Thesis (PDF, 13.51MB)

Total Page:16

File Type:pdf, Size:1020Kb

Thesis (PDF, 13.51MB) Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript. 1 Chapter 3 of this thesis has been published as: Arab, D.A., Bourguignon, T., Wang, Z., Ho, S.Y. and Lo, N., 2020. Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes. Biology Letters, 16(1), p.20190702. N.L., D.A.A., T.B. and S.Y.W.H. designed the study. Z.W. and T.B. collected and provided specimens. D.A.A. and T.B. generated sequence data. D.A.A., T.B., N.L. and S.Y.W.H. performed data analysis and interpreted results. N.L. and D.A.A. wrote the manuscript, with contributions from T.B., Z.W. and S.Y.W.H. Chapter 4 of this thesis has been accepted for publication (18/2/2021) in the Journal of Molecular Evolution. D. A. A. and N. L. designed the study. D. A. A. performed all analyses and wrote the manuscript. N. L. provided feedback on the manuscript. Chapter 5 includes some material from the abstract of the chapters mentioned above. Appendix 4 of this thesis includes published versions of all the papers I contributed research to during my PhD, and on which I am an author, including 3 papers which are not described in this thesis. The first paper has been published as: Gao, F., Chen, C., Arab, D.A., Du, Z., He, Y. and Ho, S.Y.W., 2019. EasyCodeML: A visual tool for analysis of selection using CodeML. Ecology and Evolution, 9(7), pp.3891-3898. I performed tests of the software described in the paper using my own datasets (unpublished) and contributed to the writing of the manuscript of this paper. 2 The second paper has been published as: Beasley-Hall, P.G., Chui, J., Arab, D.A. and Lo, N., 2019. Evidence for a complex evolutionary history of mound building in the Australian nasute termites (Nasutitermitinae). Biological Journal of the Linnean Society, 126(2), pp.304-314. I generated datasets for this paper and supervised analyses. The third paper has been published as: Bourguignon, T., Kinjo, Y., Villa-Martín, P., Coleman, N.V., Tang, Q., Arab, D.A., Wang, Z., Tokuda, G., Hongoh, Y., Ohkuma, M. and Ho, S.Y., Pigolotti, S., Lo, N. 2020. Increased mutation rate is linked to genome reduction in prokaryotes. Current Biology, 30(19), pp.3848-3855. I performed analyses on the Blattabacterium datasets as part of the project that led to this paper, including Bayesian, Maximum likelihood, rate correlation, and gene loss analyses. In addition to the statements above, in cases where I am not the corresponding author of a published item, permission to include the published material has been granted by the corresponding author. Daej A Kh A M Arab, ……………….., 02/03/2021 As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct. Nathan Lo, ……………………, 02/03/2021 Daej A. Arab 2021 3 Statement of Originality I certify that, to the best of my knowledge, the content of this thesis is my own work, except where specifically acknowledged. This thesis has not been submitted for any other degree or purposes. I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged. Daej A. Arab 2021 4 Acknowledgements This thesis would not exist without the help of many. I would like to thank my main supervisor professor Nathan Lo for everything. I still remember the first email I received from Nate discussing my Master project, the amount of passion and enthusiasm was infectious. Nate also fought for me to obtain a scholarship to do this work. So Nate, Thank you for introducing me to the world of cockroaches and termites, which will forever be my favourite insects and thank you for giving me this opportunity. I would also like to thank my other supervisor professor Simon Ho for helping design the analyses that led to two chapters of this thesis. A very special thank you has to go to Dr Thomas Bourguignon. Not only did Thomas help immensely with the first few years of my PhD, he also helped build up my passion to study insect endosymbiont evolution. Thanks, Thomas, for being a friend and a mentor. A special acknowledgement to Dr Fangluan Gao for inviting me to work on his project and giving support through his visit to our laboratory. And finally, thanks to all my co-authors who helped with the publications throughout my PhD. As an international student, I was supported by the Australian government through the International Postgraduate Research Scholarship (IPRS). It was such an honour and privilege to receive such a scholarship. I am forever grateful to be given such an opportunity. I had the absolute honour and privilege to work alongside incredible and highly talented people in the Molecular Ecology, Evolution and Phylogenetics (MEEP) laboratory at the University of Sydney. They all provided support, knowledge and comfort throughout my years in the lab. To Cara, Charles, Tim, Perry, David and Nik, thank you for everything. MEEP will forever be a place that I was proud to call home and I will miss it dearly. 