The Infrared Diameter--Velocity Dispersion Relation for Elliptical

Total Page:16

File Type:pdf, Size:1020Kb

The Infrared Diameter--Velocity Dispersion Relation for Elliptical The Infrared Diameter Velocity Disp ersion Relation for Elliptical Galaxies Michael D Gregg Institute for Geophysics and Planetary Physics Lawrence Livermore National Laboratory L East Avenue Livermore CA greggigppllnlgov ABSTRACT Using single channel infrared photometry from the literature a provisional Kband diametervelocity disp ersion relation for elliptical galaxies in the Coma and Virgo clus ters is derived The Coma cluster relation has times lower scatter at K than in B or V Excluding outliers the RMS scatter at K for galaxies in Coma is only in distance close to the limit implied by the observational errors Distance estimates based on the IR D relation will b e more accurate than those derived from optical data The improvement in the infrared is attributed to a decrease in sensitivity to stellar p opulation parameters age metallicity and slop e of the IMF as well as lower internal extinction from dust compared to the optical That the D relation has a larger scatter in the optical indicates that there are detectable but small stellar p opu lation or dust content dierences among the Coma ellipticals Since the D relations are based on the fundamental plane this result promises that the fundamental plane is astro-ph/9506136 28 Jun 1995 thinner in the infrared than it is in the optical Infrared photometric data available for Virgo are limited to just ob jects the spread in distance due to the depth of the cluster precludes any signicant improvement over B and V A relative ComaVirgo distance of is derived from the K band data in agreement with estimates in other colors and using other techniques indicating that there is no signicant age dierence b etween Virgo and Coma ellipticals Subject headings galaxies distances galaxies elliptical Introduction Guzman Lucey By analogy with the TF relation it is natural to susp ect that replac There are two p opular metho ds for determin ing Bband with infrared photometry might lead ing redshiftindep endent distances to galaxies to an improvement in the accuracy of distances Both rely on a tight correlation b etween a sp ec estimated by D and FP plane techniques n troscopically determined distanceindep endent mea Guzman Lucey Gregg This pa sure of the gravitational p otential and a photo p er presents evidence that the D metho d and metrically determined distancedep endent mea by inference the FP has signicantly less scatter sure of apparent size The TullyFisher TF re in the IR than in the optical for ellipticals in the lation for spirals Tully Fisher is based Coma cluster on the correlation b etween luminosity and rota tional velocity The D technique for ellip n Derivation of Infrared Diameters ticals Dressler et al D dep ends on the Using IR data from Bower Lucey Ellis correlation b etween a surface brightness dep en a BLE it has b een shown elsewhere that dent diameter and the central velocity disp ersion the Kband magnitudevelocity disp ersion relation for early type galaxies in the Coma When rst introduced the TF metho d em cluster has a scatter smaller by a factor of ployed B band photometry necessitating rela than the B band D relation Gregg tively large and uncertain corrections for inter Because the IR magnitudes are from single chan nal extinction which vary with galaxy morphol nel photometry in a ap erture the derived ogy and star formation rate Aaronson Huchra IR relation is b etween velocity disp ersion and a Mould AHM Diering current SFRs metric size For a useful distance indicator it probably also contribute to the spread in B mag is necessary to dene a size based on structural nitudes The accuracy of the TF metho d was parameters of the galaxies individually the FP improved markedly when AHM introduced the or D relations accomplish this using the half use of H band photometry where extinc lightradius R or D D dene D as the diam e n n tion corrections are reduced to negligible levels eter of a circular ap erture within which the mean and the ux is mainly from the oldest p opula B band surface brightness is magsq arc tion of stars which is p erhaps more uniform from sec and show that logD is well correlated with n galaxy to galaxy AHM log reducing the scatter by a factor of two There is increasing evidence from sp ectro from the FaberJackson B vs log relation T scopic studies suggesting that the stellar p opu Faber Jackson Typical ellipticals have lation of ordinary elliptical galaxies can b e a mix BK so a K band diameter D which ap K of ages eg OConnell Rose Pickles proximates D would enclose a mean K surface n Bower et al Gonzales Ex brightness of magsq arcsec treme cases such as merger remnants have exp e The Virgo and Coma D are based on CCD n rienced strong bursts of star formation Carter photometry D Burstein et al B et al Schweizer et al Dust has The ideal IR version of a D relation would use also b een shown to exist in a large fraction of K band imaging however with some simple as ellipticals There is go o d evidence that the dis tances derived from D and the closely related n Jorgensen Franx Kjaergaard have demon fundamental plane FP technique Djorgovski strated that the FP is an intrinsically more accurate dis Davis for some ellipticals are inuenced by tance indicator than D Using the ts detailed here one or more of these factors Gregg it is p ossible to derive an IR version of the FP Because smaller than the error estimates for logD Burstein sumptions a provisional D relation can b e n K et al and comparable to those in logD derived for the Coma and Virgo clusters from the V LGCT The derived logD are listed in Table data of Persson Frogel Aaronson PFA K along with their A D from B and the V