T He Cool Stellar P Opulations of E Arly-T Y Pe G

Total Page:16

File Type:pdf, Size:1020Kb

T He Cool Stellar P Opulations of E Arly-T Y Pe G T h e C o ol S t e l l a r P o pu l a t io n s o f E a r l y -T y p e G a l a x ie s a n d t h e G a l a c t ic B ulge dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mark Lee Houdashelt, 3|C $ J ) t + $ The Ohio State University 1995 Dissertation Committee: Approved by Prof. Jay A. Frogel Prof. Kristen Sellgren /J (J Advisor Prof. Donald M. Temdrup Department of Astronomy ONI Number: 9533992 UMI Microform 9533992 Copyright 1995, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, united States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 To Mom and Tim ii A cknowledgements First and foremost, I would like to express my deepest appreciation to my mother, Darlene, and my brother, Tim, for their unwavering support before, during, and (hopefully) after my graduate studies. Without them, I would not have achieved as much as I have nor be as happy as I am. Thank you, Mom amd Tim, for all that you have done for me. Obviously, I am deeply indebted to my advisor, Jay Frogel, for his support (both financial and otherwise), his scientific expertise and his belief in my abilities. He suggested the initial dissertation project to me and helped me to redefine it along the way, always remaining positive and encouraging. I would also like to thank the other members of my dissertation committee, Don Terndrup and Kris Sellgren, for their endless patience and understanding and for their thorough review of my research and written dissertation. A special thanks go to Bob Wing, who read this dissertation and became a substitute member of my defense committee on very short notice. Rick Pogge is acknowledged for many helpful scientific discussions, and Brad Peterson and Jerry Newsom were always positive and concerned for my welfare. I would like to thank Pat Osmer as well; he was instrumental in making the special arrangements necessary for me to be able to complete this work. I would like to express my gratitude to the Ohio State University and Lowell Observatory for granting me the observing time required to undertake this dissertation research. I owe Mark Wagner and Ray Bertram a great debt for their assistance at Lowell Observatory. In addition, Bob Millis went out of his way to make my visits there as productive and comfortable as possible. I would also like to thank the staff at Kitt Peak National Observatory for their outstanding service during my observing time there - Richard Elston is especially noted for his time and advice regarding the use of the CRSP instrument. I can’t express enough gratitude to the many friends I have made while at The Ohio State University. Many of the “old-timers” from the astronomy department have moved on to bigger and better things: Andy Karam, Mike Fisher, Pedro Saizar, Bill Welsh, Tereasa Brainerd, Cathy Mansperger, Kirk Korista, and Phil Martell. Current OSU graduate students Bob Blum, Glenn Tiede, Leslie Kuchinski, Mike Owen, Anita Krishnamurthi, Nancy Jo Lame, Ani Thakar, Babar Ali and Cheongho Han are thanked for their valuable scientific discussion but are most appreciated for their friendship and encouragement. I will miss them and wish them all the best. Other close friends who were critical to my success include Steve Long, Jens Villumsen, Mark Duell, Fernando Fischer and Rosa Gimenez. Karen Keppler is owed a very special thanks - she was always there to help and was a constant source of optimism, support and chocolate. To the members of CURB (Clean-Up and Recycling Backers), my gratitude for giving me the opportunity to do something worthwhile besides astronomy and to give something back to the community in which I lived. Shirley Cotter, Reardon Young, Mark Carter, Tom Brown et al. are a very special group of caring people. Among my many CURB-mates, I would especially like to thank Anthony Fabro for his friendship and for the rides he provided to CURB meetings and other recycling activities. Finally, I am indebted to Brenan’s Coffee Shop (and Yogurt Oasis) for supplying the caffeine necessary for survival on those late nights at the office and for providing various other forms of inspiration and motivation! Damon’s Restaurant and NTN trivia also provided much-needed diversions from the daily grind. V it a May 9, 1959 .......................................................... Born - Lincoln, NE 1983 .......................................................................... B.S. Chemistry, Colorado State Uni­ versity, Fort Collins, Colorado 1988 ................................. ........................................ B.S. Physics, Colorado State Univer­ sity, Fort Collins, Colorado 1988-1990 ................................................................ University Fellow, The Ohio State Uni­ versity, Columbus, Ohio 1990-1992 ................................................................ Graduate Research Associate, The Ohio State University, Columbus, Ohio 1992-1993 ................................................................ Presidential Fellow, The Ohio State University, Columbus, Ohio 1993-1994 ................................................................ Graduate Research Associate, The Ohio State University, Columbus, Ohio 1995 ..........................................................................Graduate Teaching Associate, The Ohio State University, Columbus, Ohio Publications Research Publications Papers Published in Refereed Journals “Giants in Old Open Clusters: Temperatures, Luminosities and Abundances from Infrared Photometry,” Houdashelt, M. L., Frogel, J. A., and Cohen, J. G. 1992, AJ, 103, 163. Contributions to Published Conference Proceedings “A Comparison of the Near-Infrared Spectral Features of Early-Type Galaxies in the Coma Cluster, the Virgo Cluster and the Field,” Houdashelt, M. L., and Frogel, J. A., in The Evolution of Galaxies and Their Environment, Proceedings of the Third Teton Summer School on Astrophysics, NASA Conf. Publ. 3190, ed. D. Hollenbach, H. Thronson and J- M. Shull, p. 31, 1993, (contributed poster). Published Unrefereed Abstracts “A Comparison of the Near-Infrared Spectral Features of Early-Type Galaxies in the Virgo and Coma Clusters,” Houdashelt, M. L., Columbus AAS meeting, June 1992. BAAS, 24, 808. “The Red Supergiants of NGC 2100,” Wing, R. F., and Houdashelt, M. L., Columbus AAS meeting, June 1992. BAAS, 24, 773. “Giants in Old Open Clusters: Temperatures, Luminosities and Abundances from Infrared Photometry,” Houdashelt, M. L., Frogel, J. A., and Cohen, J. G., Atlanta AAS meeting, January 1991. BAAS, 23, 1473. Fields of Study Major Field: Astronomy Studies in: Stellar Populations Prof. J. Frogel, Prof. D. Terndrup Star Clusters Prof. J. Frogel, Prof. R. Wing Early-Type Galaxies Prof. J. Frogel, Prof. D. Terndrup Spectroscopy Prof. J. Frogel, Prof. D. Terndrup T a b l e o f C o n t e n t s DEDICATION ...................................................................................................................... ii ACKNOWLEDGEMENTS .............................................................................................. iii VITA ........................................................................................................................................ vi LIST OF TABLES ................................................................................................................ xi LIST OF FIGURES ............................................................................................................ xiv CHAPTER PAGE I INTRODUCTION ...................................................................................................... 1 1.1 Photometry of Early-Type G alaxies ........................................................... 4 1.1.1 The Color-Magnitude R elation ..................................................... 4 1.1.2 Color Gradients in Early-Type Galaxies ...................................... 7 1.1.3 Colors and Stellar Populations ..................................................... 8 1.2 Spectroscopy of Early-Type Galaxies ........................................................ 8 1.3 This Dissertation ........................................................................................... 9 II OBSERVATIONS AND DATA REDUCTION .................................................. 12 2.1 The Galaxy Sam ple ............................................................................... 12 2.1.1 Data Taken from the Literature ...................................................... 13 2.2 Red Spectroscopy .............................................................................................. 15 2.2.1 Observations ........................................................................................ 16 2.2.2 Data Reduction ..................................................................................... 18 2.2.3 Near-Infrared Spectroscopy ............................................................ 24 III RED SPECTRAL FEATURES IN EARLY-TYPE GALAXIES ..... 33 3.1 Red Spectral Features in Stars ................................................................ 33 3.1.1 Atomic Lines ...................................................................................... 34 3.1.2 Molecular Bands ................................................................................ 38 3.2 Measurement of Spectral Features in Galaxies ..................................... 39 3.2.1 Definitions of the Indices ..............................................................
