Conserved Sequences Identify the Closest Living Relatives of Primates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammalia, Plesiadapiformes) As Reflected on Selected Parts of the Postcranium
SHAPE MEETS FUNCTION: STRUCTURAL MODELS IN PRIMATOLOGY Edited by Emiliano Bruner Proceedings of the 20th Congress of the International Primatological Society Torino, Italy, 22-28 August 2004 MORPHOLOGY AND MORPHOMETRICS JASs Journal of Anthropological Sciences Vol. 82 (2004), pp. 103-118 Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium Dionisios Youlatos1, Marc Godinot2 1) Aristotle University of Thessaloniki, School of Biology, Department of Zoology, GR-54124 Thessaloniki, Greece. email [email protected] 2) Ecole Pratique des Hautes Etudes, UMR 5143, Case Courrier 38, Museum National d’Histoire Naturelle, Institut de Paleontologie, 8 rue Buffon, F-75005 Paris, France Summary – Plesiadapis is one of the best-known Plesiadapiformes, a group of Archontan mammals from the Late Paleocene-Early Eocene of Europe and North America that are at the core of debates con- cerning primate origins. So far, the reconstruction of its locomotor behavior has varied from terrestrial bounding to semi-arboreal scansoriality and squirrel-like arboreal walking, bounding and claw climbing. In order to elucidate substrate preferences and positional behavior of this extinct archontan, the present study investigates quantitatively selected postcranial characters of the ulna, radius, femur, and ungual pha- langes of P. tricuspidens and P. n .sp. from three sites (Cernay-les-Reims, Berru, Le Quesnoy) in the Paris Basin, France. These species of Plesiadapis was compared to squirrels of different locomotor habits in terms of selected functional indices that were further explored through a Principal Components Analysis (PCA), and a Discriminant Functions Analysis (DFA). The indices treated the relative olecranon height, form of ulnar shaft, shape and depth of radial head, shape of femoral distal end, shape of femoral trochlea, and dis- tal wedging of ungual phalanx, and placed Plesiadapis well within arboreal quadrupedal, clambering, and claw climbing squirrels. -
The Phylogenetic Roots of Human Lethal Violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5
LETTER doi:10.1038/nature19758 The phylogenetic roots of human lethal violence José María Gómez1,2, Miguel Verdú3, Adela González-Megías4 & Marcos Méndez5 The psychological, sociological and evolutionary roots of 600 human populations, ranging from the Palaeolithic era to the present conspecific violence in humans are still debated, despite attracting (Supplementary Information section 9c). The level of lethal violence the attention of intellectuals for over two millennia1–11. Here we was defined as the probability of dying from intraspecific violence propose a conceptual approach towards understanding these roots compared to all other causes. More specifically, we calculated the level based on the assumption that aggression in mammals, including of lethal violence as the percentage, with respect to all documented humans, has a significant phylogenetic component. By compiling sources of mortality, of total deaths due to conspecifics (these sources of mortality from a comprehensive sample of mammals, were infanticide, cannibalism, inter-group aggression and any other we assessed the percentage of deaths due to conspecifics and, type of intraspecific killings in non-human mammals; war, homicide, using phylogenetic comparative tools, predicted this value for infanticide, execution, and any other kind of intentional conspecific humans. The proportion of human deaths phylogenetically killing in humans). predicted to be caused by interpersonal violence stood at 2%. Lethal violence is reported for almost 40% of the studied mammal This value was similar to the one phylogenetically inferred for species (Supplementary Information section 9a). This is probably the evolutionary ancestor of primates and apes, indicating that a an underestimation, because information is not available for many certain level of lethal violence arises owing to our position within species. -
Genomic Analysis Reveals Hidden Biodiversity Within Colugos, the Sister Group to Primates Victor C
