Sectional Geometry in a Simulated Fine Branch Niche

Total Page:16

File Type:pdf, Size:1020Kb

Sectional Geometry in a Simulated Fine Branch Niche JOURNAL OF MORPHOLOGY 276:759–765 (2015) Mouse Hallucal Metatarsal Cross-Sectional Geometry in a Simulated Fine Branch Niche Craig D. Byron,1* Anthony Herrel,2,3 Elin Pauwels,4 Amelie De Muynck,4 and Biren A. Patel5,6 1Department of Biology, Mercer University, Macon, Georgia 2Departement d’Ecologie et de Gestion de la Biodiversite, CNRS/MNHN, Paris, France 3Department of Vertebrate Evolutionary Morphology, Ghent University, Gent, Belgium 4Department of Physics and Astronomy, Ghent University, UGCT, Ghent, Belgium 5Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 6Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California ABSTRACT Mice raised in experimental habitats con- arboreal substrates (Le Gros Clark, 1959; Cart- taining an artificial network of narrow “arboreal” sup- mill, 1972; Szalay and Drawhorn, 1980; Sussman, ports frequently use hallucal grasps during locomotion. 1991; Schmitt and Lemelin, 2002; Bloch et al., Therefore, mice in these experiments can be used to 2007; Sargis et al., 2007). There are also examples model a rudimentary form of arboreal locomotion in an of rodent (Orkin and Pontzer, 2011), carnivoran animal without other morphological specializations for using a fine branch niche. This model would prove use- (Fabre et al., 2013), marsupial (Lemelin and ful to better understand the origins of arboreal behav- Schmitt, 2007; Shapiro et al., 2014), and nonmam- iors in mammals like primates. In this study, we malian vertebrates including frogs, lizards, and examined if locomotion on these substrates influences birds (Herrel et al., 2013; Sustaita et al., 2013) the mid-diaphyseal cross-sectional geometry of mouse that are effective in this niche without primate- metatarsals. Thirty CD-1/ICR mice were raised in like specializations. For most small mammals, a either arboreal (composed of elevated narrow branches key functional demand of this niche is to counter- of varying orientation) or terrestrial (flat ramps and act lateral instability while balancing above very walkways that are stratified) habitats from weaning narrow horizontal supports. Manual and pedal (21 days) to adulthood (4 months). After experiments, prehension is important in this context because it the hallucal metatarsal (Mt1) and third metatarsal (Mt3) for each individual were isolated and micro-com- makes counterbalancing torques possible to main- puted tomography (micro-CT) scans were obtained to tain above branch postures (Napier, 1967; Cart- calculate mid-shaft cross-sectional area and polar sec- mill, 1974, 1985; Preuschoft et al., 1995; Lemelin tion modulus. Arboreal mice had Mt1s that were signif- and Schmitt, 2007). icantly more robust. Mt3 cross sections were not Evidence from extant (Scandentia) and fossil significantly different between groups. The arboreal (Plesiadapiformes) groups suggest that grasping group also exhibited a significantly greater Mt1/Mt3 with an opposable hallux is a common feature of ratio for both robusticity measures. We conclude that fine branch arboreal taxa even when other (nonpe- the hallucal metatarsal exhibits significant phenotypic dal grasping) specializations seen in primates are plasticity in response to arboreal treatment due to absent (e.g., stereoscopic vision; Bloch et al., habitual locomotion that uses a rudimentary hallucal grasp. Our results support the hypothesis that early 2007). Therefore, one interpretation is that adap- adaptive stages of fine branch arboreality should be tations for hallucal grasping represent an early accompanied by a slightly more robust hallux associ- transitional evolutionary stage toward better ated with the biomechanical demands of this niche. J. exploiting a fine branch niche. Such multistaged Morphol. 