Recommended publications
  • Arxiv:Astro-Ph/0304318V1 16 Apr 2003
    The Globular Cluster Luminosity Function: New Progress in Understanding an Old Distance Indicator Tom Richtler Astronomy Group, Departamento de F´ısica, Universidad de Concepci´on, Casilla 160-C, Concepci´on, Chile Abstract. I review the Globular Cluster Luminosity Function (GCLF) with emphasis on recent observational data and theoretical progress. As is well known, the turn-over magnitude (TOM) is a good distance indicator for early-type galaxies within the limits set by data quality and sufficient number of objects. A comparison with distances derived from surface brightness fluctuations with the available TOMs in the V-band reveals, however, many discrepant cases. These cases often violate the condition that the TOM should only be used as a distance indicator in old globular cluster systems. The existence of intermediate age-populations in early-type galaxies likely is the cause of many of these discrepancies. The connection between the luminosity functions of young and old cluster systems is discussed on the basis of modelling the dynamical evolution of cluster systems. Finally, I briefly present the current ideas of why such a universal structure as the GCLF exists. 1 Introduction: What is the Globular Cluster Luminosity Function? Since the era of Shapley, who first explored the size of the Galaxy, the distances to globular clusters often set landmarks in establishing first the galactic, then the extragalactic distance scale. Among the methods which have been developed to determine the distances of early-type galaxies, the usage of globular clusters is one of the oldest, if not the oldest. Baum [5] first compared the brightness of the brightest globular clusters in M87 to those of M31.
    [Show full text]
  • The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric
    TheSBFSurveyofGalaxyDistances.I. Sample Selection, Photometric Calibration, and the Hubble Constant1 John L. Tonry2 and John P. Blakeslee2 Physics Dept. Room 6-204, MIT, Cambridge, MA 02139; Edward A. Ajhar2 Kitt Peak National Observatory, National Optical Astronomy Observatories, P.O. Box 26732 Tucson, AZ 85726; Alan Dressler Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101 ABSTRACT We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V −I)0 color of a galaxy according to M I =(−1.74 ± 0.07) + (4.5 ± 0.25) [(V −I)0 − 1.15] for 1.0 < (V −I) < 1.3. This agrees well with theoretical estimates from stellar popula- tion models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn−σ, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn−σ, and SNIa is in terms of a Hubble expan- sion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H0 =81±6 km/s/Mpc.
    [Show full text]
  • April Constellations of the Month
    April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis.
    [Show full text]
  • NLTE Analysis of Sr Lines in Spectra of Late-Type Stars with New R-Matrix Atomic Data,
    A&A 546, A90 (2012) Astronomy DOI: 10.1051/0004-6361/201219406 & c ESO 2012 Astrophysics NLTE analysis of Sr lines in spectra of late-type stars with new R-matrix atomic data, M. Bergemann1, C. J. Hansen2, M. Bautista3, and G. Ruchti1 1 Max-Planck Institute for Astrophysics, Karl-Schwarzschild Str. 1, 85741 Garching, Germany e-mail: [email protected] 2 Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany 3 Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA Received 13 April 2012 / Accepted 5 July 2012 ABSTRACT We investigate the statistical equilibrium of neutral and singly-ionized strontium in late-type stellar atmospheres. Particular attention is given to the completeness of the model atom, which includes new energy levels, transition probabilities, photoionization and electron-impact excitation cross-sections computed with the R-matrix method. The NLTE model is applied to the analysis of Sr I and Sr II lines in the spectra of the Sun, Procyon, Arcturus, and HD 122563, showing a significant improvement in the ionization balance compared to LTE line formation calculations, which predict abundance discrepancies of up to 0.5 dex. The solar Sr abundance is log = 2.93 ± 0.04 dex, in agreement with the meteorites. We present the grid of NLTE abundance corrections for Sr I and Sr II lines that covers a wide range of stellar parameters. Key words. atomic data – line: formation – radiative transfer – Sun: abundances – stars: abundances – stars: atmospheres 1. Introduction calculations solving for radiative transfer in NLTE for a small grid or red giant model atmospheres (Short & Hauschildt 2006).
