The Principal Axis of the Virgo Cluster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Infrared Surface Brightness Fluctuation Distances to the Hydra
The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters 1 Joseph B. Jensen John L. Tonry and Gerard A. Luppino Institute for Astronomy, UniversityofHawaii 2680 Woodlawn Drive, Honolulu, HI 96822 e-mail: [email protected], [email protected], [email protected] ABSTRACT We present IR surface brightness uctuation (SBF) distance measurements to NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster. We explicitly corrected for the contributions to the uctuations from globular clusters, background galaxies, and residual background variance. We measured a distance of 85 10 Mp c to NGC 4889 and a distance of 46 5 Mp c to the Hydra cluster. 1 1 Adopting recession velo cities of 7186 428 km s for Coma and 4054 296 km s 1 1 for Hydra gives a mean Hubble constantofH =87 11km s Mp c . Corrections 0 for residual variances were a signi cant fraction of the SBF signal measured, and, if underestimated, would bias our measurementtowards smaller distances and larger values of H . Both NICMOS on the Hubble Space Telescop e and large-ap erture 0 ground-based telescop es with new IR detectors will make accurate SBF distance measurements p ossible to 100 Mp c and b eyond. Subject headings: distance scale | galaxies: clusters: individual (Hydra, Coma) | galaxies: individual (NGC 3309, NGC 3311, NGC 4889) | galaxies: distances and redshifts 1. Intro duction Measuring accurate and reliable distances is a critical part of the quest to measure the Hubble constant H .Until recently, di erenttechniques for estimating extragalactic distances 0 1 Currently with the Gemini 8-m Telescop es Pro ject, 180 Kino ole St. -
Globular Cluster Systems in Brightest Cluster Galaxies
GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY Item Type Article Authors Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, D.; Rothberg, B.; Bailin, Jeremy Citation GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY 2017, 835 (1):101 The Astrophysical Journal DOI 10.3847/1538-4357/835/1/101 Publisher IOP PUBLISHING LTD Journal The Astrophysical Journal Rights © 2017. The American Astronomical Society. All rights reserved. Download date 04/10/2021 03:48:29 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/622870 The Astrophysical Journal, 835:101 (21pp), 2017 January 20 doi:10.3847/1538-4357/835/1/101 © 2017. The American Astronomical Society. All rights reserved. GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III. BEYOND BIMODALITY William E. Harris1, Stephanie M. Ciccone1, Gwendolyn M. Eadie1, Oleg Y. Gnedin2, Douglas Geisler3, Barry Rothberg4, and Jeremy Bailin5 1 Department of Physics & Astronomy, McMaster University, Hamilton, ON, Canada; [email protected], [email protected], [email protected] 2 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 3 Departamento de Astronomiá, Universidad de Concepción, Casilla 160-C, Concepción, Chile; [email protected] 4 LBT Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA; [email protected] 5 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324, USA; [email protected] Received 2016 September 13; revised 2016 November 7; accepted 2016 November 21; published 2017 January 20 ABSTRACT We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147),obtainedwiththeHubble Space Telescope (HST) ACS and WFC3 cameras. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Arxiv:1612.08089V1 [Astro-Ph.GA] 21 Dec 2016 Ters of Galaxies
to be submitted to ApJ Preprint typeset using LATEX style emulateapj v. 5/2/11 GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES. III: BEYOND BIMODALITY William E. Harris1, Stephanie M. Ciccone1, Gwendolyn M. Eadie1, Oleg Y. Gnedin2, Douglas Geisler3, Barry Rothberg4, and Jeremy Bailin5 (Dated: June 20, 2018) to be submitted to ApJ ABSTRACT We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the HST ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12000 to 23000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ' 0:8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ' −2:4 to Solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive, gas-rich halos. Lastly, the proportion of metal-poor GCs rises especially rapidly outside projected radii R & 4Reff , suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems. -
