Insect Diversity Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Insects from the Earliest Permian of Carrizo Arroyo (New Mexico, USA) Bridging the Gap Between the Carboniferous and Permian Entomofaunas
Insect Systematics & Evolution 48 (2017) 493–511 brill.com/ise New insects from the earliest Permian of Carrizo Arroyo (New Mexico, USA) bridging the gap between the Carboniferous and Permian entomofaunas Jakub Prokopa,* and Jarmila Kukalová-Peckb aDepartment of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Praha 2, Czech Republic bEntomology, Canadian Museum of Nature, Ottawa, ON, Canada K1P 6P4 *Corresponding author, e-mail: [email protected] Version of Record, published online 7 April 2017; published in print 1 November 2017 Abstract New insects are described from the early Asselian of the Bursum Formation in Carrizo Arroyo, NM, USA. Carrizoneura carpenteri gen. et sp. nov. (Syntonopteridae) demonstrates traits in hindwing venation to Lithoneura and Syntonoptera, both known from the Moscovian of Illinois. Carrizoneura represents the latest unambiguous record of Syntonopteridae. Martynovia insignis represents the earliest evidence of Mar- tynoviidae. Carrizodiaphanoptera permiana gen. et sp. nov. extends range of Diaphanopteridae previously restricted to Gzhelian. The re-examination of the type speciesDiaphanoptera munieri reveals basally coa- lesced vein MA with stem of R and RP resulting in family diagnosis emendation. Arroyohymen splendens gen. et sp. nov. (Protohymenidae) displays features in venation similar to taxa known from early and late Permian from the USA and Russia. A new palaeodictyopteran wing attributable to Carrizopteryx cf. arroyo (Calvertiellidae) provides data on fore wing venation previously unknown. Thus, all these new discoveries show close relationship between late Pennsylvanian and early Permian entomofaunas. Keywords Ephemeropterida; Diaphanopterodea; Megasecoptera; Palaeodictyoptera; gen. et sp. nov; early Asselian; wing venation Introduction The fossil record of insects from continental deposits near the Carboniferous-Permian boundary is important for correlating insect evolution with changes in climate and in plant ecosystems. -
Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses. -
Proceedings of the Third Annual Northeastern Forest Insect Work Conference
Proceedings of the Third Annual Northeastern Forest Insect Work Conference New Haven, Connecticut 17 -19 February 1970 U.S. D.A. FOREST SERVICE RESEARCH PAPER NE-194 1971 NORTHEASTERN FOREST EXPERIMENT STATION, UPPER DARBY, PA. FOREST SERVICE, U.S. DEPARTMENT OF AGRICULTURE WARREN T. DOOLITTLE, DIRECTOR Proceedings of the Third Annual Northeastern Forest Insect Work Conference CONTENTS INTRODUCTION-Robert W. Campbell ........................... 1 TOWARD INTEGRATED CONTROL- D. L,Collifis ...............................................................................2 POPULATION QUALITY- 7 David E. Leonard ................................................................... VERTEBRATE PREDATORS- C. H. Backner ............................................................................2 1 INVERTEBRATE PREDATORS- R. I. Sailer ..................................................................................32 PATHOGENS-Gordon R. Stairs ...........................................45 PARASITES- W.J. Tamock and I. A. Muldrew .......................................................................... 59 INSECTICIDES-Carroll Williams and Patrick Shea .............................................................................. 88 INTEGRATED CONTROL, PEST MANAGEMENT, OR PROTECTIVE POPULATION MANAGEMENT- R. W. Stark ..............................................................................1 10 INTRODUCTION by ROBERT W. CAMPBELL, USDA Forest Service, Northeastern Forest Experiment Station, Hamden, Connecticut. ANYPROGRAM of integrated control is -