    [Show full text]
  • Nicholas Stone Einstein Fellow, Columbia University MODEST-18 6/29/18
    Elevated Tidal Disruption Rates in Post-Starburst Galaxies Nicholas Stone Einstein Fellow, Columbia University MODEST-18 6/29/18 With: Aleksey Generozov, Eugene Vasiliev, Brian Metzger, Sjoert van Velzen A View to a Kill MBH=106M⦿, aBH=0.9, i=90˚ Face-On Edge-On Rt Rt PN-SPH (Hayasaki, NCS & Loeb 16) He IIλ4686 line is still evident as an excess above the model in the later epoch, however it has faded by a factor of ∼ 10 since the pre-preak spectrum, the same factor by which the ultraviolet continuum has faded during this time. Note that the absolute flux scaling in the later epoch is uncertain due to clouds on the date of the observation. Tidal Disruption Events • Empirically: ✦ Rare multiwavelength (radio -> hard X-ray) transients ✦ Dozens of strong candidate flares (most optical/X-ray) • Applications: Figure 2 ✦ Ultraviolet and optical light curve. The GALEX NUV and PS1 gP1-, rP1-, iP1-, and zP1- Tools to measure SMBH demographyband light curve of PS1-10jh (with the host galaxy flux removed) with 1σ error bars and in logarithmic days since the time of disruption determined from the best fit of the rP1-band (mass, maybe spin) light curve to the numerical model20 for the mass accretion rate of a tidally disrupted star with a polytropic exponent of 5/3 (shown with solid lines scaled to the flux in the GALEX and PS1 bands). The GALEX and PS1 photometry at t>240 rest-frame days since ✦ Super-Eddington accretion the peak is shown binned in time in order to increase the signal-to-noise.
    [Show full text]
  • Brightest Cluster Galaxies and Intracluster Light - Observations Magda Arnaboldi European Southern Observatory (Garching) O
    Brightest cluster galaxies and intracluster light - Observations Magda Arnaboldi European Southern Observatory (Garching) O. Gerhard, L. Coccato, G. Ventimiglia, S. Okamura P. Das, M. Doherty, K. Freeman, E. Mc Neil, N. Yasuda, J.A.L. Aguerri, R. Ciardullo, K. Dolag, J.J. Feldmeier, G.H. Jacoby. M. Arnaboldi – BCGs and ICL: observations ESO, FVC+, 27 June - 01 July 2011 1 Outline 1. Brightest Cluster Galaxies and Intracluster light in clusters 2. Planetary nebulae as kinematical tracers 3. The Virgo cluster & M87 – The PNs’ VLOS and the projected phase space distribution – Dynamical status of the Virgo core – Large scale distribution of the ICL 4. The Hydra cluster & NGC 3311 – Observations : long-slit spectroscopy, MSIS, surface photometry – Debris from disrupted galaxies by the cluster potential 5. The Coma cluster core & the NGC 4874/NGC 4889 binary merger 6. Conclusions M. Arnaboldi – BCGs and ICL: observations ESO, FVC+, 27 June - 01 July 2011 2 1. ICL from deep photometry • Core of the Coma cluster: Photographic photometry Thuan & Kormendy 1977 • Abell 4010 (left, z=0.096) Abell 3888 (center, z=0.151) Deep CCD photometry Krick & Bernstein 2007 Abell 1914 (right) Feldmeier+2004 See also Melnick+’77, Bernstein ’95, Feldmeier+’04, Gonzalez+’05, Mihos+’05, Krick+’06 See contributions from J. Krick, J. Melnick, C. Rudick, S. Okamura M. Arnaboldi – BCGs and ICL: observations ESO, FVC+, 27 June - 01 July 2011 3 ICL properties in individual clusters • ICL surface brightness profile shape varies between clusters - Krick & Bernstein 2007 • Ellipticity generally increases with radius, position angle sometimes has sharp variations - Gonzalez + 2005 • Suggests ICL is dynamically young and separate from BCG PA (o) 50 0 -50 1 10 100 (kpc/h) 4 M.
    [Show full text]
  • The Principal Axis of the Virgo Cluster
    The Principal Axis of the Virgo Cluster Michael J. West Department of Physics & Astronomy, University of Hawaii at Hilo, Hilo, HI 96720 and John P. Blakeslee1 Department of Physics, University of Durham, Durham, DH1 3LE, England [email protected] ABSTRACT Using accurate distances to individual Virgo cluster galaxies obtained by the method of Sur- face Brightness Fluctuations, we show that Virgo’s brightest ellipticals have a remarkably collinear arrangement in three dimensions. This axis, which is inclined by ∼ 10 − 15◦ from the line of sight, can be traced to even larger scales where it appears to join a filamentary bridge of galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of individual Virgo ellipticals also show some tendency to be aligned with the cluster axis, as does the jet of the supergiant elliptical M87. These results suggest that the formation of the Virgo cluster, and its brightest member galaxies, have been driven by infall of material along the Virgo-A1367 filament. Subject headings: galaxies: clusters: individual (Virgo), galaxies: formation, cosmology: large-scale structure of universe 1. Introduction Virgo dwarf elliptical galaxies also appears some- what elongated in this direction (Binggeli 1999), The Virgo cluster, at a distance of approxi- as does the distribution of hot X-ray emitting in- h−1 mately 15 Mpc, is the nearest richly-populated tracluster gas (B¨ohringer et al. 1994; Schindler, cluster of galaxies and, consequently, one of the Binggeli & B¨ohringer 1999). However, without best studied. A number of authors have pointed accurate distances to individual galaxies, it is im- arXiv:astro-ph/0008470v1 30 Aug 2000 out that Virgo’s brightest elliptical galaxies have possible to say for certain whether Virgo’s appar- a remarkably linear arrangement, along a pro- ◦ ent principal axis is a genuine three-dimensional jected position angle of roughly 110 (measured structure, or merely an illusory chance alignment North through East).