276:759–765, 2015. VC 2015 Wiley Periodicals, Inc. evolutionary sequences have been proposed in KEY WORDS: arboreal; foot; hallux; pedal grasping; micro-CT; cross-sectional geometry *Correspondence to: Craig D. Byron, Department of Biology, Mercer University, 1501 Mercer University Drive, Macon, GA 31207. E-mail: [email protected] INTRODUCTION It is commonly recognized that Primates (within Received 17 September 2014; Revised 3 January 2015; Eutheria) represent one of a few adaptive radia- Accepted 24 January 2015. tions (many belonging to the Euarchonta) with Published online 11 March 2015 in specialized appendicular anatomy that yields func- Wiley Online Library (wileyonlinelibrary.com). tional advantages in the terminal branches of DOI 10.1002/jmor.20376 VC 2015 WILEY PERIODICALS, INC. 760 C.D. BYRON ET AL. substrates (Fig. 1). The development of this skill for fine branch arboreality is evident at a cerebral and cerebellar somatotopic level (Byron et al., 2013). The habitual use of hallucal grasping com- mits the mouse to foot postures that place the sub- strate between the first and second digits. In climbing mice, the transverse processes on caudal vertebrae are relatively larger, the talar head angle is relatively lower, the talar head width and height are more uniform, and the talar neck is rel- Fig. 1. Still-frame image of a typical mouse on a horizontal atively shorter (Byron et al., 2011). The talar head branch (i.e., arboreal group). These animals use a pedal grasp is especially pertinent to pedal grasping because with an opposable hallux (see left foot) in coordination with tail its angle relative to the skeletal elements of the motions that counteract lateral instability. more distal regions of the foot (i.e., navicular, ento- cuneiform, and metatarsals) is decreased and this relates to pedal inversion relative to the climbing which a nongrasping, small, clawed euarchonto- substrate. gliran mammal (i.e., Stage 1) transitions to a A similar mechanism for enhanced pedal inver- clawed, pedal grasper like the tree shrew genus sion which helps promote stable above branch Ptilocercus (i.e., Stage 2) before evolving a more quadrupedal postures is reported for some euarch- powerful pedal grasp with a nail-bearing hallux ontans (Szalay and Drawhorn, 1980; Sargis, 2001, like that found in the opossum genus Caluromys 2002). Moreover, earlier studies of lab mice and (i.e., Stage 3; Gebo, 2004; Sargis et al., 2007; You- the rodent genus Peromyscus have emphasized the latos, 2008). Accordingly, it should be possible to role of tail use, increased talar neck angle, and ascertain functional morphological signals in bones first metatarsal morphology in climbing behaviors in the foot related to hallucal grasping perform- (Siegel, 1970; Siegel and Van Meter, 1973; Siegel ance. For example, a hallucal metatarsal (Mt1) and Jones, 1975). Recent work with the harvest with a relatively large peroneal process has been mouse (Micromys minutus; Urbani and Youlatos, suggested to be an adaptation for powerful hallu- 2013) substantiate this approach that early stages cal grasping in primates (e.g., Gebo, 2004). This is of primate evolution can be modeled with living because strepsirrhine primates and tarsiers, tradi- rodent species. By combining tiny-size and secure tionally viewed as capable of strong hallucal hallucal grasping, those authors demonstrate that grasps, have larger peroneal processes compared animals not typically viewed as being specialized to anthropoids that lack this morphology (Gebo, for the fine-branch niche can nevertheless exploit 1986, 1987; Szalay and Dagasto, 1988; Jacobs this habitat to a degree of proficiency that is et al., 2009; Patel et al., 2012; Goodenberger et al., between the hypothesized Stages 2 and 3 of pri- 2015). However, experimental (Boyer et al., 2007; mate evolution. Kingston et al., 