Globular Cluster Systems in Elliptical Galaxies of Coma
Globular cluster systems in elliptical galaxies of Coma A. Mar´ın-Franch Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain and A. Aparicio Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain ABSTRACT Globular cluster systems of 17 elliptical galaxies have been studied in the Coma cluster of galaxies. Surface-brightness fluctuations have been used to de- termine total populations of globular clusters and specific frequency (SN ) has been evaluated for each individual galaxy. Enormous differences in SN between similar galaxies are found. In particular, SN results vary by an order of magni- tude from galaxy to galaxy. Extreme cases are the following: a) at the lower end of the range, NGC 4673 has S = 1:0 0:4, a surprising value for an elliptical N galaxy, but typical for spiral and irregular galaxies; b) at the upper extreme, MCG +5 31 063 has S = 13:0 4:2 and IC 4051 S = 12:7 3:2, and − − N N are more likely to belong to supergiant cD galaxies than to \normal" elliptical galaxies. Furthermore, NGC 4874, the central supergiant cD galaxy of the Coma cluster, also exhibits a relatively high specific frequency (S = 9:0 2:2). The N other galaxies studied have SN in the range [2, 7], the mean value being SN = 5:1. No single scenario seems to account for the observed specific frequencies, so the history of each galaxy must be deduced individually by suitably combining the different models (in situ, mergers, and accretions). The possibility that Coma is formed by several subgroups is also considered. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
T He Cool Stellar P Opulations of E Arly-T Y Pe G
T h e C o ol S t e l l a r P o pu l a t io n s o f E a r l y -T y p e G a l a x ie s a n d t h e G a l a c t ic B ulge dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mark Lee Houdashelt, 3|C $ J ) t + $ The Ohio State University 1995 Dissertation Committee: Approved by Prof. Jay A. Frogel Prof. Kristen Sellgren /J (J Advisor Prof. Donald M. Temdrup Department of Astronomy ONI Number: 9533992 UMI Microform 9533992 Copyright 1995, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, united States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 To Mom and Tim ii A cknowledgements First and foremost, I would like to express my deepest appreciation to my mother, Darlene, and my brother, Tim, for their unwavering support before, during, and (hopefully) after my graduate studies. Without them, I would not have achieved as much as I have nor be as happy as I am. Thank you, Mom amd Tim, for all that you have done for me. Obviously, I am deeply indebted to my advisor, Jay Frogel, for his support (both financial and otherwise), his scientific expertise and his belief in my abilities. He suggested the initial dissertation project to me and helped me to redefine it along the way, always remaining positive and encouraging. -
QUANTITATIVE MORPHOLOGY of GALAXIES in the CORE of the COMA CLUSTER Carlos M
The Astrophysical Journal, 602:664–677, 2004 February 20 A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. QUANTITATIVE MORPHOLOGY OF GALAXIES IN THE CORE OF THE COMA CLUSTER Carlos M. Gutie´rrez, Ignacio Trujillo,1 and Jose A. L. Aguerri Instituto de Astrofı´sica de Canarias, E-38205, La Laguna, Tenerife, Spain Alister W. Graham Department of Astronomy, University of Florida, Gainesville, FL 32611 and Nicola Caon Instituto de Astrofı´sica de Canarias, E-38205, La Laguna, Tenerife, Spain Received 2003 July 26; accepted 2003 October 17 ABSTRACT We present a quantitative morphological analysis of 187 galaxies in a region covering the central 0.28 deg2 of the Coma Cluster. Structural parameters from the best-fitting Se´rsic r1=n bulge plus, where appropriate, expo- nential disk model, are tabulated here. This sample is complete down to a magnitude of R ¼ 17 mag. By examining the recent compilation by Edwards et al. of galaxy redshifts in the direction of Coma, we find that 163 of the 187 galaxies are Coma Cluster members and that the rest are foreground and background objects. For the Coma Cluster members, we have studied differences in the structural and kinematic properties between early- and late-type galaxies and between the dwarf and giant galaxies. Analysis of the elliptical galaxies reveals correlations among the structural parameters similar to those previously found in the Virgo and Fornax Clusters. Comparing the structural properties of the Coma Cluster disk galaxies with disk galaxies in the field, we find evidence for an environmental dependence: the scale lengths of the disk galaxies in Coma are 30% smaller. -
1977Apj. . .213. .327A the Astrophysical Journal, 213:327-344
.327A .213. The Astrophysical Journal, 213:327-344, 1977 April 15 . © 1977. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1977ApJ. THE LUMINOSITY FUNCTION AND STRUCTURE OF THE COMA CLUSTER G. O. Abell Department of Astronomy, University of California, Los Angeles Received 1976 August 6 ABSTRACT The luminosity function of the galaxies in the Coma cluster is determined by a procedure of extrafocal photographic photometry. The logarithmic integrated luminosity function rises sharply with increasing magnitude through the interval mv = 11.6 to 14.5, and then slowly for greater magnitudes to the limit mv = 19.4. The data suggest a moderate increase in the slope of the function for magnitudes fainter than mv = 17.5. The cluster is found, in projection, to be ellipsoidal in shape, centered at (1950) a = 12h56IP9; 0 5 = +28 14'. To the limit mv = 18.3 the cluster is estimated to have 1525 member galaxies. The brighter galaxies in the inner part of the cluster have a distribution resembling that of the iso- thermal polytrope, but there is no marked segregation of bright and faint galaxies, as would be required for complete statistical equilibrium. The luminosity of the cluster is estimated at 2 x 1013 L©. The mass-to-light ratio (in solar units) is found probably not to exceed 122. Subject headings: galaxies : clusters of—galaxies: photometry I. INTRODUCTION II. OBSERVATIONS The first important discussion of the galaxian a) Photometric Procedure luminosity function was by Hubble (1926), who Galaxian magnitudes are obtained here by a investigated the absolute magnitudes of 134 late method of extrafocal photographic photometry spirals and 11 irregular galaxies (most of which are described by Abell and Mihalas (1966). -
Kinematical Data on Early-Type Galaxies. II.?,?? F
ASTRONOMY & ASTROPHYSICS NOVEMBER II 1997,PAGE15 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 126, 15-19 (1997) Kinematical data on early-type galaxies. II.?,?? F. Simien and Ph. Prugniel CRAL-Observatoire de Lyon (CNRS: UMR 142), F-69561 St-Genis-Laval Cedex, France Received November 6, 1996; accepted February 14, 1997 Abstract. We present new kinematical data for a sample there are four objects in common (NGC 2329, NGC 2332, of 38 early-type galaxies. Rotation curves and velocity- NGC 4434 and UGC 3696), whose new measurements have dispersion profiles are determined for 32 objects, while been included in the present work for comparison pur- the central velocity dispersions are given for the whole poses. Relevant catalog elements are presented in Table sample. This is our second paper in a series devoted to 1. The Es have ellipticities corresponding to classes be- the presentation of kinematical data on elliptical and S0 tween ' E0 and ' E4, and the S0s are moderately to galaxies, derived from long-slit absorption spectroscopy. highly flattened. The distances are in the range of ' 15 −1 −1 to ' 100 Mpc (for H0 =75kms Mpc ). The absolute Key words: galaxies: elliptical & lenticular, cD — magnitudes are intermediate (−21.8 <MB <−17.3). galaxies: kinematics and dynamics — galaxies: The observations have been secured at the 1.93-m tele- fundamental parameters scope of the Observatoire de Haute-Provence, equipped with the CARELEC long-slit spectrograph. In March and June 1995, two observing runs totalling 12 nights collected spectra on the major axis of the galaxies. 1. Introduction The atmospheric conditions were variable, with a see- ing disk between 200 and 3.500 (FWHM) for most objects, We have recently begun to present kinematical measure- but up to ' 500 for three of them. -
Arxiv:1309.1136V2 [Astro-Ph.CO] 27 Sep 2013 & Trujillo 2009; Van De Sande Et Al
The Astrophysical Journal Letters. Received 2013 September 4; accepted 2013 September 27 Preprint typeset using LATEX style emulateapj v. 04/17/13 EFFECT OF ENVIRONMENT ON GALAXIES MASS-SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION Michele Cappellari Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK The Astrophysical Journal Letters. Received 2013 September 4; accepted 2013 September 27 ABSTRACT The distribution of galaxies on the mass-size plane as a function of redshift or environment is a powerful test for galaxy formation models. Here we use integral-field stellar kinematics to interpret the variation of the mass-size distribution in two galaxy samples spanning extreme environmental 9 densities. The samples are both identically and nearly mass-selected (stellar mass M∗ & 6 × 10 M ) and volume-limited. The first consists of nearby field galaxies from the ATLAS3D parent sample. The second consists of galaxies in the Coma Cluster (Abell 1656), one of densest environments for which good resolved spectroscopy can be obtained. The mass-size distribution in the dense environment differs from the field one in two ways: (i) spiral galaxies are replaced by bulge-dominated disk-like fast-rotator early-type galaxies (ETGs), which follow the same mass-size relation and have the same mass distribution as in the field sample; (ii) the slow rotator ETGs are segregated in mass from the fast rotators, with their size increasing proportionally to their mass. A transition between the two 11 processes appears around the stellar mass Mcrit ≈ 2 × 10 M . -
A Coma-Halmaz a Kozmosz Legnagyobb Égitestei
PILLANTÁS AZ ÉGRE A COMA-HALMAZ A KOZMOSZ LEGNAGYOBB ÉGITESTEI 2015-ben irányt vált a csillagászati objektumokat bemutató asztrofotók tema- tikája. Tavaly a lenyűgözően színes égi ködösségek látványán keresztül – némi asztrofizikával fűszerezve – főként a csillagok keletkezésének jelensé- gével foglal koztunk. Idén a kozmosz különleges struktúrái között kalandozunk, és olyan izgalmas égitesteket mutatunk be, melyek megörökítése a magyar amatőr asztrofotósok képességeinek határát súrolják. Kezdjük olyan messziről, amennyire csak lehet- távlatokban tárul fel a legnagyobb gigászok lát- séges! Eközben kihasználunk egy, a távcsövünk ványa. Mindehhez meg kell értenünk néhány, az adta érdekes lehetőséget: minél messzebb pillan- univerzummal kapcsolatos alapvetést. tunk, felvételünk annál nagyobb kiterjedésű koz- A világegyetem minden képzeletet felülmúlóan mikus jelenséget örökíthet meg. Így az égbolt nagy. Az emberi elme számára felfoghatatlan tér megfelelő területét megirányozva fényévmilliárdos egészét érzékelni sem tudjuk, a csillagászok csupán 4 A FÖLDGÖMB 2015. JANUÁR–FEBRUÁR PGC 93698 NGC 4907 NGC 4921 NGC 4923 IC 4054 PGC 44815 PGC 44784 NGC 4908 PGC 44878 NGC 4895 IC 4051 IC 4040 NGC 4919 PGC 44849 PGC 44792 NGC 4881 NGC 4895A PGC 44864 IC 4041 PGC 44850 IC 4042 IC 4026 PGC 44740 NGC 4906 IC 4021 NGC 4911 PGC 126752 PGC 83751 NGC 4894 NGC 4011 NGC 4898 NGC 4886 NGC 4883 NGC 4889 a centrális galaxis- páros keleti tagja A COMA-HALMAZ TEMÉRDEK CSILLAGVÁROSÁNAK EGY RÉSZÉT különbözô katalógusokba gyûjtötték, ám számtalan távoli galaxisnak még ma sincs hivatalos jelölése a töredékét vizsgálhatják, akkorát, ahonnan az ős- robbanás utáni időszakban az első elindult fénysu- garak még éppen ideérnek hozzánk. Ebben a 46 000 000 000 fényév sugarú térrészben, vagyis a megfigyelhető világegyetemben az anyag, az életünk alapvető összetevői egy nehezen érzékelhető mintá- zatot alkotnak, ami az elektromágneses sugárzás- nak köszönhetően jut tudomásunkra.