5 The School of Life and Environmental Sciences at the University of Sydney has been my home for over 7 years. Throughout my Masters and PhD (and years in between) I managed to build myself in the image of many that run this wonderful institution. I would like to thank professor Peter Banks for his support throughout my PhD. Many thanks to all the academics, staff and students of the school and I hope to see you in future ventures. I would not be at this stage of my life without the support of friends that made Sydney my home over the past few years. Dr Michael Holmes, thanks for being an inspiration through my whole academic path, your words and support led to this moment. Dr Zoe Patterson-Ross and Dr Ryan Leonard, thanks for the good company and inspiration. I would also like to thank my chosen family Daniel, Julia, Michael, Elyse and Alex, your love and support have been invaluable. Mum, thanks for pushing me to aim higher. Thanks for teaching me never to give up no matter how hard things got. There are no words that can show how grateful I am to have such strong support throughout my education and so much love throughout my life. Danah and Fatima, having younger sisters like you is irreplaceable. You inspire me to be a better man, so thank you from the bottom of my heart. Jo (the girl with the cicada tattoo), you helped pick me up and get me back on track. It is funny how a cicada tattoo and a conversation about mitochondria can lead to a publication. Thanks for the support, thanks for the love, thanks for being by my side through the hard times. Here is to more adventures together with Maxine. Mum, Danah, Fatima and Jo, this is for you. 6 Table of Contents Authorship contribution statement ............................................................................................. 1 Statement of Originality ............................................................................................................. 4 Acknowledgements .................................................................................................................... 5 Table of Contents ....................................................................................................................... 7 Abstract ...................................................................................................................................... 9 Chapter 1: General Introduction .............................................................................................. 11 1.1 Molecular evolution .................................................................................................. 11 1.2 Mutualistic insect endosymbionts ............................................................................. 14 1.3 Insect endosymbiont genomes .................................................................................
Recommended publications
  • New Aspects About Supella Longipalpa (Blattaria: Blattellidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2016; 6(12): 1065–1075 1065 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article http://dx.doi.org/10.1016/j.apjtb.2016.08.017 New aspects about Supella longipalpa (Blattaria: Blattellidae) Hassan Nasirian* Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: The brown-banded cockroach, Supella longipalpa (Blattaria: Blattellidae) (S. longipalpa), Received 16 Jun 2015 recently has infested the buildings and hospitals in wide areas of Iran, and this review was Received in revised form 3 Jul 2015, prepared to identify current knowledge and knowledge gaps about the brown-banded 2nd revised form 7 Jun, 3rd revised cockroach. Scientific reports and peer-reviewed papers concerning S. longipalpa and form 18 Jul 2016 relevant topics were collected and synthesized with the objective of learning more about Accepted 10 Aug 2016 health-related impacts and possible management of S. longipalpa in Iran. Like the Available online 15 Oct 2016 German cockroach, the brown-banded cockroach is a known vector for food-borne dis- eases and drug resistant bacteria, contaminated by infectious disease agents, involved in human intestinal parasites and is the intermediate host of Trichospirura leptostoma and Keywords: Moniliformis moniliformis. Because its habitat is widespread, distributed throughout Brown-banded cockroach different areas of homes and buildings, it is difficult to control.