THE ORIGIN and EVOLUTION of HYMENOPTEROUS INSECTS [P
THE ORIGIN AND EVOLUTION OF HYMENOPTEROUS INSECTS [p. 24] Chapter 3 EVOLUTION OF THE INFRACLASS SCARABAEONES A. P. Rasnitzyn* Dragonflies [order Odonata] and mayflies [order Ephemeroptera], which have retained a primitive thorax structure (absence of a cryptosternum) but are specialized in other respects, occupy the most isolated position in the infraclass. They are similar to each other in a number of characters, but the nature of the latter does not allow drawing a conclusion about any close relationship of the two orders. Indeed, the primitiveness of the structure of the thorax common to both of them, like any symplesiomorphy, is not evidence of a common origin. The adaptations of the larvae of mayflies and dragonflies to an aquatic way of life are different, and they show, rather, an independent transition to development in water. The loss of the ability to fold the wings as well is connected with different processes in them: in mayflies, with the ephemerality of the imago, the function of which is essentially limited to nuptial flight and oviposition; and in dragonflies, with the metamorphosis of the adult insect to an active aerial predator. It is highly probable that mayflies and dragonflies are independent evolutionary branches. The belonging of dragonflies and mayflies to a common trunk of Scarabaeones, that is, the isolation of them from Protoptera as part of a single trunk with the remaining members of the infraclass (except Protoptera), is confirmed by the metamorphosis of the style of the ninth segment in mayfly males into part of the copulatory organ [endophallus], and in dragonfly females into a sheath of the ovipositor. -
Homoptera: Diaspididae) Plant Protection and Quarantine of the Conterminous United States by Sueo Nakahara
Historic, Archive Document Do not assume content reflects current scientific knowledge, policies, or practices. United States Department of Agriculture Checklist of the Animal and Plant Health Armored Scales Inspection Service (Homoptera: Diaspididae) Plant Protection and Quarantine of the Conterminous United States By Sueo Nakahara USDA, APHiS. PPG Hoboken Methods 'Oevelopmem 209 Fiiver Street Hoboken. MJ ■Q703£> United States Department of Agriculture National Agricultural Library Introduction There are approximately 1,700 species of armored scales (Diaspididae) in the world (Beardsley and Gonzalez (1975: 47) and 285 species in the conterminous United States. Although 297 species are treated in this list, 12 species are regarded as eradicated. These 12 species are known only from the original collections and have not been collected during the past 40 years, or are recorded only from localized infestations that have been subjected to eradication measures. Aonidiella inornata McKenzie was recorded from Houston, Texas (McDaniel 1968:212), and Quadraspidiotus braunschvigi (Rungs) (Ferris 1942:426) is known only from the original collection. Although treated as eradicated, both species may still exist as localized infestations. Melanaspis multiclavata (Green and Laing) recorded from FIorida by Terris (1941:429) is a misidentification of an undescribed species (Davidson 1978, per. comm.) and is excluded from this paper. Also excluded is Parlatoria ziziphi (Lucas) (= _P* zizyphus) reported from Mississippi (Ferris 1937:90) on the basis of one old record from lem¬ ons and oranges of questionable origin. Abgral1aspis comstocki (Johnson) and A. howardi (Cocker- ell) possibly are forms of Diaspidiotus ancylus (Putnam) (Stannard 1965:573), but are listed as separate species because of taxonomical problems with D. -
1. Padil Species Factsheet Scientific Name: Common Name Image