    [Show full text]
  • HIPPARCOS Age-Metallicity Relation of the Solar Neighbourhood Disc Stars
    HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars A. Ibukiyama1 and N. Arimoto1;2 1 Institute of Astronomy (IoA), School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 2 National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Received /Accepted 1 July 2002 Abstract. We derive age-metallicity relations (AMRs) and orbital parameters for the 1658 solar neighbourhood stars to which accurate distances are measured by the HIPPARCOS satellite. The sample stars comprise 1382 thin disc stars, 229 thick disc stars, and 47 halo stars according to their orbital parameters. We find a considerable scatter for thin disc AMR along the one-zone Galactic chemical evolution (GCE) model. Orbits and metallicities of thin disc stars show now clear relation each other. The scatter along the AMR exists even if the stars with the same orbits are selected. We examine simple extension of one-zone GCE models which account for inhomogeneity in the effective yield and inhomogeneous star formation rate in the Galaxy. Both extensions of one-zone GCE model cannot account for the scatter in age - [Fe/H] - [Ca/Fe] relation simultaneously. We conclude, therefore, that the scatter along the thin disc AMR is an essential feature in the formation and evolution of the Galaxy. The AMR for thick disc stars shows that the star formation terminated 8 Gyr ago in thick disc. As already reported by ?)and?), thick disc stars are more Ca-rich than thin disc stars with the same [Fe/H]. We find that thick disc stars show a vertical abundance gradient.
    [Show full text]
  • THE GLOBULAR CLUSTER SYSTEM of the COMA CD GALAXY NGC 4874 from HUBBLE SPACE TELESCOPE ACS and WFC3/IR IMAGING* Hyejeon Cho1, John P
    The Astrophysical Journal, 822:95 (23pp), 2016 May 10 doi:10.3847/0004-637X/822/2/95 © 2016. The American Astronomical Society. All rights reserved. THE GLOBULAR CLUSTER SYSTEM OF THE COMA CD GALAXY NGC 4874 FROM HUBBLE SPACE TELESCOPE ACS AND WFC3/IR IMAGING* Hyejeon Cho1, John P. Blakeslee2, Ana L. Chies-Santos3,4, M. James Jee1, Joseph B. Jensen5, Eric W. Peng6,7, and Young-Wook Lee1 1 Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 03722, Korea; [email protected], [email protected] 2 NRC Herzberg Astronomy & Astrophysics, Victoria, BC V9E 2E7, Canada; [email protected] 3 Departamento de Astronomia, Instituto de Física, UFRGS, Porto Alegre, R.S. 91501-970, Brazil 4 Departamento de Astronomia, IAGCA, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil 5 Department of Physics, Utah Valley University, Orem, Utah 84058, USA 6 Department of Astronomy, Peking University, Beijing 100871, China 7 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China Received 2016 January 31; accepted 2016 April 4; published 2016 May 11 ABSTRACT We present new Hubble Space Telescope (HST) optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g475) and F814W (I814) passbands and with the Wide Field Camera3 IR Channel in F160W (H160). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g475−I814>1.
