Vertical Support Use and Primate Origins Gabriel S

Total Page:16

File Type:pdf, Size:1020Kb

Vertical Support Use and Primate Origins Gabriel S www.nature.com/scientificreports OPEN Vertical support use and primate origins Gabriel S. Yapuncich 1, Henry J. Feng1, Rachel H. Dunn2, Erik R. Seifert 3 & Doug M. Boyer1 Adaptive scenarios of crown primate origins remain contentious due to uncertain order of acquisition Received: 1 May 2019 and functional signifcance of the clade’s diagnostic traits. A feature of the talus bone in the ankle, Accepted: 6 August 2019 known as the posterior trochlear shelf (PTS), is well-regarded as a derived crown primate trait, but Published: xx xx xxxx its adaptive signifcance has been obscured by poorly understood function. Here we propose a novel biomechanical function for the PTS and model the talus as a cam mechanism. By surveying a large sample of primates and their closest relatives, we demonstrate that the PTS is most strongly developed in extant taxa that habitually grasp vertical supports with strongly dorsifexed feet. Tali of the earliest fossils likely to represent crown primates exhibit more strongly developed PTS cam mechanisms than extant primates. As a cam, the PTS may increase grasping efciency in dorsifexed foot postures by increasing the path length of the fexor fbularis tendon, and thus improve the muscle’s ability to maintain fexed digits without increasing energetic demands. Comparisons are made to other passive digital fexion mechanisms suggested to exist in other vertebrates. These results provide robust anatomical evidence that the habitual vertical support use exerted a strong selective pressure during crown primate origins. Te talus is an important element for reconstructing positional behavior throughout primate evolution because the bone’s morphology correlates well with locomotor and postural behaviors of living euarchontans (the mam- malian clade including Primates, Scandentia, Dermoptera) and it is frequently preserved in fossil assemblages1–4. However, despite a long history of study1,4–7, debate remains concerning the talar morphology of the common ancestor of crown primates and the positional behavior implied by this morphology. Te posterior trochlear shelf (PTS) – a bony extension protruding from the posterior aspect of the talar body (Fig. 1) – is a prime example of a conspicuous but confounding talar feature: while PTS hypertrophy unequivocally diagnoses a crown primate talus1, there is no consensus regarding the feature’s functional signifcance2,7. Several biomechanical roles have been suggested, including creating a bony stop during plantarfexion1,2, supporting an elongated posterior cal- caneal facet1,4, or redirecting stress within the talus4. Te ambiguous function of the PTS means it is ofen char- acterized but rarely emphasized in the description of fossil tali3,7. Resolving this gap in understanding of primate functional anatomy can provide novel insights into the origin of our order. From a biomechanical perspective, PTS hypertrophy accentuates an asymmetry around the axis of the talocru- ral joint. As a hinge joint, the talocrural joint is primarily involved in dorsi- and plantarfexion of the foot as the talus rotates sagittally around a largely transverse axis8 (although more complex movements in other anatomi- cal planes occur at the joint as well9,10). A rotating, asymmetrical body can function as a cam mechanism (Fig. S1a), converting rotational into translational motion11. Cams consist of two moving elements: a driver, which is generally fxed at a rotational axis and has an asymmetry known as the rise, and a follower, which contacts the driver and follows a path dictated by the contour of the rise (Fig. S1a). We hypothesize that the talus functions as a driver rotating about the talocrural joint axis, the PTS serves as the rise, and the tendon of the fexor fbularis muscle (transmitted through a groove on the posterior aspect of the talus) as the follower. Rotation of the driver (dorsi- and plantarfexion of the foot) would “translate” the tendon proximally by increasing its path length, and a larger rise (i.e., PTS hypertrophy) would increase the efect. Since the PTS is located on the posterior aspect of the talus, the tendon’s path length would be maximized when the PTS is most distal to the origin of the fexor fbularis (i.e., when the foot is dorsifexed) and the tendon would be “translated” toward the muscle’s origin, efectively contracting the muscle (Fig. 2). 1Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA. 2Department of Anatomy, Des Moines University, Des Moines, IA, 50312, USA. 3Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. Correspondence and requests for materials should be addressed to G.S.Y. (email: [email protected]) SCIENTIFIC REPORTS | (2019) 9:12341 | https://doi.org/10.1038/s41598-019-48651-x 1 www.nature.com/scientificreports/ www.nature.com/scientificreports Figure 1. Presence and absence of the posterior trochlear shelf (PTS) in euarchontans. PTS indicated by shading. Ellipses represent fexor fbularis tendon; tendons in red are expected to experience cam efect, while tendons in blue are not. Non-crown primates include (a) Ptilocercus lowii (USNM 488072), (b) Galeopterus variegatus (USNM 317118), and (c) †Plesiadapis rex (UM 94816; reversed for consistency). Extant and likely crown primates include (d) †Teilhardina belgica (IRSNB M1235), (e) †Donrussellia provincialis (MNHN RI 428), and (f) Lepilemur mustelinus (AMNH 170556). Institution abbreviations and expanded comparative plates are provided in Supplementary Material. Scale bars equal 3 mm. In non-human primates, the fexor fbularis typically inserts on the distal phalanges of the frst, third, and fourth rays12, so the PTS cam mechanism could confer several biomechanical benefts in taxa with grasping feet. Given the muscle’s insertion patterns and assuming muscular contraction remains constant, translation of the tendon may induce additional fexion of digits critical for pedal grasping (Fig. 2). Alternatively, increasing the path length of the tendon during dorsifexion could permit reduced muscular activity without a concomitant decrease in grasping ability. Finally, the PTS cam could increase the passive tension within the muscle: when stretched to a certain length, the actin-myosin interaction of sarcomeres is maximized, permitting increased force generation13. If the fexor fbularis can stretch the additional distance necessitated by a hypertrophied PTS, the cam mechanism could shif the muscle to a more efcient position along its length-tension curve. In the discussion, we examine the likelihood of each of these alternatives, but in all cases, a hypertrophied PTS would increase grasping efciency (increased work for equivalent energy or equivalent work for reduced energy) in a dorsifexed foot posture. To model the PTS as a cam mechanism, our measurements capture the size of the rise relative to the base circle of the driver, a ratio termed the PTS index (Fig. S1b). PTS indices > 1 indicate strongly developed cam mecha- nisms (Materials and Methods). We compute PTS indices for a large and comprehensive sample of euarchontans (Materials and Methods) and test for signifcant diferences between clades as well as signifcant diferences from a PTS index = 1 (a null hypothesis indicating the rise is equivalent to the driver’s base circle). Finally, we eval- uate the evolution of the PTS through time using Bayesian ancestral state reconstruction and multiple-regime Ornstein-Uhlenbeck models (Materials and Methods). Results Among extant primates, the highest PTS indices are exhibited by indriids and Lepilemur (Fig. 3a; Table S1; Fig. S6). Four extant primate families (Indriidae, Lemuridae, Galagidae, and Tarsiidae), as well as a non-natural group of the remaining lemuriform taxa (Cheirogaleidae, Lepilemur, and Daubentonia) have mean PTS indices signif- cantly greater than 1 (Table S8). Of these taxa, indriids, galagids, and tarsiers habitually grasp vertically oriented supports with strongly dorsifexed feet14–16, and vertical support use is a component of the positional behavior for many lemuriforms17. As a group, strepsirrhines (excluding Lorisidae) have signifcantly greater PTS indices than anthropoids, lorisids, and other euarchontans (dermopterans and scandentians) (Fig. 3a; Table S7; Fig. S5). Te high PTS indices of extant vertical clinging taxa are exceeded by those of several fossil groups. Members of both adapiforms and omomyiforms, two Eocene groups likely to represent crown primates, including the earliest represented members (Donrussellia and Teilhardina respectively) (Fig. 3b; Table S2) have greater PTS indices than those observed in extant taxa. Te best supported model for Bayesian ancestral state reconstruction (Fig. 4, Table S13) utilizes a delta parameter <1 (mean δ = 0.544) and estimates that the ancestral crown primate possessed a well-developed PTS (1.19), in stark contrast to all other euarchontan groups, including plesiadapiforms (0.68). Evolutionary models generated with stepwise-ftting of Ornstein-Uhlenbeck adaptive regimes accord well with the evolutionary pattern implied by ancestral state reconstruction. For extant taxa (Fig. 3a; Table S21), the base of the euarchontan tree is characterized by a low adaptive optimum for the PTS index (0.74) which is SCIENTIFIC REPORTS | (2019) 9:12341 | https://doi.org/10.1038/s41598-019-48651-x 2 www.nature.com/scientificreports/ www.nature.com/scientificreports a c Leg PTS Talus Tarsus and metatarsus Phalanges b Leg d Tarsus and Phalanges