    [Show full text]
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • Serial Horizontal Transfer of Vitamin-Biosynthetic Genes Enables the Establishment of New Nutritional Symbionts in Aphids’ Di-Symbiotic Systems
    The ISME Journal (2020) 14:259–273 https://doi.org/10.1038/s41396-019-0533-6 ARTICLE Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems 1 1 1 2 2 Alejandro Manzano-Marıń ● Armelle Coeur d’acier ● Anne-Laure Clamens ● Céline Orvain ● Corinne Cruaud ● 2 1 Valérie Barbe ● Emmanuelle Jousselin Received: 25 February 2019 / Revised: 24 August 2019 / Accepted: 7 September 2019 / Published online: 17 October 2019 © The Author(s) 2019. This article is published with open access Abstract Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or 1234567890();,: 1234567890();,: carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera’s. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera’s.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Blattabacterium Genome: Structure, Function, and Evolution Austin Alleman
    University of Texas at Tyler Scholar Works at UT Tyler Biology Theses Biology Spring 6-5-2014 Blattabacterium Genome: Structure, Function, and Evolution Austin Alleman Follow this and additional works at: https://scholarworks.uttyler.edu/biology_grad Part of the Biology Commons Recommended Citation Alleman, Austin, "Blattabacterium Genome: Structure, Function, and Evolution" (2014). Biology Theses. Paper 20. http://hdl.handle.net/10950/215 This Thesis is brought to you for free and open access by the Biology at Scholar Works at UT Tyler. It has been accepted for inclusion in Biology Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. BLATTABACTERIUM GENOME: STRUCTURE, FUNCTION, AND EVOLUTION by AUSTIN ALLEMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biology Srini Kambhampati, Ph. D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2014 © Copyright by Austin Alleman 2014 All rights reserved Acknowledgements I would like to thank the Sam A. Lindsey Endowment, without whose support this research would not have been possible. I would also like to thank my research advisor, Dr. Srini Kambhampati, for his knowledge, insight, and patience; and my committee, Dr. John S. Placyk, Jr. and Dr. Blake Bextine, for their assistance and feedback. “It is the supreme art of the teacher to awaken joy in creative expression and knowledge.” --Albert Einstein Table of Contents Chapter
    [Show full text]
  • Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes Darwiniensis and Cryptocercus Wood Roaches
    GBE Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches Yukihiro Kinjo1,2,3,4, Thomas Bourguignon3,5,KweiJunTong6, Hirokazu Kuwahara2,SangJinLim7, Kwang Bae Yoon7, Shuji Shigenobu8, Yung Chul Park7, Christine A. Nalepa9, Yuichi Hongoh1,2, Moriya Ohkuma1,NathanLo6,*, and Gaku Tokuda4,* 1Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan 2Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan 3Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan 4Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan 5Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic 6School of Life and Environmental Sciences, University of Sydney, NSW, Australia 7Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea 8National Institute for Basic Biology, NIBB Core Research Facilities, Okazaki, Japan 9Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: May 29, 2018 Data deposition: This project has been deposited in the International Nucleotide Sequence Database (GenBank/ENA/DDBJ) under the accession numbers given in Table 1. Abstract Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti.Onthebasisof genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of 630 kbp, with the exception of the termite Mastotermes darwiniensis (590 kbp) and Cryptocercus punctulatus (614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes.
    [Show full text]
  • Running Speed and Food Intake of the Matrotrophic Viviparous Cockroach Diploptera Punctata (Blattodea: Blaberidae) During Gestation
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologie heute Jahr/Year: 2014 Band/Volume: 26 Autor(en)/Author(s): Greven Hartmut, Floßdorf David, Köthe Janine, List Fabian, Zwanzig Nadine Artikel/Article: Running Speed and Food Intake of the Matrotrophic Viviparous Cockroach Diploptera punctata (Blattodea: Blaberidae) during Gestation. Laufgeschwindigkeit und Nahrungsaufnahme der matrotroph viviparen Schabe Diploptera punctata (Blattodea: Blaberidae) während der Trächtigkeit 53-72 Running speed and food intake of Diploptera punctata during gestation 53 Entomologie heute 26 (2014): 53-72 Running Speed and Food Intake of the Matrotrophic Viviparous Cockroach Diploptera punctata (Blattodea: Blaberidae) during Gestation Laufgeschwindigkeit und Nahrungsaufnahme der matrotroph viviparen Schabe Diploptera punctata (Blattodea: Blaberidae) während der Trächtigkeit HARTMUT GREVEN, DAVID FLOSSDORF, JANINE KÖTHE, FABIAN LIST & NADINE ZWANZIG Summary: Diploptera punctata is the only cockroach, which has been clearly characterized as matro- trophic viviparous. Our observations on courtship and mating generally confi rm the data from the literature. Courtship and mating correspond to type I (male offers himself under wing fl uttering, female mounts the male, nibbles on his tergal glands, dismounts, turns to achieve the fi nal mating position, i.e. abdomen to abdomen, heads in the opposite direction. We document photographic ally mating and courtship of fully sklerotized, sexually experienced males with teneral females imme- diately after the last moult, and with fully sclerotized females several hours after the fi nal moult. Effects of sexual dimorphism (females are larger than males) and pregnancy (females gain weight) became apparent from the running speed cockroaches reached, when disturbed. Males and females ran signifi cantly faster during daytime than at night, but males ran always faster than females.