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates Victor C. Mason Texas A & M University - College Station Gang Li Texas A & M University - College Station Patrick Minx Washington University School of Medicine in St. Louis Jürgen Schmitz University of Münster Gennady Churakov University of Münster See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Mason, Victor C.; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D.; Dominy, Nathaniel J.; Lim, Norman T-L; Springer, Mark S.; Wilson, Richard K.; Warren, Wesley C.; Helgen, Kristofer M.; and Murphy, William J., ,"Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates." Science Advances.2,8. e1600633. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5209 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Victor C. Mason, Gang Li, Patrick Minx, Jürgen Schmitz, Gennady Churakov, Liliya Doronina, Amanda D. Melin, Nathaniel J. Dominy, Norman T-L Lim, Mark S. Springer, Richard K. Wilson, Wesley C. Warren, Kristofer M. Helgen, and William J. Murphy This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5209 RESEARCH ARTICLE ZOOLOGICAL POPULATION GENETICS 2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. -
Geology and Vertebrate Paleontology of Western and Southern North America
OF WESTERN AND SOUTHERN NORTH AMERICA OF WESTERN AND SOUTHERN NORTH PALEONTOLOGY GEOLOGY AND VERTEBRATE Geology and Vertebrate Paleontology of Western and Southern North America Edited By Xiaoming Wang and Lawrence G. Barnes Contributions in Honor of David P. Whistler WANG | BARNES 900 Exposition Boulevard Los Angeles, California 90007 Natural History Museum of Los Angeles County Science Series 41 May 28, 2008 Paleocene primates from the Goler Formation of the Mojave Desert in California Donald L. Lofgren,1 James G. Honey,2 Malcolm C. McKenna,2,{,2 Robert L. Zondervan,3 and Erin E. Smith3 ABSTRACT. Recent collecting efforts in the Goler Formation in California’s Mojave Desert have yielded new records of turtles, rays, lizards, crocodilians, and mammals, including the primates Paromomys depressidens Gidley, 1923; Ignacius frugivorus Matthew and Granger, 1921; Plesiadapis cf. P. anceps; and Plesiadapis cf. P. churchilli. The species of Plesiadapis Gervais, 1877, indicate that Member 4b of the Goler Formation is Tiffanian. In correlation with Tiffanian (Ti) lineage zones, Plesiadapis cf. P. anceps indicates that the Laudate Discovery Site and Edentulous Jaw Site are Ti2–Ti3 and Plesiadapis cf. P. churchilli indicates that Primate Gulch is Ti4. The presence of Paromomys Gidley, 1923, at the Laudate Discovery Site suggests that the Goler Formation occurrence is the youngest known for the genus. Fossils from Member 3 and the lower part of Member 4 indicate a possible marine influence as Goler Formation sediments accumulated. On the basis of these specimens and a previously documented occurrence of marine invertebrates in Member 4d, the Goler Basin probably was in close proximity to the ocean throughout much of its existence. -
Wild Travel June 2013 Borneo
N PLAYGROUNDATURE’S A place of mystery that has long nourished the imagination of naturalists and travellers alike, the island of Borneo cannot fail to captivate with its incredible array of flora and fauna, writes Nick Garbutt 66 WILD TRAVEL WILDLIFEEXTRA.COM DESTINATION BORNEO REGIONAL GUIDE ew places conjure images of darkness and mystery like the island of Borneo. Charles Darwin once described it as “one great wild untidy luxuriant hothouse made by nature for herself”, which is an incredibly apt description given the wealth and variety of fauna and flora on the island. There are mammals, lizards, snakes and frogs that ‘fly’, fish that ‘walk’ on mud, monkeys that dive and swim, plants that eat insects and flowers the size of dustbin lids. Borneo may not have the reputation and glamorous image of other top wildlife destinations around the world, but it offers the ecotourist a wealth of opportunities to experience the thrill of the island’s forests and the Fremarkable species that live there. Far left: orangutan offspring are weaned at four, sometimes later. Left: descending Mt. Kinabalu. Below: a mossy tree frog SABAH Essential Borneo WHO: SARAH WIGHT, Without question Sabah has some of the richest, visitors go to enjoy its biological riches. As DIVE WORLdwIDE WHERE: LAYANG LAYANG, most diverse and best developed parks and many as 6,000 plant species occur on the SabaH reserves in Borneo. This is not coincidence, but mountain, including over 1,000 different There are a number of rather a consequence of the towering presence of orchids and more than one third of all the world-class dive sites in Mount Kinabalu, the roof of Borneo. -