Recommended publications
  • Homologies of the Anterior Teeth in Lndriidae and a Functional Basis for Dental Reduction in Primates
    Homologies of the Anterior Teeth in lndriidae and a Functional Basis for Dental Reduction in Primates PHILIP D. GINGERICH Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109 KEY WORDS Dental reduction a Lemuriform primates . Indriidae . Dental homologies - Dental scraper . Deciduous dentition - Avahi ABSTRACT In a recent paper Schwartz ('74) proposes revised homologies of the deciduous and permanent teeth in living lemuriform primates of the family Indriidae. However, new evidence provided by the deciduous dentition of Avahi suggests that the traditional interpretations are correct, specifically: (1) the lat- eral teeth in the dental scraper of Indriidae are homologous with the incisors of Lemuridae and Lorisidae, not the canines; (2) the dental formula for the lower deciduous teeth of indriids is 2.1.3; (3) the dental formula for the lower perma- nent teeth of indriids is 2.0.2.3;and (4)decrease in number of incisors during pri- mate evolution was usually in the sequence 13, then 12, then 11. It appears that dental reduction during primate evolution occurred at the ends of integrated in- cisor and cheek tooth units to minimize disruption of their functional integrity. Anterior dental reduction in the primate Schwartz ('74) recently reviewed the prob- family Indriidae illustrates a more general lem of tooth homologies in the dental scraper problem of direction of tooth loss in primate of Indriidae and concluded that no real evi- evolution. All living lemuroid and lorisoid pri- dence has ever been presented to support the mates (except the highly specialized Dauben- interpretation that indriids possess four lower tonid share a distinctive procumbent, comb- incisors and no canines.
    [Show full text]
  • PHYLOGENETIC RELATIONSHIPS AMONG BRAZILIAN HOWLER MONKEYS, GENUS Alouatta (PLATYRRHINI, ATELIDAE), BASED on Γ1-GLOBIN PSEUDOGENE SEQUENCES
    Genetics and Molecular Biology, 22, 3, 337-344 Phylogenetic(1999) relationships of Brazilian howler monkeys 337 PHYLOGENETIC RELATIONSHIPS AMONG BRAZILIAN HOWLER MONKEYS, GENUS Alouatta (PLATYRRHINI, ATELIDAE), BASED ON γ1-GLOBIN PSEUDOGENE SEQUENCES Carla Maria Meireles1, John Czelusniak1, Stephen F. Ferrari2, Maria Paula Cruz Schneider2 and Morris Goodman1 ABSTRACT The genus Alouatta (howler monkeys) is the most widely distributed of New World primates, and has been arranged in three species groups: the Central American Alouatta palliata group and the South American Alouatta seniculus and Alouatta caraya groups. While the latter is monotypic, the A. seniculus group encompasses at least three species (A. seniculus, A. belzebul and A. fusca). In the present study, approximately 600 base pairs of the γ1-globin pseudogene were sequenced in the four Brazilian species (A. seniculus, A. belzebul, A. fusca and A. caraya). Maximum parsimony and maximum likelihood methods yielded phylogenetic trees with the same arrangement: {A. caraya [A. seniculus (A. fusca, A. belzebul)]}. The most parsimoni- ous tree had bootstrap values greater than 82% for all groupings, and strength of grouping values of at least 2, supporting the sister clade of A. fusca and A. belzebul. The study also confirmed the presence of a 150-base pair Alu insertion element and a 1.8-kb deletion in the γ1-globin pseudogene in A. fusca, features found previously in the remaining three species. The cladistic classification based on molecular data agrees with those of morphological studies, with the monospecific A. caraya group being clearly differentiated from the A. seniculus group. INTRODUCTION southern Mexico to northern Argentina, and is found in tropical and subtropical forest ecosystems throughout Bra- The systematics of the New World monkeys (infra- zil (Hirsch et al., 1991).