2010; Patel et al., 2015) and com- Because the alterations in morphology docu- parative (Jacobs et al., 2009; Goodenberger et al., mented by Byron et al. (2011, 2013) occur within a 2015) studies have made it clear that the presence single generation of mice, they are not considered of a large peroneal process alone is not consistent to be evolutionary adaptations. Instead, morpho- with hallucal grasping abilities in primates. Thus, logical changes in the skeletal, muscular, and the putative transition between hypothetical nervous systems relate to experience-dependent evolutionary Stages 1 and 2 may only be accompa- growth and tissue modeling (nonheritable morpho- nied by very modest specializations in Mt1 logical variance) that is relevant to preprimate- morphology. like climbing ability (i.e., phenotypic plasticity; see An approach to assess possible morphological Stearns, 1989; Scheiner, 1993; Via et al., 1995; changes that may have accompanied an evolution- Buck et al., 2010). The hallux, ankle, and tail mor- ary transition from Stages 1 to 2 is to use an ani- phology in these mice could mimic the earliest mal model system. It has been shown that stage of euarchontan evolution into the fine- standard laboratory rodents as well as the Euro- branched niche. Therefore, relating phenotypic pean Red Squirrel locomote on slender substrates plasticity to morphological adaptations for grasp- with adaptive behaviors that promote stability ing could lead to a better understanding on the (Schmidt and Fischer, 2010, 2011). Recently, Byron evolution of integrated organ systems related to et al. (2009, 2011, 2013) also promoted the use of a the early functional demands of the fine-branch mouse model system that simulates a fine-branch niche. arboreal habitat. This is because pedal (specifically In this study, metatarsals are evaluated
Recommended publications
  • Mammalia, Plesiadapiformes) As Reflected on Selected Parts of the Postcranium
    SHAPE MEETS FUNCTION: STRUCTURAL MODELS IN PRIMATOLOGY Edited by Emiliano Bruner Proceedings of the 20th Congress of the International Primatological Society Torino, Italy, 22-28 August 2004 MORPHOLOGY AND MORPHOMETRICS JASs Journal of Anthropological Sciences Vol. 82 (2004), pp. 103-118 Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium Dionisios Youlatos1, Marc Godinot2 1) Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece. email [email protected] 2) Ecole Pratique des Hautes Etudes, UMR 5143, Case Courrier 38, Museum National d’Histoire Naturelle, Institut de Paleontologie, 8 rue Buffon, F-75005 Paris, France Summary – Plesiadapis is one of the best-known Plesiadapiformes, a group of Archontan mammals from the Late Paleocene-Early Eocene of Europe and North America that are at the core of debates con- cerning primate origins. So far, the reconstruction of its locomotor behavior has varied from terrestrial bounding to semi-arboreal scansoriality and squirrel-like arboreal walking, bounding and claw climbing. In order to elucidate substrate preferences and positional behavior of this extinct archontan, the present study investigates quantitatively selected postcranial characters of the ulna, radius, femur, and ungual pha- langes of P. tricuspidens and P. n .sp. from three sites (Cernay-les-Reims, Berru, Le Quesnoy) in the Paris Basin, France. These species of Plesiadapis was compared to squirrels of different locomotor habits in terms of selected functional indices that were further explored through a Principal Components Analysis (PCA), and a Discriminant Functions Analysis (DFA). The indices treated the relative olecranon height, form of ulnar shaft, shape and depth of radial head, shape of femoral distal end, shape of femoral trochlea, and dis- tal wedging of ungual phalanx, and placed Plesiadapis well within arboreal quadrupedal, clambering, and claw climbing squirrels.