and BLE b oth present high quality single chan e n band equivalent D ap erture diameter enclos nel IR photometry for early type galaxies in the V ing magsq arcsec from BLE Note that Coma and Virgo clusters The BLE photometry although V band A from LGCT have b een used has b een calibrated to b e on the same system as e in deriving D strict photometric indep endence that of PFA see BLE for discussion and their K b etween the V and K band results is maintained much larger b o dy of photometry sup ersedes the by adopting D from BLE earlier PFA work As BLE present no new IR V photometry for Virgo the data of PFA are used PFA present JHK photometry of Virgo here ellipticals through ap ertures and = which allows D to b e derived from an R law Table of BLE lists K magnitudes through an K t without recourse to any optical data For eective ap erture of for E or ES and comparison D values were also derived for the S galaxies in the Coma cluster which also have K Virgo ellipticals using the same metho d as the log in Davies et al or Dressler Coma ellipticals ie by adopting an optical A Corrections for background light red e and tting to a single ap erture It is testimony shift and Galactic reddening were applied as de to the high quality of the data from PFA BLE tailed in BLE and PFA D can b e derived from K = and B that the two metho ds give identical re these single ap erture data by assuming an R sults within a few p ercent and that these are in law prole and adopting an eective diameter turn extremely well correlated with the diame A from the V band photometry of Lucey et al e ters in B and V This test serves as a condence a LGCT for the ellipticals and the Third check on the derived IR diameters for the Coma Reference Catalog de Vaucouleurs et al galaxies Table includes the Virgo ellipti for the Ss In the absence of color gradients A e cals from PFA and their calculated D along is indep endent of wavelength and in most ellipti K with D B and D BLE One of the ob cals color gradients are negligible PFA Peletier n V jects NGC with log is excluded Valentjin Jameson = from the analysis to follow The R ts are uniquely determined by the ap erture photometry and eective diameter Er Velocity Disp ersions rors have b een estimated by deriving D after K varying b oth quantities by their estimated stan Velocity disp ersions from Davies et al dard deviations dex for l og A LGCT e have b een adopted b ecause these data pro duce and mag for the K ap erture magnitudes tighter D correlations than other data sets BLE These small errors have little eect on eg Dressler or LGCT This can b e at logD amounting to only dex RMS K tributed to the careful treatment of systematic eects as well as the averaging of several inde of the use single channel IR data and A from V band e p endent measurements in many cases In cases measurements this is not preferred here b ecause the V however the velocity disp ersions of LGCT are band photometry then plays a role in determining of preferable The LGCT for RB is more the dimensions of the FP A and and contributes e e to b oth sides the FP distance estimator itself A as well than rms lower than that of Davies et al and e as log C The results however of such an analysis e moves RB directly onto the D relation are in agreement with the D relation discussed here in all colors The Davies et al disp ersion for Several groups are now working towards a full Kband FP NGC is only kms well b elow other es derivation eg Pahre et al timates cf Whitmore McElroy Tonry at kms The intermediate log of LGCT km s again moves NGC onto the D relation in all bands Finally the Davies et al Table value for NGC is the only one in the present Data for Coma and Virgo Galaxies sample based only on lower resolution Lick data
Recommended publications
  • The Principal Axis of the Virgo Cluster
    The Principal Axis of the Virgo Cluster Michael J. West Department of Physics & Astronomy, University of Hawaii at Hilo, Hilo, HI 96720 and John P. Blakeslee1 Department of Physics, University of Durham, Durham, DH1 3LE, England [email protected] ABSTRACT Using accurate distances to individual Virgo cluster galaxies obtained by the method of Sur- face Brightness Fluctuations, we show that Virgo’s brightest ellipticals have a remarkably collinear arrangement in three dimensions. This axis, which is inclined by ∼ 10 − 15◦ from the line of sight, can be traced to even larger scales where it appears to join a filamentary bridge of galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of individual Virgo ellipticals also show some tendency to be aligned with the cluster axis, as does the jet of the supergiant elliptical M87. These results suggest that the formation of the Virgo cluster, and its brightest member galaxies, have been driven by infall of material along the Virgo-A1367 filament. Subject headings: galaxies: clusters: individual (Virgo), galaxies: formation, cosmology: large-scale structure of universe 1. Introduction Virgo dwarf elliptical galaxies also appears some- what elongated in this direction (Binggeli 1999), The Virgo cluster, at a distance of approxi- as does the distribution of hot X-ray emitting in- h−1 mately 15 Mpc, is the nearest richly-populated tracluster gas (B¨ohringer et al. 1994; Schindler, cluster of galaxies and, consequently, one of the Binggeli & B¨ohringer 1999). However, without best studied. A number of authors have pointed accurate distances to individual galaxies, it is im- arXiv:astro-ph/0008470v1 30 Aug 2000 out that Virgo’s brightest elliptical galaxies have possible to say for certain whether Virgo’s appar- a remarkably linear arrangement, along a pro- ◦ ent principal axis is a genuine three-dimensional jected position angle of roughly 110 (measured structure, or merely an illusory chance alignment North through East).