    [Show full text]
  • TSP 2004 Telescope Observing Program
    THE TEXAS STAR PARTY 2004 TELESCOPE OBSERVING CLUB BY JOHN WAGONER TEXAS ASTRONOMICAL SOCIETY OF DALLAS RULES AND REGULATIONS Welcome to the Texas Star Party's Telescope Observing Club. The purpose of this club is not to test your observing skills by throwing the toughest objects at you that are hard to see under any conditions, but to give you an opportunity to observe 25 showcase objects under the ideal conditions of these pristine West Texas skies, thus displaying them to their best advantage. This year we have planned a program called “Starlight, Starbright”. The rules are simple. Just observe the 25 objects listed. That's it. Any size telescope can be used. All observations must be made at the Texas Star Party to qualify. All objects are within range of small (6”) to medium sized (10”) telescopes, and are available for observation between 10:00PM and 3:00AM any time during the TSP. Each person completing this list will receive an official Texas Star Party Telescope Observing Club lapel pin. These pins are not sold at the TSP and can only be acquired by completing the program, so wear them proudly. To receive your pin, turn in your observations to John Wagoner - TSP Observing Chairman any time during the Texas Star Party. I will be at the outside door leading into the TSP Meeting Hall each day between 1:00 PM and 2:30 PM. If you finish the list the last night of TSP, or I am not available to give you your pin, just mail your observations to me at 1409 Sequoia Dr., Plano, Tx.
    [Show full text]
  • First Detection of Oscillations in the Halo Giant HD 122563: Validation of Seismic Scaling Relations and New Parameters? O
    A&A 625, A33 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834721 & c O. Creevey et al. 2019 Astrophysics First detection of oscillations in the Halo giant HD 122563: Validation of seismic scaling relations and new parameters? O. Creevey1, F. Grundahl2, F. Thévenin1, E. Corsaro3, P. L. Pallé4,5, D. Salabert6,7;??, B. Pichon1, R. Collet2, L. Bigot1, V. Antoci2, and M. F. Andersen2 1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France e-mail: [email protected] 2 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark 3 INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 4 Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain 5 Universidad de La Laguna (ULL), Departamento de Astrofisica, 38206 La Laguna, Tenerife, Spain 6 IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France 7 Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, 91191 Gif-sur-Yvette, France Received 26 November 2018 / Accepted 4 February 2019 ABSTRACT Aims. The nearby metal-poor giant HD 122563 is an important astrophysical laboratory in which to test stellar atmospheric and interior physics. It is also a benchmark star for which to calibrate methods to apply to large scale surveys. Recently it has been remeasured using various methodologies given the new high precision instruments at our disposal. However, inconsistencies in the observations and models have been found. Methods. In order to better characterise this star using complementary techniques we have been measuring its radial velocities since 2016 using the Hertzsprung telescope (SONG network node) in order to detect oscillations.
    [Show full text]
  • The Infrared Surface Brightness Fluctuation Distances to the Hydra
    The Infrared Surface Brightness Fluctuation Distances to the Hydra and Coma Clusters 1 Joseph B. Jensen John L. Tonry and Gerard A. Luppino Institute for Astronomy, UniversityofHawaii 2680 Woodlawn Drive, Honolulu, HI 96822 e-mail: [email protected], [email protected], [email protected] ABSTRACT We present IR surface brightness uctuation (SBF) distance measurements to NGC 4889 in the Coma cluster and to NGC 3309 and NGC 3311 in the Hydra cluster. We explicitly corrected for the contributions to the uctuations from globular clusters, background galaxies, and residual background variance. We measured a distance of 85 10 Mp c to NGC 4889 and a distance of 46 5 Mp c to the Hydra cluster. 1 1 Adopting recession velo cities of 7186 428 km s for Coma and 4054 296 km s 1 1 for Hydra gives a mean Hubble constantofH =87 11km s Mp c . Corrections 0 for residual variances were a signi cant fraction of the SBF signal measured, and, if underestimated, would bias our measurementtowards smaller distances and larger values of H . Both NICMOS on the Hubble Space Telescop e and large-ap erture 0 ground-based telescop es with new IR detectors will make accurate SBF distance measurements p ossible to 100 Mp c and b eyond. Subject headings: distance scale | galaxies: clusters: individual (Hydra, Coma) | galaxies: individual (NGC 3309, NGC 3311, NGC 4889) | galaxies: distances and redshifts 1. Intro duction Measuring accurate and reliable distances is a critical part of the quest to measure the Hubble constant H .Until recently, di erenttechniques for estimating extragalactic distances 0 1 Currently with the Gemini 8-m Telescop es Pro ject, 180 Kino ole St.
    [Show full text]