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • Aspects of Tree Shrew Consolidated Sleep Structure Resemble Human Sleep
    ARTICLE https://doi.org/10.1038/s42003-021-02234-7 OPEN Aspects of tree shrew consolidated sleep structure resemble human sleep Marta M. Dimanico1,4, Arndt-Lukas Klaassen1,2,4, Jing Wang1,3, Melanie Kaeser1, Michael Harvey1, ✉ Björn Rasch 2 & Gregor Rainer 1 Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration 1234567890():,; parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. 1 Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
    [Show full text]
  • The Phylogenetic Roots of Human Lethal Violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5
    LETTER doi:10.1038/nature19758 The phylogenetic roots of human lethal violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5 The psychological, sociological and evolutionary roots of 600 human populations, ranging from the Palaeolithic era to the present conspecific violence in humans are still debated, despite attracting (Supplementary Information section 9c). The level of lethal violence the attention of intellectuals for over two millennia1–11. Here we was defined as the probability of dying from intraspecific violence propose a conceptual approach towards understanding these roots compared to all other causes. More specifically, we calculated the level based on the assumption that aggression in mammals, including of lethal violence as the percentage, with respect to all documented humans, has a significant phylogenetic component. By compiling sources of mortality, of total deaths due to conspecifics (these sources of mortality from a comprehensive sample of mammals, were infanticide, cannibalism, inter-group aggression and any other we assessed the percentage of deaths due to conspecifics and, type of intraspecific killings in non-human mammals; war, homicide, using phylogenetic comparative tools, predicted this value for infanticide, execution, and any other kind of intentional conspecific humans. The proportion of human deaths phylogenetically killing in humans). predicted to be caused by interpersonal violence stood at 2%. Lethal violence is reported for almost 40% of the studied mammal This value was similar to the one phylogenetically inferred for species (Supplementary Information section 9a). This is probably the evolutionary ancestor of primates and apes, indicating that a an underestimation, because information is not available for many certain level of lethal violence arises owing to our position within species.
    [Show full text]
  • Geology and Vertebrate Paleontology of Western and Southern North America
    OF WESTERN AND SOUTHERN NORTH AMERICA OF WESTERN AND SOUTHERN NORTH PALEONTOLOGY GEOLOGY AND VERTEBRATE Geology and Vertebrate Paleontology of Western and Southern North America Edited By Xiaoming Wang and Lawrence G. Barnes Contributions in Honor of David P. Whistler WANG | BARNES 900 Exposition Boulevard Los Angeles, California 90007 Natural History Museum of Los Angeles County Science Series 41 May 28, 2008 Paleocene primates from the Goler Formation of the Mojave Desert in California Donald L. Lofgren,1 James G. Honey,2 Malcolm C. McKenna,2,{,2 Robert L. Zondervan,3 and Erin E. Smith3 ABSTRACT. Recent collecting efforts in the Goler Formation in California’s Mojave Desert have yielded new records of turtles, rays, lizards, crocodilians, and mammals, including the primates Paromomys depressidens Gidley, 1923; Ignacius frugivorus Matthew and Granger, 1921; Plesiadapis cf. P. anceps; and Plesiadapis cf. P. churchilli. The species of Plesiadapis Gervais, 1877, indicate that Member 4b of the Goler Formation is Tiffanian. In correlation with Tiffanian (Ti) lineage zones, Plesiadapis cf. P. anceps indicates that the Laudate Discovery Site and Edentulous Jaw Site are Ti2–Ti3 and Plesiadapis cf. P. churchilli indicates that Primate Gulch is Ti4. The presence of Paromomys Gidley, 1923, at the Laudate Discovery Site suggests that the Goler Formation occurrence is the youngest known for the genus. Fossils from Member 3 and the lower part of Member 4 indicate a possible marine influence as Goler Formation sediments accumulated. On the basis of these specimens and a previously documented occurrence of marine invertebrates in Member 4d, the Goler Basin probably was in close proximity to the ocean throughout much of its existence.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Creating Animal Models, Why Not Use the Chinese Tree Shrew (Tupaia Belangeri Chinensis)?