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Cultural Resource Management Department of Anthropology 10-2019 Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) Samantha Mills Follow this and additional works at: https://repository.stcloudstate.edu/crm_etds Part of the Archaeological Anthropology Commons Recommended Citation Mills, Samantha, "Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)" (2019). Culminating Projects in Cultural Resource Management. 28. https://repository.stcloudstate.edu/crm_etds/28 This Thesis is brought to you for free and open access by the Department of Anthropology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Cultural Resource Management by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) by Samantha M. Mills A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Functional Morphology October, 2019 Thesis Committee: Matthew Tornow, Chairperson Mark Muñiz Bill Cook Tafline Arbor 2 Abstract Toward the end of the Middle Eocene (40-37mya), the environment started to decline on a global scale. It was becoming more arid, the tropical forests were disappearing from the northern latitudes, and there was an increase in seasonality. Research of the Chadronian (37- 33.7mya) in the Great Plains region of North America has documented the persistence of several mammalian taxa (e.g. primates) that are extinct in other parts of North America.
    [Show full text]
  • A New Mammalian Fauna from the Earliest Eocene (Ilerdian) of the Corbie`Res (Southern France): Palaeobiogeographical Implications
    Swiss J Geosci (2012) 105:417–434 DOI 10.1007/s00015-012-0113-5 A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbie`res (Southern France): palaeobiogeographical implications Bernard Marandat • Sylvain Adnet • Laurent Marivaux • Alain Martinez • Monique Vianey-Liaud • Rodolphe Tabuce Received: 27 April 2012 / Accepted: 19 September 2012 / Published online: 4 November 2012 Ó Swiss Geological Society 2012 Abstract A new mammal fauna from the earliest Eocene Keywords Ypresian Á Europe Á Mammals Á of Le Clot (Corbie`res, Southern France) is described. Some Multituberculates Á Palaeoclimate Á Palaeobiogeography taxa identified there, such as Corbarimys hottingeri and Paschatherium plaziati, allow a correlation with the pre- viously described Corbie`res fauna of Fordones. Moreover, 1 Introduction the presence at Le Clot of Lessnessina praecipuus, which is defined in Palette (Provence, Southern France) allows The beginning of the Eocene is characterized by two major correlating both localities. All three of these localities are phenomena: the warming event known as the Paleocene referred to the MP7 reference level, even if a direct cor- Eocene thermal maximum (PETM) (Stott et al. 1996), relation with the type locality of MP7 (Dormaal, Belgium) which likely triggered the second one: the mammalian is not ascertained. A Southern Europe biochronological dispersal event (MDE) (Beard and Dawson 1999; Hooker sequence is proposed for the beginning of the Eocene: 2000). This MDE is a critical event in the history of Silveirinha, Fordones/Palette/Le Clot, Rians/Fournes. The mammals as it corresponds to both the origin and dispersal diagnosis of a new species of a neoplagiaulacid multitu- of several modern mammalian orders (Perissodactyla, berculate (?Ectypodus riansensis nov.
    [Show full text]
  • The Current Status of the Newworld Monkey Phylogeny Anais Da Academia Brasileira De Ciências, Vol
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Schneider, Horacio The current status of the NewWorld Monkey Phylogeny Anais da Academia Brasileira de Ciências, vol. 72, núm. 2, jun;, 2000, pp. 165-172 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32772205 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative The Current Status of the New World Monkey Phylogeny∗ ∗∗ HORACIO SCHNEIDER Campus Universitário de Bragança, Universidade Federal do Pará, Alameda Leandro Ribeiro, s/n – 68600-000 Bragança, Pará, Brazil Manuscript received on January 31, 2000; accepted for publication on February 2, 2000 ABSTRACT Four DNA datasets were combined in tandem (6700 bp) and Maximum parsimony and Neighbor-Joining analyses were performed. The results suggest three groups emerging almost at the same time: Atelidae, Pitheciidae and Cebidae. The total analysis strongly supports the monophyly of the Cebidae family, group- ing Aotus, Cebus and Saimiri with the small callitrichines. In the callitrichines, the data link Cebuela to Callithrix, place Callimico as a sister group of Callithrix/Cebuella, and show Saguinus to be the earliest offshoot of the callitrichines. In the family Pithecidae, Callicebus is the basal genus. Finally, combined molecular data showed congruent branching in the atelid clade, setting up Alouatta as the basal lineage and Brachyteles-Lagothrix as a sister group and the most derived branch.
