Globular Cluster Systems in Brightest Cluster Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small-Scale Structure Is It a Valid Motivation?
Small-scale Structure Is it a valid motivation? Jakub Scholtz IPPP (Durham) Small Scale Structure Problems <—> All the reasons why “CDM is not it” How did we get here? We are gravitationally sensitive to something sourcing T • <latexit sha1_base64="055AcnSYYRkGsBe2aYAe7vH1peg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bj04jFCXphdwuxkNhkyM7vMQwhL/sKLB0W8+jfe/BsnyR40saChqOqmuyvOONPG97+9tfWNza3t0k55d2//4LBydNzWqVWEtkjKU9WNsaacSdoyzHDazRTFIua0E4/vZn7niSrNUtk0k4xGAg8lSxjBxkmPzX4eChtKO+1Xqn7NnwOtkqAgVSjQ6Fe+wkFKrKDSEI617gV+ZqIcK8MIp9NyaDXNMBnjIe05KrGgOsrnF0/RuVMGKEmVK2nQXP09kWOh9UTErlNgM9LL3kz8z+tZk9xEOZOZNVSSxaLEcmRSNHsfDZiixPCJI5go5m5FZIQVJsaFVHYhBMsvr5L2ZS3wa8HDVbV+W8RRglM4gwsI4BrqcA8NaAEBCc/wCm+e9l68d+9j0brmFTMn8Afe5w/beZEG</latexit> µ⌫ —> we are fairly certain that DM exists. • An exception is MOND, which has issues of its own. However, the MOND community has been instrumental in pointing out some of the discrepancies with CDM. • But how do we verify the picture? —> NBODY simulations (disclaimer: I have never run a serious body simulation) 2WalterDehnen,JustinI.Read:N-body SimulationsN-body simulations of gravitational dynamics have reached over 106 particles [6], while collisionless calculations can now reach more than 109 particles [7–10]. This disparity reflects the difference in complexity of these rather dissimilar N-body problems. The significant increase in N in the last decade was driven by the usage of parallel computers. In this review, we discuss the state-of-the art software algo- Takerithms N and dark hardware matter improvements -
The Principal Axis of the Virgo Cluster
The Principal Axis of the Virgo Cluster Michael J. West Department of Physics & Astronomy, University of Hawaii at Hilo, Hilo, HI 96720 and John P. Blakeslee1 Department of Physics, University of Durham, Durham, DH1 3LE, England [email protected] ABSTRACT Using accurate distances to individual Virgo cluster galaxies obtained by the method of Sur- face Brightness Fluctuations, we show that Virgo’s brightest ellipticals have a remarkably collinear arrangement in three dimensions. This axis, which is inclined by ∼ 10 − 15◦ from the line of sight, can be traced to even larger scales where it appears to join a filamentary bridge of galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of individual Virgo ellipticals also show some tendency to be aligned with the cluster axis, as does the jet of the supergiant elliptical M87. These results suggest that the formation of the Virgo cluster, and its brightest member galaxies, have been driven by infall of material along the Virgo-A1367 filament. Subject headings: galaxies: clusters: individual (Virgo), galaxies: formation, cosmology: large-scale structure of universe 1. Introduction Virgo dwarf elliptical galaxies also appears some- what elongated in this direction (Binggeli 1999), The Virgo cluster, at a distance of approxi- as does the distribution of hot X-ray emitting in- h−1 mately 15 Mpc, is the nearest richly-populated tracluster gas (B¨ohringer et al. 1994; Schindler, cluster of galaxies and, consequently, one of the Binggeli & B¨ohringer 1999). However, without best studied. A number of authors have pointed accurate distances to individual galaxies, it is im- arXiv:astro-ph/0008470v1 30 Aug 2000 out that Virgo’s brightest elliptical galaxies have possible to say for certain whether Virgo’s appar- a remarkably linear arrangement, along a pro- ◦ ent principal axis is a genuine three-dimensional jected position angle of roughly 110 (measured structure, or merely an illusory chance alignment North through East). -
Hst Frontier Fields Preliminary Map Modeling
HST FRONTIER FIELDS PRELIMINARY MAP MODELING CATs Team (Clusters As Telescopes) Johan Richard (CRAL Lyon), Benjamin Clement (University of Arizona), Mathilde Jauzac (University of KwaZulu-Natal), Eric Jullo (LAM Marseille), Marceau Limousin (LAM, Marseille), Harald Ebeling (IfA, Hawaii), Priyamvada Natarajan (Yale University), Jean-Paul Kneib (EPFL Lausanne) & Eiichi Egami (University of Arizona). RECONSTRUCTION METHODOLOGY Producing a magnification map involves solving the lens equation for light rays originating from distant sources and deflected by the massive foreground cluster. This is ultimately an inversion problem for which several sets of codes and approaches have been developed independently (see recent review by Kneib & Natarajan 2010). Our collaboration uses LENSTOOL1, an algorithm developed collectively by us over the years. LENSTOOL is a hybrid code that combines observational strong- and weak-lensing data to constrain the cluster mass model. The total mass distribution of clusters is assumed to consist of several smooth, large-scale potentials that are modeled either in a parametric form or non-parametrically, along with contributions from many (typically N > 50) individual cluster galaxies that are modeled using physically motivated parametric forms. For lensing clusters a multi-scale approach is optimal, in as much as the constraints resulting from this inversion exercise are derived from a range of scales. Further details of the methodology are outlined in Jullo & Kneib (2009) and have been extended to the weak-lensing regime (Jauzac et al. 2012). At present, the prevailing modeling approach is to assign a small-scale dark-matter clump to each major cluster galaxy and a large-scale dark-matter clump to prominent concentrations of cluster galaxies (Natarajan & Kneib 1997). -
16Th HEAD Meeting Session Table of Contents
16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113 -
The Infrared Surface Brightness Fluctuation Distances to the Hydra
The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters 1 Joseph B. Jensen John L. Tonry and Gerard A. Luppino Institute for Astronomy, UniversityofHawaii 2680 Woodlawn Drive, Honolulu, HI 96822 e-mail: [email protected], [email protected], [email protected] ABSTRACT We present IR surface brightness uctuation (SBF) distance measurements to NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster. We explicitly corrected for the contributions to the uctuations from globular clusters, background galaxies, and residual background variance. We measured a distance of 85 10 Mp c to NGC 4889 and a distance of 46 5 Mp c to the Hydra cluster. 1 1 Adopting recession velo cities of 7186 428 km s for Coma and 4054 296 km s 1 1 for Hydra gives a mean Hubble constantofH =87 11km s Mp c . Corrections 0 for residual variances were a signi cant fraction of the SBF signal measured, and, if underestimated, would bias our measurementtowards smaller distances and larger values of H . Both NICMOS on the Hubble Space Telescop e and large-ap erture 0 ground-based telescop es with new IR detectors will make accurate SBF distance measurements p ossible to 100 Mp c and b eyond. Subject headings: distance scale | galaxies: clusters: individual (Hydra, Coma) | galaxies: individual (NGC 3309, NGC 3311, NGC 4889) | galaxies: distances and redshifts 1. Intro duction Measuring accurate and reliable distances is a critical part of the quest to measure the Hubble constant H .Until recently, di erenttechniques for estimating extragalactic distances 0 1 Currently with the Gemini 8-m Telescop es Pro ject, 180 Kino ole St. -
MASS and LIGHT of ABELL 370: a STRONG and WEAK LENSING ANALYSIS ABSTRACT We Present a New Gravitational Lens Model of the Hubble
Draft version October 15, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 MASS AND LIGHT OF ABELL 370: A STRONG AND WEAK LENSING ANALYSIS V. Strait1, M. Bradacˇ1, A. Hoag1, K.-H. Huang1, T. Treu2, X. Wang2,4, R. Amorin6,7, M. Castellano5, A. Fontana5, B.-C. Lemaux1, E. Merlin5, K.B. Schmidt3, T. Schrabback8, A. Tomczack1, M. Trenti9,10, and B. Vulcani9,11 1Physics Department, University of California, Davis, CA 95616, USA 2Department of Physics and Astronomy, UCLA, Los Angeles, CA, 90095-1547, USA 3Leibniz-Institut f¨urAstrophysik Postdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 4Department of Physics, University of California, Santa Barbara, CA, 93106-9530, USA 5INAF - Osservatorio Astronomico di Roma Via Frascati 33 - 00040 Monte Porzio Catone, 00040 Rome, Italy 6Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, UK 7Kavli Institute for Cosmology, University of Cambridge, Madingley Rd., CB3 0HA, Cambridge, UK 8Argelander-Institut f¨urAstronomie, Auf dem H¨ugel71, D-53121 Bonn, Germany 9School of Physics, University of Melbourne, Parkville, Victoria, Australia 10ARC Centre of Excellence fot All Sky Astrophysics in 3 Dimensions (ASTRO 3D) and 11INAF - Astronomical Observatory of Padora, 35122 Padova, Italy Draft version October 15, 2018 ABSTRACT We present a new gravitational lens model of the Hubble Frontier Fields cluster Abell 370 (z = 0:375) using imaging and spectroscopy from Hubble Space Telescope and ground-based spectroscopy. We combine constraints from a catalog of 909 weakly lensed galaxies and 39 multiply-imaged sources comprised of 114 multiple images, including a system of multiply-imaged candidates at z = 7:84 ± 0:02, to obtain a best-fit mass distribution using the cluster lens modeling code Strong and Weak Lensing United. -