    [Show full text]
  • Long Rdna Amplicon Sequencing of Insect-Infecting Nephridiophagids
    www.nature.com/scientificreports OPEN Long rDNA amplicon sequencing of insect‑infecting nephridiophagids reveals their afliation to the Chytridiomycota and a potential to switch between hosts Jürgen F. H. Strassert 1*, Christian Wurzbacher 2, Vincent Hervé 3, Taraha Antany1, Andreas Brune 3 & Renate Radek 1* Nephridiophagids are unicellular eukaryotes that parasitize the Malpighian tubules of numerous insects. Their life cycle comprises multinucleate vegetative plasmodia that divide into oligonucleate and uninucleate cells, and sporogonial plasmodia that form uninucleate spores. Nephridiophagids are poor in morphological characteristics, and although they have been tentatively identifed as early‑branching fungi based on the SSU rRNA gene sequences of three species, their exact position within the fungal tree of live remained unclear. In this study, we describe two new species of nephridiophagids (Nephridiophaga postici and Nephridiophaga javanicae) from cockroaches. Using long‑read sequencing of the nearly complete rDNA operon of numerous further species obtained from cockroaches and earwigs to improve the resolution of the phylogenetic analysis, we found a robust afliation of nephridiophagids with the Chytridiomycota—a group of zoosporic fungi that comprises parasites of diverse host taxa, such as microphytes, plants, and amphibians. The presence of the same nephridiophagid species in two only distantly related cockroaches indicates that their host specifcity is not as strict as generally assumed. Insects are the most diverse group of all animals. So far, about one million species have been described and recent estimates for extant species range from 2.6 to 7.8 million1,2. Tey are globally distributed and impact human life at numerous levels. In agriculture, for instance, insects play a major role as both pollinators (e.g., honey bees) and pests that feed on crops (e.g., grasshoppers).
    [Show full text]
  • Volume 2, Chapter 12-5: Terrestrial Insects: Hemimetabola-Notoptera
    Glime, J. M. 2017. Terrestrial Insects: Hemimetabola – Notoptera and Psocoptera. Chapter 12-5. In: Glime, J. M. Bryophyte Ecology. 12-5-1 Volume 2. Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-5 TERRESTRIAL INSECTS: HEMIMETABOLA – NOTOPTERA AND PSOCOPTERA TABLE OF CONTENTS NOTOPTERA .................................................................................................................................................. 12-5-2 Grylloblattodea – Ice Crawlers ................................................................................................................. 12-5-3 Grylloblattidae – Ice Crawlers ........................................................................................................... 12-5-3 Galloisiana ................................................................................................................................. 12-5-3 Grylloblatta ................................................................................................................................ 12-5-3 Grylloblattella ............................................................................................................................ 12-5-4 PSOCOPTERA – Booklice, Barklice, Barkflies .............................................................................................. 12-5-4 Summary .........................................................................................................................................................