Indonesia 24 September to 15 October 2013
Indonesia 24 September to 15 October 2013 Dave D Redfield Mammal Tour Picture: Sunda Flying Lemur (Colugo) with young by Richard White Report compiled by Richard White The story: 5 islands, 22 days and 52 mammals... A journey to a land where lizards fly, squirrels are the size of mice, civets look like otters and deer are no bigger than small annoying poodles...Indonesia! Where did this all begin...? In late June I was thinking of heading to Asia for a break. After yet another Tasmanian winter I wanted to sweat, get soaked in a tropical rain shower, get hammered by mosquitoes...I wanted to eat food with my hands (and not get stared at), wear sandals, drink cheap beer...and of course experience an amazing diversity of life. While researching some options I contacted my former employer and good friend Adam Riley from Rockjumper Birding Tours/Indri and he suggested I touch base with a client that I had arranged trips for before. The client (and now friend!) in question, Dave Redfield, has seen an aPD]LQJYDULHW\RIWKHZRUOG¶VPDPPDO species but, at that time, had yet to visit Indonesia. So, armed with a target list and a 22 day budget, I sat down and began researching and designing a tour in search of a select suit of mammal species for Dave. Time, terrain, concentration of species and cost were considered. We settled on a few days in mammal hotspots on Java, Sumatra, Borneo, Sulawesi and finally Bali, in that order. %DOLZDVDOVRFKRVHQDVDJRRGSODFHWRZLQGGRZQDIWHUµURXJKLQJLW¶ though the rest of Indonesia. It is also worth mentioning that Dave, realising that seeing all the ZRUOG¶Vmammals in the wild is an impossible target, does count mammals seen in captivity; the target list of species was thus not what one might have expected (for example, a Red Spiny Mouse was a priority but Babirusa was not). -
Sectional Geometry in a Simulated Fine Branch Niche
JOURNAL OF MORPHOLOGY 276:759–765 (2015) Mouse Hallucal Metatarsal Cross-Sectional Geometry in a Simulated Fine Branch Niche Craig D. Byron,1* Anthony Herrel,2,3 Elin Pauwels,4 Amelie De Muynck,4 and Biren A. Patel5,6 1Department of Biology, Mercer University, Macon, Georgia 2Departement d’Ecologie et de Gestion de la Biodiversite, CNRS/MNHN, Paris, France 3Department of Vertebrate Evolutionary Morphology, Ghent University, Gent, Belgium 4Department of Physics and Astronomy, Ghent University, UGCT, Ghent, Belgium 5Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 6Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California ABSTRACT Mice raised in experimental habitats con- arboreal substrates (Le Gros Clark, 1959; Cart- taining an artificial network of narrow “arboreal” sup- mill, 1972; Szalay and Drawhorn, 1980; Sussman, ports frequently use hallucal grasps during locomotion. 1991; Schmitt and Lemelin, 2002; Bloch et al., Therefore, mice in these experiments can be used to 2007; Sargis et al., 2007). There are also examples model a rudimentary form of arboreal locomotion in an of rodent (Orkin and Pontzer, 2011), carnivoran animal without other morphological specializations for using a fine branch niche. This model would prove use- (Fabre et al., 2013), marsupial (Lemelin and ful to better understand the origins of arboreal behav- Schmitt, 2007; Shapiro et al., 2014), and nonmam- iors in mammals like primates. In this study, we malian vertebrates including frogs, lizards, and examined if locomotion on these substrates influences birds (Herrel et al., 2013; Sustaita et al., 2013) the mid-diaphyseal cross-sectional geometry of mouse that are effective in this niche without primate- metatarsals. -
8. Primate Evolution
8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America. -
Galéopithèque De Temminck