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • Mammalia, Plesiadapiformes) As Reflected on Selected Parts of the Postcranium
    SHAPE MEETS FUNCTION: STRUCTURAL MODELS IN PRIMATOLOGY Edited by Emiliano Bruner Proceedings of the 20th Congress of the International Primatological Society Torino, Italy, 22-28 August 2004 MORPHOLOGY AND MORPHOMETRICS JASs Journal of Anthropological Sciences Vol. 82 (2004), pp. 103-118 Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium Dionisios Youlatos1, Marc Godinot2 1) Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece. email [email protected] 2) Ecole Pratique des Hautes Etudes, UMR 5143, Case Courrier 38, Museum National d’Histoire Naturelle, Institut de Paleontologie, 8 rue Buffon, F-75005 Paris, France Summary – Plesiadapis is one of the best-known Plesiadapiformes, a group of Archontan mammals from the Late Paleocene-Early Eocene of Europe and North America that are at the core of debates con- cerning primate origins. So far, the reconstruction of its locomotor behavior has varied from terrestrial bounding to semi-arboreal scansoriality and squirrel-like arboreal walking, bounding and claw climbing. In order to elucidate substrate preferences and positional behavior of this extinct archontan, the present study investigates quantitatively selected postcranial characters of the ulna, radius, femur, and ungual pha- langes of P. tricuspidens and P. n .sp. from three sites (Cernay-les-Reims, Berru, Le Quesnoy) in the Paris Basin, France. These species of Plesiadapis was compared to squirrels of different locomotor habits in terms of selected functional indices that were further explored through a Principal Components Analysis (PCA), and a Discriminant Functions Analysis (DFA). The indices treated the relative olecranon height, form of ulnar shaft, shape and depth of radial head, shape of femoral distal end, shape of femoral trochlea, and dis- tal wedging of ungual phalanx, and placed Plesiadapis well within arboreal quadrupedal, clambering, and claw climbing squirrels.
    [Show full text]
  • Avahi Laniger)
    A. Zaramody et al.: Phylogeny of Eastern Woolly Lemurs MOLECULAR PHYLOGENY AND TAXONOMIC REVISION OF THE EASTERN WOOLLY LEMURS (AVAHI LANIGER) Zaramody A, Fausser J-L, Roos C, Zinner D, Andriaholinirina N, Rabarivola C, Norscia I, Tattersall I and Rumpler Y Key words: Avahi, Strepsirrhini, taxonomy, mtDNA, cytogenetics, new species Abstract The western and northern populations of woolly lemurs (Avahi) have been di- vided into three distinct species (A. cleesei, A. occidentalis and A. unicolor), whereas the eastern populations are still considered to represent a single species (A. laniger), despite the wider distribution of woolly lemurs in this region. To analyze the diver- sity within the eastern population and among the eastern and western populations, we compared cytogenetic data and mitochondrial DNA (mtDNA) sequences from woolly lemurs from 14 sites in the east of Madagascar and from three sites in the west, representing three of the four recognized species. Cytogenetic and mtDNA data are in agreement and confirm the distinctiveness of A. laniger and A. occiden- talis. Within A. laniger the molecular data revealed large genetic distances among local populations. On the basis of these new data we propose to split A. laniger into three species: (1) north of the Mongoro/Onive Rivers, (2) south of the Mongoro/Onive Rivers at least as far south as Mahasoarivo, and (3) from the south-east (Manombo, Sainte Luce). Within the south-eastern species (3) two clearly separated subspecies can be distinguished, one from the region of Manombo and the other from the region of Sainte Luce. The northern species (1) shows considerable intraspecies genetic dis- tances and may consist of several populations distinguishable as subspecies.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Coexistence of Confamilial, Folivorous Indriids, Propithecus Diadema And
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar Lana Kerker Oliver Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biodiversity Commons, Biological and Physical Anthropology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Oliver, Lana Kerker, "Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar" (2017). Arts & Sciences Electronic Theses and Dissertations. 1134. https://openscholarship.wustl.edu/art_sci_etds/1134 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Anthropology Dissertation Examination Committee Crickette Sanz, Chair Kari Allen Benjamin Z. Freed Jane Phillips-Conroy David Strait Mrinalini Watsa Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]