1. PaDIL Species Factsheet Scientific Name: Lepidosaphes tokionis (Kuwana) (Hemiptera: Diaspididae) Common Name Croton Mussel Scale Live link: http://www.padil.gov.au/maf-border/Pest/Main/142940 Image Library New Zealand Biosecurity Live link: http://www.padil.gov.au/maf-border/ Partners for New Zealand Biosecurity image library Landcare Research — Manaaki Whenua http://www.landcareresearch.co.nz/ MPI (Ministry for Primary Industries) http://www.biosecurity.govt.nz/ 2. Species Information 2.1. Details Specimen Contact: New Zealand Arthropod Collection - [email protected] Author: Rhode, B.E. & Crosby, T.K. Citation: Rhode, B.E. & Crosby, T.K. (2013) Croton Mussel Scale(Lepidosaphes tokionis)Updated on 4/10/2014 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/maf-border/Pest/Main/142940 2.3. Facets Commodity Overview: Field Crops and Pastures, Horticulture Commodity Type: Capsicum & Chilli pepper, Citrus produce Distribution: Afrotropic, Australasia, Indo-Malaya, Nearctic, Neotropic, Palearctic Groups: Bugs Host Family: Agavaceae, Araceae, Euphorbiaceae, Malvaceae, Rutaceae, Solanaceae Pest Status: 0 Unknown Status: 0 NZ - Unknown 2.4. Other Names Croton Scale Insulaspis tokionis Borchsenius, 1963 Lepidosaphes auriculata Sanders, 1909 Lepidosaphes lasianthi Wolcott, 1936 Lepidosaphes newsteadi tokionis Fernald, 1903 Lepidosaphes tokionis Takahashi, 1935 Mytilaspis auriculata Green, 1907 Mytilaspis newsteadi tokionis Kuwana, 1902 2.5. Diagnostic Notes **Description from Williams & Watson (1988)** Scale of adult female pale brown, elongate. Male scale about same colour as female scale, smaller. Adult female, when mounted on slide, elongate: head of mature specimen sclerotised and expanded laterally to form sclerotised lobes. -
Phylum Arthropoda*
Zootaxa 3703 (1): 017–026 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.6 http://zoobank.org/urn:lsid:zoobank.org:pub:FBDB78E3-21AB-46E6-BD4F-A4ADBB940DCC Phylum Arthropoda* ZHI-QIANG ZHANG New Zealand Arthropod Collection, Landcare Research, Private Bag 92170, Auckland, New Zealand; [email protected] * In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703, 1–82. Abstract The Arthropoda is here estimated to have 1,302,809 described species, including 45,769 fossil species (the diversity of fossil taxa is here underestimated for many taxa of the Arthropoda). The Insecta (1,070,781 species) is the most successful group, and it alone accounts for over 80% of all arthropods. The most successful insect order, Coleoptera (392,415 species), represents over one-third of all species in 39 insect orders. Another major group in Arthropoda is the class Arachnida (114,275 species), which is dominated by the Acari (55,214 mite and tick species) and Araneae (44,863 spider species). Other diverse arthropod groups include Crustacea (73,141 species), Trilobitomorpha (20,906 species) and Myriapoda (12,010 species). Key words: Classification, diversity, Arthropoda Introduction The Arthropoda, with over 1.5 million described species, is the largest animal phylum, and it alone accounts for about 80% of the total number of species in the animal kingdom (Zhang 2011a). In the last volume on animal higher-level classification and survey of taxonomic richness, 28 chapters by numerous teams of specialists were published on various taxa of the Arthropoda, but there were many gaps to be filled (Zhang 2011b). -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
Ent18 1 007 016 Shcherbakov for Inet.Pmd
Russian Entomol. J. 18(1): 716 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2009 Permian insects from the Russky Island, South Primorye Ïåðìñêèå íàñåêîìûå ñ îñòðîâà Ðóññêèé â Þæíîì Ïðèìîðüå Dmitry E. Shcherbakov1, Vladimir N. Makarkin2, Daniil S. Aristov3 & Dmitry V. Vasilenko4 Ä.Å. Ùåðáàêîâ1, Â.Í. Ìàêàðêèí2, Ä.Ñ. Àðèñòîâ3, Ä.Â. Âàñèëåíêî4 1, 3, 4 Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow 117647, Russia. 