The Phylogenetic Roots of Human Lethal Violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogenetic Roots of Human Lethal Violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5 LETTER doi:10.1038/nature19758 The phylogenetic roots of human lethal violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5 The psychological, sociological and evolutionary roots of 600 human populations, ranging from the Palaeolithic era to the present conspecific violence in humans are still debated, despite attracting (Supplementary Information section 9c). The level of lethal violence the attention of intellectuals for over two millennia1–11. Here we was defined as the probability of dying from intraspecific violence propose a conceptual approach towards understanding these roots compared to all other causes. More specifically, we calculated the level based on the assumption that aggression in mammals, including of lethal violence as the percentage, with respect to all documented humans, has a significant phylogenetic component. By compiling sources of mortality, of total deaths due to conspecifics (these sources of mortality from a comprehensive sample of mammals, were infanticide, cannibalism, inter-group aggression and any other we assessed the percentage of deaths due to conspecifics and, type of intraspecific killings in non-human mammals; war, homicide, using phylogenetic comparative tools, predicted this value for infanticide, execution, and any other kind of intentional conspecific humans. The proportion of human deaths phylogenetically killing in humans). predicted to be caused by interpersonal violence stood at 2%. Lethal violence is reported for almost 40% of the studied mammal This value was similar to the one phylogenetically inferred for species (Supplementary Information section 9a). This is probably the evolutionary ancestor of primates and apes, indicating that a an underestimation, because information is not available for many certain level of lethal violence arises owing to our position within species. Overall, including species with and without lethal violence, the phylogeny of mammals. It was also similar to the percentage we found that the percentage of deaths due to conspecifics was seen in prehistoric bands and tribes, indicating that we were as 0.30 ±​ 0.19% of all deaths (phylogenetically corrected mean ± s.e.m). lethally violent then as common mammalian evolutionary history This level was not affected by the number of individuals sampled would predict. However, the level of lethal violence has changed per species (Supplementary Information section 1). These findings through human history and can be associated with changes in suggest that lethal violence, although infrequent, is widespread among the socio-political organization of human populations. Our study mammals19–21. provides a detailed phylogenetic and historical context against We determined whether related species tended to have similar levels which to compare levels of lethal violence observed throughout of lethal violence by calculating the phylogenetic signal. We used the our history. most recently updated mammalian phylogenies, including 5,020 Debate on the nature of human violence has been ongoing since extant mammals22 and 5,747 extant and recently extinct mammals 23. before the publication of Leviathan by Thomas Hobbes in 1651. We found a significant phylogenetic signal for lethal violence, even Lethal violence is considered by some to be mostly a cultural trait5,6,12; after combining disparate causes of intraspecific killings (λ > 0.60, however, aggression in mammals, including humans13,14, also has a P <​ 0.0001; Supplementary Information section 2). While lethal genetic component with high heritability. Consequently, it is widely violence was uncommon in certain clades such as bats, whales and acknowledged that evolution has also shaped human violence2–4. lagomorphs, it was frequent in others, such as primates (Fig. 1). The From this perspective, violence can be seen as an adaptive strategy, phylogenetic signal was also significantly lower than one (P <​ 0.0001), favouring the perpetrator’s reproductive success in terms of mates, indicating that lethal violence exhibits certain evolutionary flex- status or resources15,16. Yet this does not mean that violence is invariant ibility (Fig. 1). For example, the level of lethal violence strongly or even adaptive in all situations15. In fact, given that the conditions differs between chimpanzees (Pan troglodytes) and bonobos under which violence benefits evolutionary fitness depend on the (Pan paniscus)10,17,20. This outcome suggests that additional factors ecological and cultural context, levels of violence tend to vary among may subsequently modify the level of lethal violence in related species. human populations12,13,15,16. Disentangling the relative importance Territoriality and social behaviour mediate conspecific aggression in of cultural and non-cultural components of human violence is mammals20,24. We scored these two traits for every mammal in our challenging3,5 owing to the complex interactions between ecological, study and statistically related them to the level of lethal violence using social, behavioural and genetic factors. phylogenetic generalized linear models. Using this method, we found Conspecific violence is not exclusive to humans. Many primates that the level of lethal violence was higher in social and territorial exhibit high levels of intergroup aggression and infanticide4,10. Social species than in solitary and non- territorial species (Fig. 2; Extended carnivores sometimes kill members of other groups and commit Data Table 1). infanticide when supplanting older members of the same group17,18. The occurrence of a phylogenetic signal for lethal violence in Even seemingly peaceful mammals such as hamsters and horses mammals enables the phylogenetic inference of lethal violence in sometimes kill individuals of their own species19,20. The prevalence humans. We used ancestral-state estimation methods that infer the of aggression throughout Mammalia raises the question of the extent value of a trait in any extant species according to its position in the to which levels of lethal violence observed in humans are as expected, phylogenetic tree25. The level of human lethal violence was estimated given our position in the phylogenetic tree of mammals. In this study, both with and without considering the territoriality and sociability of we quantified the level of lethal violence in 1,024 mammalian species mammals. Because phylogenetic inferences are much more accurate from 137 families (Supplementary Information section 9a) and in over and reliable when including information from close relatives26 1Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120 Almería, Spain. 2Dpto de Ecología, Universidad de Granada, E-18071 Granada, Spain. 3Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), E-46113 Valencia, Spain. 4Dpto de Zoología, Universidad de Granada, E-18071 Granada, Spain. 5Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, E-28933 Madrid, Spain. 13 OCTOBER 2016 | VOL 538 | NATURE | 233 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. RESEARCH LETTER s E m u P i c u o i s M Fu i i e s P s s g E u s F n h Glau P t t i s e y a u l a e i u u C s c l una n a S o Ta s e a B i i t i u d s n scar M u l t d p s a i g r i a u al s s s a c t a s e r u e ra P i s r u a n e o d mb u e n S c S i mi en r u n Sy S u e i c E P n i t b g l u s n S s c u s t e u t l i c t o u m o o g s s gi e i c Gr e i y E r n c a e D un e a M li a o a o r u to e t u n s i n a om r c s i i t y s m h d r n f s n l d op a r a S lv hy etes u i n n s o s ni l r l u r i g s bu t p u g ry u i a n v S i Ra i e s ci s u e i o a s h a e r l u u yo a u om s a i t ma u o nus R ic o yl m s r d s i e y t o din i nu o i c n m i v p l r r m t a u la s r n y i c te l h s m n i u u i i l i n w u e o d l x s u r us l s p o i r r v s s u a u i i a u m s y u s i ag r a at l e s yth ia vi h l r g l l u i y r c us u a c a o x r h tu s r e m s n o us g s e Sylvi vi r r d u s g h p h o my ru s d l g s ic v t s y i p a e c s mc b r t k i b i a t t Le ys s i a s n c e r L f u s e s L l e r be u i u l g u o t u l n i e n us i s e a d ag i s ir c s i u v c a ulv e i i i p i la us n Pr l a g n u im f c y py a v r s a m l e a i u a p u p e s y u a a f s l fa a e e m er b g t r i i c s s c u c pe r r m d r a d s a ru u m unni s ni a u lu u h r p u n a pu n v s ib e s be p gu n p s s i v r s s p que s s u s u i l r r um c o