    [Show full text]
  • The Infrared Surface Brightness Fluctuation Distances to the Hydra
    The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters 1 Joseph B. Jensen John L. Tonry and Gerard A. Luppino Institute for Astronomy, UniversityofHawaii 2680 Woodlawn Drive, Honolulu, HI 96822 e-mail: [email protected], [email protected], [email protected] ABSTRACT We present IR surface brightness uctuation (SBF) distance measurements to NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster. We explicitly corrected for the contributions to the uctuations from globular clusters, background galaxies, and residual background variance. We measured a distance of 85 10 Mp c to NGC 4889 and a distance of 46 5 Mp c to the Hydra cluster. 1 1 Adopting recession velo cities of 7186 428 km s for Coma and 4054 296 km s 1 1 for Hydra gives a mean Hubble constantofH =87 11km s Mp c . Corrections 0 for residual variances were a signi cant fraction of the SBF signal measured, and, if underestimated, would bias our measurementtowards smaller distances and larger values of H . Both NICMOS on the Hubble Space Telescop e and large-ap erture 0 ground-based telescop es with new IR detectors will make accurate SBF distance measurements p ossible to 100 Mp c and b eyond. Subject headings: distance scale | galaxies: clusters: individual (Hydra, Coma) | galaxies: individual (NGC 3309, NGC 3311, NGC 4889) | galaxies: distances and redshifts 1. Intro duction Measuring accurate and reliable distances is a critical part of the quest to measure the Hubble constant H .Until recently, di erenttechniques for estimating extragalactic distances 0 1 Currently with the Gemini 8-m Telescop es Pro ject, 180 Kino ole St.
    [Show full text]
  • Globular Cluster Systems in Brightest Cluster Galaxies
    GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY Item Type Article Authors Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, D.; Rothberg, B.; Bailin, Jeremy Citation GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY 2017, 835 (1):101 The Astrophysical Journal DOI 10.3847/1538-4357/835/1/101 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2017. The American Astronomical Society. All rights reserved. Download date 04/10/2021 03:48:29 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622870 The Astrophysical Journal, 835:101 (21pp), 2017 January 20 doi:10.3847/1538-4357/835/1/101 © 2017. The American Astronomical Society. All rights reserved. GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY William E. Harris1, Stephanie M. Ciccone1, Gwendolyn M. Eadie1, Oleg Y. Gnedin2, Douglas Geisler3, Barry Rothberg4, and Jeremy Bailin5 1 Department of Physics & Astronomy, McMaster University, Hamilton, ON, Canada; [email protected], [email protected], [email protected] 2 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 3 Departamento de Astronomiá, Universidad de Concepción, Casilla 160-C, Concepción, Chile; [email protected] 4 LBT Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 5 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324, USA; [email protected] Received 2016 September 13; revised 2016 November 7; accepted 2016 November 21; published 2017 January 20 ABSTRACT We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147),obtainedwiththeHubble Space Telescope (HST) ACS and WFC3 cameras.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Arxiv:1612.08089V1 [Astro-Ph.GA] 21 Dec 2016 Ters of Galaxies
    to be submitted to ApJ Preprint typeset using LATEX style emulateapj v. 5/2/11 GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III: BEYOND BIMODALITY William E. Harris1, Stephanie M. Ciccone1, Gwendolyn M. Eadie1, Oleg Y. Gnedin2, Douglas Geisler3, Barry Rothberg4, and Jeremy Bailin5 (Dated: June 20, 2018) to be submitted to ApJ ABSTRACT We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the HST ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12000 to 23000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ' 0:8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ' −2:4 to Solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive, gas-rich halos. Lastly, the proportion of metal-poor GCs rises especially rapidly outside projected radii R & 4Reff , suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.
    [Show full text]
  • Globular Cluster Systems in Elliptical Galaxies of Coma
    Globular cluster systems in elliptical galaxies of Coma A. Mar´ın-Franch Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain and A. Aparicio Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain ABSTRACT Globular cluster systems of 17 elliptical galaxies have been studied in the Coma cluster of galaxies. Surface-brightness fluctuations have been used to de- termine total populations of globular clusters and specific frequency (SN ) has been evaluated for each individual galaxy. Enormous differences in SN between similar galaxies are found. In particular, SN results vary by an order of magni- tude from galaxy to galaxy. Extreme cases are the following: a) at the lower end of the range, NGC 4673 has S = 1:0 0:4, a surprising value for an elliptical N galaxy, but typical for spiral and irregular galaxies; b) at the upper extreme, MCG +5 31 063 has S = 13:0 4:2 and IC 4051 S = 12:7 3:2, and − − N N are more likely to belong to supergiant cD galaxies than to \normal" elliptical galaxies. Furthermore, NGC 4874, the central supergiant cD galaxy of the Coma cluster, also exhibits a relatively high specific frequency (S = 9:0 2:2). The N other galaxies studied have SN in the range [2, 7], the mean value being SN = 5:1. No single scenario seems to account for the observed specific frequencies, so the history of each galaxy must be deduced individually by suitably combining the different models (in situ, mergers, and accretions). The possibility that Coma is formed by several subgroups is also considered.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • T He Cool Stellar P Opulations of E Arly-T Y Pe G
    T h e C o ol S t e l l a r P o pu l a t io n s o f E a r l y -T y p e G a l a x ie s a n d t h e G a l a c t ic B ulge dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mark Lee Houdashelt, 3|C $ J ) t + $ The Ohio State University 1995 Dissertation Committee: Approved by Prof. Jay A. Frogel Prof. Kristen Sellgren /J (J Advisor Prof. Donald M. Temdrup Department of Astronomy ONI Number: 9533992 UMI Microform 9533992 Copyright 1995, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, united States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 To Mom and Tim ii A cknowledgements First and foremost, I would like to express my deepest appreciation to my mother, Darlene, and my brother, Tim, for their unwavering support before, during, and (hopefully) after my graduate studies. Without them, I would not have achieved as much as I have nor be as happy as I am. Thank you, Mom amd Tim, for all that you have done for me. Obviously, I am deeply indebted to my advisor, Jay Frogel, for his support (both financial and otherwise), his scientific expertise and his belief in my abilities. He suggested the initial dissertation project to me and helped me to redefine it along the way, always remaining positive and encouraging.
    [Show full text]
  • QUANTITATIVE MORPHOLOGY of GALAXIES in the CORE of the COMA CLUSTER Carlos M
    The Astrophysical Journal, 602:664–677, 2004 February 20 A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. QUANTITATIVE MORPHOLOGY OF GALAXIES IN THE CORE OF THE COMA CLUSTER Carlos M. Gutie´rrez, Ignacio Trujillo,1 and Jose A. L. Aguerri Instituto de Astrofı´sica de Canarias, E-38205, La Laguna, Tenerife, Spain Alister W. Graham Department of Astronomy, University of Florida, Gainesville, FL 32611 and Nicola Caon Instituto de Astrofı´sica de Canarias, E-38205, La Laguna, Tenerife, Spain Received 2003 July 26; accepted 2003 October 17 ABSTRACT We present a quantitative morphological analysis of 187 galaxies in a region covering the central 0.28 deg2 of the Coma Cluster. Structural parameters from the best-fitting Se´rsic r1=n bulge plus, where appropriate, expo- nential disk model, are tabulated here. This sample is complete down to a magnitude of R ¼ 17 mag. By examining the recent compilation by Edwards et al. of galaxy redshifts in the direction of Coma, we find that 163 of the 187 galaxies are Coma Cluster members and that the rest are foreground and background objects. For the Coma Cluster members, we have studied differences in the structural and kinematic properties between early- and late-type galaxies and between the dwarf and giant galaxies. Analysis of the elliptical galaxies reveals correlations among the structural parameters similar to those previously found in the Virgo and Fornax Clusters. Comparing the structural properties of the Coma Cluster disk galaxies with disk galaxies in the field, we find evidence for an environmental dependence: the scale lengths of the disk galaxies in Coma are 30% smaller.