1 E-mail: [email protected] 3 E-mail: [email protected] 4 E-mail: [email protected] 2 Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia. E- mail: [email protected] Ïàëåîíòîëîãè÷åñêèé èíñòèòóò ÐÀÍ, Ïðîôñîþçíàÿ óë. 123, Ìîñêâà 117647, Ðîññèÿ. Áèîëîãî-ïî÷âåííûé èíñòèòóò ÄÂÎ ÐÀÍ, Âëàäèâîñòîê 690022, Ðîññèÿ. KEY WORDS: fossil insects, Megasecoptera, Titanoptera, Grylloblattida, Homoptera, Neuroptera, Coleoptera, Mecoptera, entomofauna, South Primorye, Permian, Kungurian. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: èñêîïàåìûå íàñåêîìûå, Megasecoptera, Titanoptera, Grylloblattida, Homoptera, Neuroptera, Coleoptera, Mecoptera, ýíòîìîôàóíà, Þæíîå Ïðèìîðüå, ïåðìñêèé ïåðèîä, êóíãóðñêèé âåê. ABSTRACT. The first Permian insect assemblage ÐÅÇÞÌÅ. Âïåðâûå ñ Äàëüíåãî Âîñòîêà îïèñàí from the Russian Far East, collected in the lower ïåðìñêèé êîìïëåêñ íàñåêîìûõ èç íèæíåé ÷àñòè Pospelovo Formation (Kungurian, Lower Permian) of ïîñïåëîâñêîé ñâèòû (êóíãóðñêèé ÿðóñ, íèæíÿÿ the Russky Island near Vladivostok, is described. It is ïåðìü) îñòðîâà Ðóññêèé áëèç Âëàäèâîñòîêà.  í¸ì dominated -
Karyotype of Karoophasma Biedouwense (Austrophasmatidae)
Eur. J. Entomol. 112(4): 599–605, 2015 doi: 10.14411/eje.2015.093 ISSN 1210-5759 (print), 1802-8829 (online) First chromosomal study of Mantophasmatodea: Karyotype of Karoophasma biedouwense (Austrophasmatidae) DOROTA LACHOWSKA-CIERLIK1, ANNA MARyAńSKA-Nadachowska2, VALENTINA KuZNETSOvA3 and MIKE PICKER4 1 Institute of Zoology, Jagiellonian university, Cracow, Poland; e-mail: [email protected] 2 Institute of Systematic and Evolution of Animals, PAS, Cracow, Poland; e-mail: [email protected] 3 Zoological Institute Russian Academy of Sciences, St. Petersburg, Russia; e-mail: [email protected] 4 Department of Biological Sciences, university of Cape Town, Rondebosch, Cape Town, South Africa; e-mail: [email protected] Key words. Mantophasmatodea, Karoophasma biedouwense, FISH, heterochromatin, heelwalkers, meiosis, ribosomal genes, sex determination system, telomeres Abstract. We have investigated for the first time the chromosomes of Karoophasma biedouwense, a species belonging to the Manto- phasmatodea, a recently discovered order of carnivorous insects. Our study has revealed that males of this species display testes with numerous seminal tubes (follicles), as in other Polyneoptera, and short tubular seminal vesicles embedded in a utricular gland. The karyotype consists of 2n = 12A + X monocentric and biarmed, meta/submetacentric chromosomes (fundamental number of arms: FN = 26) with blocks of heterochromatin around centromeres. The autosomes are classified into two size groups, one represented by a single, very large pair of autosomes, the other by five smaller pairs which constitute a continuous series gradually decreasing in size. Among “monocentric” orders of Polyneoptera, K. biedouwense shares its low chromosome number, 2n = 13, as also found with some Orthoptera (Acridoidea, Grylloidea, Gryllacridoidea). -
A Proteomic Approach for Studying Insect Phylogeny: CAPA Peptides of Ancient Insect Taxa (Dictyoptera, Blattoptera) As a Test Case
BMC Evolutionary Biology BioMed Central Research article Open Access A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case Steffen Roth1,3, Bastian Fromm1, Gerd Gäde2 and Reinhard Predel*1 Address: 1Institute of Zoology, University of Jena, Erbertstrasse 1, D-07743 Jena, Germany, 2Zoology Department, University of Cape Town, Rondebosch 7701, South Africa and 3Institute of Biology, University of Bergen, Bergen N-5020, Norway Email: Steffen Roth - [email protected]; Bastian Fromm - [email protected]; Gerd Gäde - [email protected]; Reinhard Predel* - [email protected] * Corresponding author Published: 3 March 2009 Received: 6 October 2008 Accepted: 3 March 2009 BMC Evolutionary Biology 2009, 9:50 doi:10.1186/1471-2148-9-50 This article is available from: http://www.biomedcentral.com/1471-2148/9/50 © 2009 Roth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed. -
Thesis (PDF, 13.51MB)
Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript.