity of 65 U/ml in 5 days. The S. rubrolavendulae culture supernatant, with and without heat treatment, was tested for fungal growth inhibition using an agar well-diffusion method. The inhibitory effect was retained with the heat inactivated culture supernatant, indicating that the inhibition was derived from an antifungal compound rather than an enzyme produced by S. rubrolavendulae S4. The parasitic activity of S. rubrolavendulae S4 upon P. aphanidermatum was demonstrated by light and scanning electron micrographs. Joseph’s coat (Amaranthus tricolor) seedlings were grown in peat mosses inoculated with S.
    [Show full text]
  • Aquatic Fungi from South Bass and Neighboring Islands in Western Lake Erie
    AQUATIC FUNGI FROM SOUTH BASS AND NEIGHBORING ISLANDS IN WESTERN LAKE ERIE. II. ADDITIONAL BIFLAGELLATE AND UNIFLAGELLATE PHYCOMYCETES* J. A. SCHMITT AND E. S. BENEKE Department of Botany and Plant Pathology, The Ohio State University, Columbus, and Department of Botany and Plant Pathology, Michigan State University, East Lansing The first paper of this series (Beneke and Schmitt, 1961) summarized past records of aquatic Phycomycetes in Ohio. To date 45 species and several sterile isolates of certain genera have been reported from the state. This paper reports the results of an extension of the earlier studies. The current investigation was carried out during June-July, 1960, at the Franz T. Stone Laboratory, Put-in-Bay, Ohio, as part of the aquatic mycology course of The Ohio State University, Depart- ment of Botany and Plant Pathology. Methods and Materials The usual techniques of "baiting" soil or water samples were used throughout the investigation. Many of the water samples included twigs, leaves, algae, or organic debris. The common bait was sterilized hempseed halves, although de- waterproofed cellophane, pine pollen grains ,and crabapples were also utilized. Soil samples were collected in disposable paper bags, while screw cap bottles were used for the water samples. The soil and water samples were collected from South Bass, Middle Bass, North Bass, Kelleys, and Gilbraltar Islands, and from Miller's Blue Hole and its outflowing stream near Castalia, Ohio, on the mainland. Results and Discussion The fungi recovered and identified
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Plant Pathology and Environmental Microbiology CHARACTERIZATION OF Pythium and Phytopythium SPECIES FREQUENTLY FOUND IN IRRIGATION WATER A Thesis in Plant Pathology by Carla E. Lanze © 2015 Carla E. Lanze Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science August 2015 ii The thesis of Carla E. Lanze was reviewed and approved* by the following Gary W. Moorman Professor of Plant Pathology Thesis Advisor David M. Geiser Professor of Plant Pathology Interim Head of the Department of Plant Pathology and Environmental Microbiology Beth K. Gugino Associate Professor of Plant Pathology Todd C. LaJeunesse Associate Professor of Biology *Signatures are on file in the Graduate School iii ABSTRACT Some Pythium and Phytopythium species are problematic greenhouse crop pathogens. This project aimed to determine if pathogenic Pythium species are harbored in greenhouse recycled irrigation water tanks and to determine the ecology of the Pythium species found in these tanks. In previous research, an extensive water survey was performed on the recycled irrigation water tanks of two commercial greenhouses in Pennsylvania that experience frequent poinsettia crop loss due to Pythium aphanidermatum. In that work, only a preliminary identification of the baited species was made. Here, detailed analyses of the isolates were conducted. The Pythium and Phytopythium species recovered during the survey by baiting the water were identified and assessed for pathogenicity in lab and greenhouse experiments. The Pythium species found during the tank surveys were: a species genetically very similar to P. sp. nov. OOMYA1702-08 in Clade B2, two distinct species of unknown identity in Clade E2, P.
    [Show full text]