    [Show full text]
  • 1977Apj. . .213. .327A the Astrophysical Journal, 213:327-344
    .327A .213. The Astrophysical Journal, 213:327-344, 1977 April 15 . © 1977. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1977ApJ. THE LUMINOSITY FUNCTION AND STRUCTURE OF THE COMA CLUSTER G. O. Abell Department of Astronomy, University of California, Los Angeles Received 1976 August 6 ABSTRACT The luminosity function of the galaxies in the Coma cluster is determined by a procedure of extrafocal photographic photometry. The logarithmic integrated luminosity function rises sharply with increasing magnitude through the interval mv = 11.6 to 14.5, and then slowly for greater magnitudes to the limit mv = 19.4. The data suggest a moderate increase in the slope of the function for magnitudes fainter than mv = 17.5. The cluster is found, in projection, to be ellipsoidal in shape, centered at (1950) a = 12h56IP9; 0 5 = +28 14'. To the limit mv = 18.3 the cluster is estimated to have 1525 member galaxies. The brighter galaxies in the inner part of the cluster have a distribution resembling that of the iso- thermal polytrope, but there is no marked segregation of bright and faint galaxies, as would be required for complete statistical equilibrium. The luminosity of the cluster is estimated at 2 x 1013 L©. The mass-to-light ratio (in solar units) is found probably not to exceed 122. Subject headings: galaxies : clusters of—galaxies: photometry I. INTRODUCTION II. OBSERVATIONS The first important discussion of the galaxian a) Photometric Procedure luminosity function was by Hubble (1926), who Galaxian magnitudes are obtained here by a investigated the absolute magnitudes of 134 late method of extrafocal photographic photometry spirals and 11 irregular galaxies (most of which are described by Abell and Mihalas (1966).
    [Show full text]
  • Kinematical Data on Early-Type Galaxies. II.?,?? F
    ASTRONOMY & ASTROPHYSICS NOVEMBER II 1997,PAGE15 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 126, 15-19 (1997) Kinematical data on early-type galaxies. II.?,?? F. Simien and Ph. Prugniel CRAL-Observatoire de Lyon (CNRS: UMR 142), F-69561 St-Genis-Laval Cedex, France Received November 6, 1996; accepted February 14, 1997 Abstract. We present new kinematical data for a sample there are four objects in common (NGC 2329, NGC 2332, of 38 early-type galaxies. Rotation curves and velocity- NGC 4434 and UGC 3696), whose new measurements have dispersion profiles are determined for 32 objects, while been included in the present work for comparison pur- the central velocity dispersions are given for the whole poses. Relevant catalog elements are presented in Table sample. This is our second paper in a series devoted to 1. The Es have ellipticities corresponding to classes be- the presentation of kinematical data on elliptical and S0 tween ' E0 and ' E4, and the S0s are moderately to galaxies, derived from long-slit absorption spectroscopy. highly flattened. The distances are in the range of ' 15 −1 −1 to ' 100 Mpc (for H0 =75kms Mpc ). The absolute Key words: galaxies: elliptical & lenticular, cD — magnitudes are intermediate (−21.8 <MB <−17.3). galaxies: kinematics and dynamics — galaxies: The observations have been secured at the 1.93-m tele- fundamental parameters scope of the Observatoire de Haute-Provence, equipped with the CARELEC long-slit spectrograph. In March and June 1995, two observing runs totalling 12 nights collected spectra on the major axis of the galaxies. 1. Introduction The atmospheric conditions were variable, with a see- ing disk between 200 and 3.500 (FWHM) for most objects, We have recently begun to present kinematical measure- but up to ' 500 for three of them.
    [Show full text]
  • Arxiv:1309.1136V2 [Astro-Ph.CO] 27 Sep 2013 & Trujillo 2009; Van De Sande Et Al
    The Astrophysical Journal Letters. Received 2013 September 4; accepted 2013 September 27 Preprint typeset using LATEX style emulateapj v. 04/17/13 EFFECT OF ENVIRONMENT ON GALAXIES MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION Michele Cappellari Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK The Astrophysical Journal Letters. Received 2013 September 4; accepted 2013 September 27 ABSTRACT The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental 9 densities. The samples are both identically and nearly mass-selected (stellar mass M∗ & 6 × 10 M ) and volume-limited. The first consists of nearby field galaxies from the ATLAS3D parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of densest environments for which good resolved spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (i) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (ii) the slow rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two 11 processes appears around the stellar mass Mcrit ≈ 2 × 10 M .
    [Show full text]