    [Show full text]
  • Insect Classification Standards 2020
    RECOMMENDED INSECT CLASSIFICATION FOR UGA ENTOMOLOGY CLASSES (2020) In an effort to standardize the hexapod classification systems being taught to our students by our faculty in multiple courses across three UGA campuses, I recommend that the Entomology Department adopts the basic system presented in the following textbook: Triplehorn, C.A. and N.F. Johnson. 2005. Borror and DeLong’s Introduction to the Study of Insects. 7th ed. Thomson Brooks/Cole, Belmont CA, 864 pp. This book was chosen for a variety of reasons. It is widely used in the U.S. as the textbook for Insect Taxonomy classes, including our class at UGA. It focuses on North American taxa. The authors were cautious, presenting changes only after they have been widely accepted by the taxonomic community. Below is an annotated summary of the T&J (2005) classification. Some of the more familiar taxa above the ordinal level are given in caps. Some of the more important and familiar suborders and families are indented and listed beneath each order. Note that this is neither an exhaustive nor representative list of suborders and families. It was provided simply to clarify which taxa are impacted by some of more important classification changes. Please consult T&J (2005) for information about taxa that are not listed below. Unfortunately, T&J (2005) is now badly outdated with respect to some significant classification changes. Therefore, in the classification standard provided below, some well corroborated and broadly accepted updates have been made to their classification scheme. Feel free to contact me if you have any questions about this classification.
    [Show full text]
  • The Insects: Structure and Function: Fifth Edition R
    Cambridge University Press 978-0-521-11389-2 - The Insects: Structure and Function: Fifth Edition R. F. Chapman Edited by Stephen J. Simpson and Angela E. Douglas Frontmatter More information The Insects Structure and Function FIFTH EDITION The Insects has been the standard textbook in the field since the first edition was published over 40 years ago. Building on the strengths of Chapman’s original text, this long-awaited new edition has been revised and expanded by a team of eminent insect physiologists, bringing it fully up to date for the molecular era. The chapters retain the successful structure of the earlier editions, focusing on particular functional systems rather than on taxonomic groups and making it easy for students to delve into topics without extensive knowledge of taxonomy. The focus is on form and function, bringing together basic anatomy and physiology and examining how these relate to behavior. This, combined with nearly 600 clear illustrations, provides a comprehensive understanding of how insects work. Now also featuring a richly illustrated prologue by George McGavin, this is an essential text for students, researchers and applied entomologists alike. R. F. Chapman (1930–2003) was an eminent insect physiologist and Professor in the Division of Neurobiology at the University of Arizona. His first four editions of The Insects have formed the standard text in the field for more than 40 years. Stephen J. Simpson is ARC Laureate Fellow in the School of Biological Sciences and Academic Director of the Perkins Centre for the study of obesity, diabetes and cardiovascular disease at the University of Sydney.
    [Show full text]
  • A Dichotomous Key for the Identification of the Cockroach Fauna (Insecta: Blattaria) of Florida
    Species Identification - Cockroaches of Florida 1 A Dichotomous Key for the Identification of the Cockroach fauna (Insecta: Blattaria) of Florida Insect Classification Exercise Department of Entomology and Nematology University of Florida, Gainesville 32611 Abstract: Students used available literature and specimens to produce a dichotomous key to species of cockroaches recorded from Florida. This exercise introduced students to techniques used in studying a group of insects, in this case Blattaria, to produce a regional species key. Producing a guide to a group of insects as a class exercise has proven useful both as a teaching tool and as a method to generate information for the public. Key Words: Blattaria, Florida, Blatta, Eurycotis, Periplaneta, Arenivaga, Compsodes, Holocompsa, Myrmecoblatta, Blatella, Cariblatta, Chorisoneura, Euthlastoblatta, Ischnoptera,Latiblatta, Neoblatella, Parcoblatta, Plectoptera, Supella, Symploce,Blaberus, Epilampra, Hemiblabera, Nauphoeta, Panchlora, Phoetalia, Pycnoscelis, Rhyparobia, distributions, systematics, education, teaching, techniques. Identification of cockroaches is limited here to adults. A major source of confusion is the recogni- tion of adults from nymphs (Figs. 1, 2). There are subjective differences, as well as morphological differences. Immature cockroaches are known as nymphs. Nymphs closely resemble adults except nymphs are generally smaller and lack wings and genital openings or copulatory appendages at the tip of their abdomen. Many species, however, have wingless adult females. Nymphs of these may be recognized by their shorter, relatively broad cerci and lack of external genitalia. Male cockroaches possess styli in addition to paired cerci. Styli arise from the subgenital plate and are generally con- spicuous, but may also be reduced in some species. Styli are absent in adult females and nymphs.
    [Show full text]