Galeopterus variegatus | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-mammiferes/espece-20/ GALÉOPITHÈQUE DE TEMMINCK Galeopterus variegatus (Audebert, 1799) Fiche n°20 Date de la 1ère observation : 18/03/2016 Lieux d’observation : Rimba (baie de Muaro Duo) - Sumatra Ouest - Indonésie MAMMIFERE TERRESTRE Méthodes d’identification : Visuel, photos. Famille des Cynocéphalidés (colugos) NOMS Nom commun international : Sunda Flying Lemur, Malayan Flying Lemur, Sunda Colugo, Cobego. STATUTS Synonymes : Lémur volant Sundanais, Lémur volant de Malaisie, Colugo. Statut IUCN : Préoccupation mineure (2008) CITES-2017 : Non évalué Informations complémentaires : DISTRIBUTION GEOGRAPHIQUE Population en diminution, protégé par la législation nationale dans tous les Asie du Sud-Est pays natifs. Cambodge, Vietnam, Laos, Est Myanmar, Sud Thaïlande, Indonésie (Sumatra, Kalimantan & Java ouest), Malaisie (péninsule & Bornéo), Singapour, Brunei. CLASSIFICATION EMBRANCHEMENT Chordata HABITAT SOUS-EMBRANCHEMENT Vertebrata CLASSE Mammalia Strictement arboricoles et passent leur vie entière dans les arbres des forêts tropicales humides. Ils peuvent ORDRE Dermoptera également être trouvés dans les hautes terres jusqu’à FAMILLE Cynocephalidae 1000 m d’altitude et peuvent facilement s'adapter aux GENRE Galeopterus forêts perturbées et aux plantations. Ils sont principalement nocturnes. ESPECE variegatus ASSOCIATION RIMBA | Association Loi 1901 | Siret 788 604 718 00015 | [email protected] 1 Galeopterus variegatus | ASSOCIATION RIMBA http://rimba-ecoproject.com/les-mammiferes/espece-20/ DESCRIPTION A PROPOS DE CETTE FICHE Taille : 50-69 cm (tête-queue) Statut : Confirmée Poids : 0,9-2 kg Date de publication : 20/02/2017 Clé d'identification : Habituellement gris, avec de larges Dernière modification : - marques noires et blanches leur donnant un aspect de Numéro de référence : 20 lichen qui contribue au camouflage. -
Fossil Primates
AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates. -
Parasites Acquired Beta Satellite Dnas from Hominid Hosts Via
bioRxiv preprint doi: https://doi.org/10.1101/589531; this version posted March 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Parasites Acquired Beta Satellite DNAs from Hominid Hosts via Horizontal Gene Transfer Jiawen Yang1, Yiting Zhou, Guangwei Ma, Xueyan Zhang and Yabin Guo1* Affiliation: 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yatsen University, Guangzhou, China. *Correspondence: [email protected] Keywords: Beta satellite DNA, Sau3A sequences, Primate, Parasite, horizontal gene transfer bioRxiv preprint doi: https://doi.org/10.1101/589531; this version posted March 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Highlights 1. The ever largest scale analysis on beta satDNAs. 2. The origin of beta satDNAs was traced back to ~80 MYA. 3. Mass existence of beta satDNAs in non-primate species was contributed by multiple HGT events. bioRxiv preprint doi: https://doi.org/10.1101/589531; this version posted March 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. -
Cynocephalid Dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): Systematic, Evolutionary and Palaeobiogeographic Implications
CynocephalidBlackwell Publishing Ltd dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications LAURENT MARIVAUX, LOÏC BOCAT, YAOWALAK CHAIMANEE, JEAN-JACQUES JAEGER, BERNARD MARANDAT, PALADEJ SRISUK, PAUL TAFFOREAU, CHOTIMA YAMEE & JEAN-LOUP WELCOMME Accepted: 5 April 2006 Marivaux, L., Bocat, L., Chaimanee, Y., Jaeger, J.-J., Marandat, B., Srisuk, P., Tafforeau, P., doi:10.1111/j.1463-6409.2006.00235.x Yamee, C. & Welcomme, J.-L. (2006). Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. — Zoologica Scripta, 35, 395–420. Cynocephalid dermopterans (flying lemurs) are represented by only two living genera (Cynocephalus and Galeopterus), which inhabit tropical rainforests of South-East Asia. Despite their very poor diversity and their limited distribution, dermopterans play a critical role in higher- level eutherian phylogeny inasmuch as they represent together with Scandentia (tree-shrew) the sister group of the Primates clade (Plesiadapiformes + Euprimates). However, unlike primates, for which the fossil record extends back to the early Palaeogene on all Holarctic continents and in Africa, the evolutionary history of the order Dermoptera sensu stricto (Cynocephalidae) has so far remained undocumented, with the exception of a badly preserved fragment of mandi- ble from the late Eocene of Thailand (Dermotherium major). In this paper, we described newly discovered fossil dermopterans (essentially dental remains) from different regions of South Asia (Thailand, Myanmar, and Pakistan) ranging from the late middle Eocene to the late Oligocene. We performed microtomographic examinations at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) to analyse different morphological aspects of the fossilized jaws.