r w o b s i e m t us s qu l u u l e i r Le i a u l L br b b l g f c e e o s r dm e u us i la i ella u i u m e u u st c e l g u u c u le s il t i a s i r s s s no s a d o r a ri Lepu L ra us h x s s i l r L r s nna n r s o v ep r r i s la ic i s r l r s lus r ys O u h i us s i e t s x s n s s a s s mu a e s a g as a l u r a ep a a in s y h t o e i o a s ep p aru u t ll u c G di u i ph i l u p u u i u u u a Lepus s f i h a i u n t p n i a o s at s i a y i l r n e olor r i i u s und u n r ca n m hi l av u m ph a p s low t r r a h a u i i m ore s u p i l t a u u L n r ia my o h o orid i t i yc ci u l u c c i lu e et i c m P s si l o p Le c c h x du ca s u P u m i s s a a a i m s s o oe n e e e u a i s m o h u s l us s o gus s e l nt u a r o m c s ari mi p v s s e a s i m o o l a ya ro ie S m S S m li nus r am a omys l m p S r S r ti h m op lus l di T s s s z i T a n p u b n pu s X X o t nut g a n i a L u u P P r o on e i m h l L p t f a n mo ph vi a o i ii i H a rmo o ic o n l T i er a t C n n T r p hi l o o gu T y m o a rm us Oc n L us a i r s e arcticu s s T hi r k a g eu rica a i m p ep us T yn o a on la r i T e
Recommended publications
  • Water Consumption by Rusa Deer (Cervus Timorensis) Stags As Infl Uenced by Different Types of Food
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Queensland eSpace Animal Science 2005, 80: 83-88 Water intake of rusa stags in Australia 1357-7298/04/40500083$20.00 © 2005 British Society of Animal Science Water consumption by rusa deer (Cervus timorensis) stags as infl uenced by different types of food W. Yape Kii and G. McL. Dryden† School of Animal Studies, University of Queensland, Gatton, Queensland 4345, Australia †Email : [email protected] Abstract During winter in southern Queensland, eight rusa deer stags aged 4 years were given ad libitum lucerne (Medicago sativa) hay and confi ned in individual metabolism pens for 26 days. Stags ate 2·04 kg dry matter (DM) per day and drank 6·4 kg water per day, while the drinking water : food DM ratio was 3·3 l/kg. In experiment 2, seven rusa stags were given ad libitum lucerne hay or oaten (Avena spp. ) hay with or without barley grain supplementation (200 g/day) for 56 days (four periods). This experiment was conducted from 26 July to 19 September 2001, when the stags were exhibiting the behaviour characteristic of the rut. Rusa stags ate 1·19 and 1·17 kg DM per day of lucerne and oaten hay respectively. Rusa stags given oaten hay drank slightly more water than those that received lucerne hay (5·34 and 4·47 kg/day, respectively). The drinking water : food DM ratios were 3·81 and 4·67 kg/kg for lucerne and oaten hay, respectively.
    [Show full text]
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Mandible Variation in the Dwarf Fat-Tailed Jerboa, Pygeretmus Pumilio (Rodentia: Dipodidae)
    Canadian Journal of Zoology Phenotypic plasticity under desert environment constraints: mandible variation in the dwarf fat-tailed jerboa, Pygeretmus pumilio (Rodentia: Dipodidae) Journal: Canadian Journal of Zoology Manuscript ID cjz-2019-0029.R1 Manuscript Type: Article Date Submitted by the 17-Apr-2019 Author: Complete List of Authors: Krystufek, Boris; Slovenian Museum of Natural History Janzekovic, Franc; Faculty of Natural Sciences and Mathematics, University of Maribor Shenbrot, DraftGeorgy; Ben-Gurion University of the Negev, Mitrani Department of Desert Ecology Ivajnsic, Danijel; Faculty of Natural Sciences and Mathematics, University of Maribor Klenovsek, Tina; Faculty of Natural Sciences and Mathematics, University of Maribor Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: Bergmann’s rule, desert ecology, ecomorphology, geometric Keyword: morphometrics, dwarf fat-tailed jerboa, Pygeretmus pumilio, resource availability https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 46 Canadian Journal of Zoology Phenotypic plasticity under desert environment constraints: mandible variation in the dwarf fat-tailed jerboa, Pygeretmus pumilio (Rodentia: Dipodidae) B. Kryštufek, F. Janžekovič, G. Shenbrot, D. Ivajnšič, and T. Klenovšek B. Kryštufek. Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia, email: [email protected] F. Janžekovič, D. Ivajnšič, and T. Klenovšek. Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia, emails: [email protected]; [email protected]; [email protected] G. Shenbrot. Mitrani Department ofDraft Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel, email: [email protected] Correspondence: T. Klenovšek Address: Faculty of Natural Sciences and Mathematics, Koroška 160, 2000 Maribor, Slovenia.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3052, 19 pp., 9 figures, 1 table December 14, 1992 Sucking Lice (Insecta, Anoplura) from Indigenous Sulawesi Rodents: a New Species of Polyplax from a Montane Shrew Rat, and New Information About Polyplax wallacei and P. eropepli LANCE A. DURDEN' AND GUY G. MUSSER2 ABSTRACT Polyplax melasmothrixi, a new species of po- from Eropeplus canus from tropical upper mon- lyplacid sucking louse, is described from Melas- tane rain forest also in Central Sulawesi. Host and mothrix naso, a small-bodied shrew rat known habitat associations for these three species ofsuck- only from tropical upper montane rain forest in ing lice are discussed. Polyplax melasmothrixi and Central Sulawesi, Indonesia. The male ofPolyplax P. eropepli are both known only from montane wallacei is described from specimens collected from habitats in Central Sulawesi and both appear to Bunomys chrysocomus trapped in tropical lowland be host specific (to M. naso and E. canus, respec- evergreen rain forest in Central Sulawesi. A further tively). Contrastingly, P. wallacei parasitizes two specimen ofPolyplax eropepli, a taxon previously species ofBunomys in lowland forests and is known known only from the type series, is documented from North and Central Sulawesi. INTRODUCTION Melasmothrix naso, Bunomys chrysoco- Musser and Holden, 1991). The shrew rat, mus, and Eropeplus canus are three murine M. naso, and the large-bodied E. canus have rodents found only in forests on the Indo- been recorded only from montane rainforest nesian island of Sulawesi (Musser, 1987; formations in the mountainous central part I Assistant Professor and Assistant Curator, Institute of Arthropodology and Parasitology, Georgia Southern Uni- versity, Landrum Box 8056, Statesboro, Georgia 30460.
    [Show full text]
  • Evaluation of Human Disturbance on the Activity of Medium – Large Mammals in Myanmar
    Evaluation of human disturbance on the activity of medium – large mammals in Myanmar GIACOMO CREMONESI, FRANCESCO BISI, LORENZO GAFFI, THET ZAW, HLA NAING, KYAW MOE, ZARNI AUNG, ALESSANDRA GAGLIARDI, LUCAS A. WAUTERS, DAMIANO G. PREATONI and ADRIANO MARTINOLI SUPPLEMENTARY TABLE S1 Sampling effort per site and per session (year): number of camera trap activation days (Days) and number of functioning camera traps per site (Number). Site S001, S002, S003 and S004 were located in Htamanthi Wildlife Sanctuary and S005, S006, S007 and S008 in Rakhine Yoma Elephant Range. S001 S002 S003 S004 S005 S006 S007 S008 Year 1 Days 45 46 45 45 74 57 67 52 Number 27 30 29 28 31 31 28 26 Year 2 Days 45 46 47 46 56 55 52 51 Number 30 30 30 29 32 29 31 31 SUPPLEMENTARY TABLE S2 Table of the 17 species (without human and domestic dogs) with at least 20 different events and the activity patterns classification given by us and found in literature. Species Our classification Literature classification Atherurus macrourus nocturnal nocturnal (Molur, 2016) Catopuma temminckii diurnal diurnal (Lynam et al., 2013) cathemeral (Azlan, 2006) nocturnal (Kawanishi and Sunquist, 2008) Cuon alpinus diurnal diurnal (Kamler et al., 2012 and Bashir et al., 2014) Elephas maximus nocturnal nocturnal (Youngpoy, 2012 and Gray and Phan, 2011) diurnal (Bhatt et al., 2018) Helarctos malayanus cathemeral mostly diurnal (Wong et al., 2004) mostly nocturnal (Guharajan et al., 2013) Hystrix brachyura nocturnal nocturnal (Gray and Phan, 2011) Macaca arctoides diurnal diurnal (Htun et al., 2008) Macaca leonina diurnal diurnal (Gray and Phan, 2011) Martes flavigula diurnal mostly diurnal (Duckworth, 1997 and Grassman et al., 2005) Muntiacus muntjak diurnal diurnal (Ross et al., 2013) cathemeral (Gray and Phan, 2011) Neofelis nebulosa nocturnal nocturnal (Lynam et al., 2013) mostly nocturnal (Azlan, 2006) Paradoxurus hermaphroditus nocturnal nocturnal (Gray and Phan, 2011) nocturnal (Joshi et al., 1995) Pardofelis marmorata diurnal diurnal (Ross et al., 2010 and Lynam et al., 2013).
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • First Record of Hose's Civet Diplogale Hosei from Indonesia
    First record of Hose’s Civet Diplogale hosei from Indonesia, and records of other carnivores in the Schwaner Mountains, Central Kalimantan, Indonesia Hiromitsu SAMEJIMA1 and Gono SEMIADI2 Abstract One of the least-recorded carnivores in Borneo, Hose’s Civet Diplogale hosei , was filmed twice in a logging concession, the Katingan–Seruyan Block of Sari Bumi Kusuma Corporation, in the Schwaner Mountains, upper Seruyan River catchment, Central Kalimantan. This, the first record of this species in Indonesia, is about 500 km southwest of its previously known distribution (northern Borneo: Sarawak, Sabah and Brunei). Filmed at 325The m a.s.l., IUCN these Red List records of Threatened are below Species the previously known altitudinal range (450–1,800Prionailurus m). This preliminary planiceps survey forPardofelis medium badia and large and Otter mammals, Civet Cynogalerunning 100bennettii camera-traps in 10 plots for one (Bandedyear, identified Civet Hemigalus in this concession derbyanus 17 carnivores, Arctictis including, binturong on Neofelis diardi, three Endangered Pardofe species- lis(Flat-headed marmorata Cat and Sun Bear Helarctos malayanus, Bay Cat . ) and six Vulnerable species , Binturong , Sunda Clouded Leopard , Marbled Cat Keywords Cynogale bennettii, as well, Pardofelis as Hose’s badia Civet), Prionailurus planiceps Catatan: PertamaBorneo, camera-trapping, mengenai Musang Gunung Diplogale hosei di Indonesia, serta, sustainable karnivora forest management lainnya di daerah Pegunungan Schwaner, Kalimantan Tengah Abstrak Diplogale hosei Salah satu jenis karnivora yang jarang dijumpai di Borneo, Musang Gunung, , telah terekam dua kali di daerah- konsesi hutan Blok Katingan–Seruyan- PT. Sari Bumi Kusuma, Pegunungan Schwaner, di sekitar hulu Sungai Seruya, Kalimantan Tengah. Ini merupakan catatan pertama spesies tersebut terdapat di Indonesia, sekitar 500 km dari batas sebaran yang diketa hui saat ini (Sarawak, Sabah, Brunei).