    ZOOLOGICAL RESEARCH Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)? Yong-Gang Yao1,2,* 1 Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China 2 Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China ABSTRACT the spot light as a viable animal model for investigating the basis of many different human diseases. The Chinese tree shrew (Tupaia belangeri chinensis), a squirrel-like and rat-sized mammal, has a wide Keywords: Chinese tree shrew; Genome biology; distribution in Southeast Asia, South and Southwest Animal model; Gene editing; Innate immunity China and has many unique characteristics that 1 make it suitable for use as an experimental animal. INTRODUCTION There have been many studies using the tree shrew (Tupaia belangeri) aimed at increasing our As human beings, our knowledge about ourselves, especially understanding of fundamental biological mechanisms about how our brain works, how a disease develops, and the and for the modeling of human diseases and discovery of many efficient therapeutic agents, has largely therapeutic responses. The recent release of a come from studies using animals. The higher the similarity publicly available annotated genome sequence of between an animal species and the human, the more we can the Chinese tree shrew and its genome database obtain helpful and precise information concerning the (www.treeshrewdb.org) has offered a solid base fundamental biology, disease mechanism, and safety, efficiency from which it is possible to elucidate the basic and predictability of therapeutic agents (Franco, 2013; biological properties and create animal models using McGonigle & Ruggeri, 2014).
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Cynocephalid Dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): Systematic, Evolutionary and Palaeobiogeographic Implications
    CynocephalidBlackwell Publishing Ltd dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications LAURENT MARIVAUX, LOÏC BOCAT, YAOWALAK CHAIMANEE, JEAN-JACQUES JAEGER, BERNARD MARANDAT, PALADEJ SRISUK, PAUL TAFFOREAU, CHOTIMA YAMEE & JEAN-LOUP WELCOMME Accepted: 5 April 2006 Marivaux, L., Bocat, L., Chaimanee, Y., Jaeger, J.-J., Marandat, B., Srisuk, P., Tafforeau, P., doi:10.1111/j.1463-6409.2006.00235.x Yamee, C. & Welcomme, J.-L. (2006). Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. — Zoologica Scripta, 35, 395–420. Cynocephalid dermopterans (flying lemurs) are represented by only two living genera (Cynocephalus and Galeopterus), which inhabit tropical rainforests of South-East Asia. Despite their very poor diversity and their limited distribution, dermopterans play a critical role in higher- level eutherian phylogeny inasmuch as they represent together with Scandentia (tree-shrew) the sister group of the Primates clade (Plesiadapiformes + Euprimates). However, unlike primates, for which the fossil record extends back to the early Palaeogene on all Holarctic continents and in Africa, the evolutionary history of the order Dermoptera sensu stricto (Cynocephalidae) has so far remained undocumented, with the exception of a badly preserved fragment of mandi- ble from the late Eocene of Thailand (Dermotherium major). In this paper, we described newly discovered fossil dermopterans (essentially dental remains) from different regions of South Asia (Thailand, Myanmar, and Pakistan) ranging from the late middle Eocene to the late Oligocene. We performed microtomographic examinations at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) to analyse different morphological aspects of the fossilized jaws.
    [Show full text]
  • Oldest Known Euarchontan Tarsals and Affinities of Paleocene Purgatorius to Primates
    Oldest known euarchontan tarsals and affinities of Paleocene Purgatorius to Primates Stephen G. B. Chestera,b,c,1, Jonathan I. Blochd, Doug M. Boyere, and William A. Clemensf aDepartment of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210; bNew York Consortium in Evolutionary Primatology, New York, NY 10024; cDepartment of Anthropology, Yale University, New Haven, CT 06520; dFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; eDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708; and fUniversity of California Museum of Paleontology, Berkeley, CA 94720 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 24, 2014 (received for review November 12, 2014) Earliest Paleocene Purgatorius often is regarded as the geologi- directly outside Placentalia with the contemporary condylarths cally oldest primate, but it has been known only from fossilized (archaic ungulates) Protungulatum and Oxyprimus (10–12). How- dentitions since it was first described half a century ago. The den- ever, the addition of new tarsal data for Purgatorius and increased tition of Purgatorius is more primitive than those of all known taxon sampling, including a colugo and four plesiadapiforms, using living and fossil primates, leading some researchers to suggest this same matrix, results in a strict consensus tree that supports that it lies near the ancestry of all other primates; however, others a monophyletic Euarchonta with Sundatheria (treeshrews and have questioned its affinities to primates or even to placental colugos) as the sister group to a fairly unresolved Primates clade mammals. Here we report the first (to our knowledge) nondental that includes Purgatorius (Fig.