    [Show full text]
  • Savannah Cat’ ‘Savannah the Including Serval Hybrids Felis Catus (Domestic Cat), (Serval) and (Serval) Hybrids Of
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Serval hybrids Hybrids of Leptailurus serval (serval) and Felis catus (domestic cat), including the ‘savannah cat’ Anna Markula, Martin Hannan-Jones and Steve Csurhes First published 2009 Updated 2016 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Front cover: Close-up of a 4-month old F1 Savannah cat. Note the occelli on the back of the relaxed ears, and the tear-stain markings which run down the side of the nose. Photo: Jason Douglas. Image from Wikimedia Commons under a Public Domain Licence. Invasive animal risk assessment: Savannah cat Felis catus (hybrid of Leptailurus serval) 2 Contents Introduction 4 Identity of taxa under review 5 Identification of hybrids 8 Description 10 Biology 11 Life history 11 Savannah cat breed history 11 Behaviour 12 Diet 12 Predators and diseases 12 Legal status of serval hybrids including savannah cats (overseas) 13 Legal status of serval hybrids including savannah cats
    [Show full text]
  • Marbled Cat Pardofelis Marmorata at Virachey National Park, Ratanakiri, Cambodia
    SEAVR 2016: 72-74 ISSN : 2424-8525 Date of publication: 13 May 2016. Hosted online by ecologyasia.com Marbled Cat Pardofelis marmorata at Virachey National Park, Ratanakiri, Cambodia Gregory Edward McCann greg.mccann1 @ gmail.com Observer: Gregory Edward McCann (camera trap installer) Photographs by: Habitat ID (www.habitatid.org) & Virachey National Park staff. Subject identified by: Gregory Edward McCann. Location: Virachey National Park, Ratanakiri province, Cambodia. Elevation: 1,455 metres. Habitat: Bamboo-dominated forest on mountain ridge. Date and time: 24 January 2016, 13:29 hrs. Identity of subject: Marbled Cat, Pardofelis marmorata (Mammalia: Carnivora: Felidae). Description of record: A lone Marbled Cat was photographed by camera trap in Virachey National Park (VNP), on the summit of Phnom Haling, one of the highest mountain ridges in northeast Cambodia, in an area dominated by bamboo (Figs. 1 and 2.). Fig. 1 : Full frame camera trap image. © Gregory Edward McCann 72 Fig. 2 : Cropped camera trap image. © Gregory Edward McCann Remarks: The subject is identified as a Marbled Cat Pardofelis marmorata based on its fur patterning, which includes large, dark blotches on its limbs, and its stocky shape. In addition the 'cloudy' pattern of lines on its back distinguishes it from the larger Clouded Leopard Neofelis nebulosa. It appears to be an adult and, based on its posture and the condition of its coat, it seems to be in healthy condition. Preliminary results of an on-going camera trapping program in VNP (which commenced in January 2014) have, as of March 2016, also resulted in 13 other trigger events of Marbled Cat, from seven different camera stations.
    [Show full text]
  • Musculoskeletal Morphing from Human to Mouse
    Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system.
    [Show full text]
  • Species Status Assessment Report New Mexico Meadow Jumping Mouse (Zapus Hudsonius Luteus)
    Species Status Assessment Report New Mexico meadow jumping mouse (Zapus hudsonius luteus) (photo courtesy of J. Frey) Prepared by the Listing Review Team U.S. Fish and Wildlife Service Albuquerque, New Mexico May 27, 2014 New Mexico Meadow Jumping Mouse SSA May 27, 2014 EXECUTIVE SUMMARY This species status assessment reports the results of the comprehensive status review for the New Mexico meadow jumping mouse (Zapus hudsonius luteus) (jumping mouse) and provides a thorough account of the species’ overall viability and, conversely, extinction risk. The jumping mouse is a small mammal whose historical distribution likely included riparian areas and wetlands along streams in the Sangre de Cristo and San Juan Mountains from southern Colorado to central New Mexico, including the Jemez and Sacramento Mountains and the Rio Grande Valley from Española to Bosque del Apache National Wildlife Refuge, and into parts of the White Mountains in eastern Arizona. In conducting our status assessment we first considered what the New Mexico meadow jumping mouse needs to ensure viability. We generally define viability as the ability of the species to persist over the long-term and, conversely, to avoid extinction. We next evaluated whether the identified needs of the New Mexico meadow jumping mouse are currently available and the repercussions to the subspecies when provision of those needs are missing or diminished. We then consider the factors that are causing the species to lack what it needs, including historical, current, and future factors. Finally, considering the information reviewed, we evaluate the current status and future viability of the species in terms of resiliency, redundancy, and representation.
    [Show full text]