    [Show full text]
  • Foraging Behaviour of the Slender Loris (Loris Lydekkerianus Lydekkerianus): Implications for Theories of Primate Origins
    Journal of Human Evolution 49 (2005) 289e300 Foraging behaviour of the slender loris (Loris lydekkerianus lydekkerianus): implications for theories of primate origins K.A.I. Nekaris* Department of Anthropology, Washington University, Campus Box 1114, One Brookings Drive, St. Louis, MO 63110, USA Received 3 May 2004; accepted 18 April 2005 Abstract Members of the Order Primates are characterised by a wide overlap of visual fields or optic convergence. It has been proposed that exploitation of either insects or angiosperm products in the terminal branches of trees, and the corresponding complex, three-dimensional environment associated with these foraging strategies, account for visual convergence. Although slender lorises (Loris sp.) are the most visually convergent of all the primates, very little is known about their feeding ecology. This study, carried out over 10 ½ months in South India, examines the feeding behaviour of L. lydekkerianus lydekkerianus in relation to hypotheses regarding visual predation of insects. Of 1238 feeding observations, 96% were of animal prey. Lorises showed an equal and overwhelming preference for terminal and middle branch feeding, using the undergrowth and trunk rarely. The type of prey caught on terminal branches (Lepidoptera, Odonata, Homoptera) differed significantly from those caught on middle branches (Hymenoptera, Coleoptera). A two-handed catch accompanied by bipedal postures was used almost exclusively on terminal branches where mobile prey was caught, whereas the more common capture technique of one-handed grab was used more often on sturdy middle branches to obtain slow moving prey. Although prey was detected with senses other than vision, vision was the key sense used upon the final strike.
    [Show full text]
  • Conserved Sequences Identify the Closest Living Relatives of Primates
    ZOOLOGICAL RESEARCH between primates and tree shrews (Kay et al., 1992; Novacek, Gorilla gorilla, Macaca mulatta, Microcebus murinus, 1992; Wible & Covert, 1987). In addition, several other studies Galeopterus variegatus, and Mus musculus vs. Homo sapiens have regarded both tree shrews and flying lemurs (colugos) were downloaded from the University of California Santa Cruz together as a sister group of primates (Bloch et al., 2007; Liu (UCSC) pairwise alignments. We also downloaded repeat- et al., 2001; Murphy et al., 2001; Nie et al., 2008; Sargis, masked whole genome sequences (17 species) from the Conserved sequences identify the closest living 2002; Springer et al., 2003, 2004). Further phylogenetic NCBI assembly database, with the repeat-masked Homo analysis incorporating paleontological evidence also suggests sapiens genome obtained from the UCSC Genome Browser that primates and colugos are sister taxa (Beard, 1993). (http://genome.ucsc.edu/). Pairwise whole genome alignments relatives of primates Previous molecular studies also support colugos as the for 17 species (Table 1) vs. Homo sapiens were obtained closest living relatives of primates (Bininda-Emonds et al., using LASTZ (Schwartz et al., 2003) with the following 2007; Hudelot et al., 2003; Waddell et al., 2001). Genomic parameters: E=30, O=400, K=3 000, L=2 200, and M=50. A Mei-Ling Zhang1,#, Ming-Li Li2,4,#, Adeola Oluwakemi Ayoola2,4, Robert W. Murphy2,3, Dong-Dong Wu2,*, Yong Shao2,* analyses further postulated a third potential topology: 24-way whole genome multiple
    [Show full text]