Evaluation of Tebuconazole, Triclosan, Methylparaben and Ethylparaben According to the Danish Proposal for Criteria for Endocrine Disrupters

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Tebuconazole, Triclosan, Methylparaben and Ethylparaben According to the Danish Proposal for Criteria for Endocrine Disrupters Downloaded from orbit.dtu.dk on: Sep 26, 2021 Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters Hass, Ulla; Christiansen, Sofie; Petersen, Marta Axelstad; Boberg, Julie; Andersson, Anna-Maria ; Skakkebæk, Niels Erik ; Bay, Katrine ; Holbech, Henrik ; Lund Kinnberg, Karin ; Bjerregaard, Poul Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hass, U., Christiansen, S., Petersen, M. A., Boberg, J., Andersson, A-M., Skakkebæk, N. E., Bay, K., Holbech, H., Lund Kinnberg, K., & Bjerregaard, P. (2012). Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters. Danish Centre on Endocrine Disrupters. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Page 1 Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters, May 2012 Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters DANISH CENTRE ON ENDOCRINE DISRUPTERS Ulla Hass, Sofie Christiansen, Marta Axelstad, and Julie Boberg Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark Anna-Maria Andersson, Niels Erik Skakkebæk and Katrine Bay Department of Growth and Reproduction, Copenhagen University Hospital Henrik Holbech, Karin Lund Kinnberg and Poul Bjerregaard Institute of Biology, University of Southern Denmark Page 2 Terms of reference and scope This report has been prepared by the Danish Centre on Endocrine Disrupters (CEHOS) as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build and gather new knowledge on endocrine disrupters with the focus on providing information requested for the preventive work of the regulatory authorities. The Centre is financed by the Ministry of the Environment and the scientific work programme is followed by an international scientific advisory board. The overall scope of this project is to provide a science based evaluation of tebuconazole, triclosan, methylparaben and ethylparaben and their endocrine disrupting properties. 1. Background and aim During the last years Denmark has been focusing the work under the national strategy on endocrine disruptors on regulatory measures with the aim to reduce human and environmental exposure to endocrine disruptors. As a first step towards more systematic regulation of endocrine disruptors the Danish Environmental Protection Agency contributed to the ongoing EU-process on criteria setting for endocrine disruptors by submitting the report: Establishment of Criteria for Endocrine Disruptors and Options for Regulation in May 2011 (Danish EPA, 2011). In relation to this work and the REACH process the DK-EPA has asked the Danish Centre on Endocrine Disrupters to conduct a project which is to evaluate tebuconazole, triclosan, methyl paraben and ethyl paraben. The overall aim is to categorize the 4 substances on the basis of the Danish proposal for criteria for endocrine disrupters which is scientifically justified by a report (Hass et al., 2011). This means that the evaluation is based on results from both human health, in vitro/vivo studies and studies in the environment. Furthermore, the 4 substances are evaluated according to the Joint British-German Position Paper: Regulatory Definition of an Endocrine Disrupter in relation to Potential Threat to Human Health that is based on a potency cut-off criteria (DE-UK, 2011). The substances and their main use(s) are shown in table 1. Page 3 Evaluation of tebuconazole, triclosan, methylparaben and ethylparaben according to the Danish proposal for criteria for endocrine disrupters, May 2012 Table 1. The evaluated substances and their main use(s) according to SIN list document Substance Use(s) Tebuconazole A triazole fungicide used agriculturally to treat against plant pathogenic fungi and as biocide (film, wood, masonry fibre, leather, rubber and polymerised material preservation). Triclosan A biocide used as an antibacterial and antifungal agent. Methylparaben Antifungal agent often used in a variety of cosmetics and personal-care products. As a food additive, it has E number E218 Ethylparaben An antifungal preservative used in personal care-products and as a food additive. As a food additive, it has E number E214 1.1 Danish Criteria for identification of ED The Danish proposal for criteria for EDs (Endocrine Disrupters) are described in detail in a previous report from CEHOS (Hass et al 2011) and will only be briefly described here. The criteria include 3 categories, i.e. ED (category 1), suspected ED (category 2a) and indicated ED (category 2b). The definitions of the categories are: An endocrine disrupter is an exogenous substance or mixture that alters function(s) of the endocrine system and causes adverse health effects in an intact organism, or its progeny, or (sub)populations." Potential endocrine disrupter: A suspected endocrine disrupter is an exogenous substance or mixture that may alter function(s) of the endocrine system and consequently may cause adverse health effects in an intact organism, or its progeny, or (sub)populations." A substance with indication of endocrine disrupting properties (called indicated ED) is an exogenous substance or mixture that possesses properties that might be expected to lead to endocrine disruption in an intact organism, or its progeny, or (sub)populations. The definition of EDs and suspected EDs both include the term “adverse”. The WHO/IPCS definition of the term “adversity” is used: “A change in morphology, physiology, growth, reproduction, development or lifespan of an organism which results in impairment of functional capacity or impairment of capacity to compensate for additional stress or increased susceptibility to the harmful effects of other environmental influences.” (WHO/IPCS 2004) In table 2 the criteria for placing substances in each of the three categories are presented. Page 4 Table 2 Proposed criteria for EDs Category 1- Endocrine disrupter Substances are placed in category 1 when they are known to have produced ED adverse effects in humans or animal species living in the environment or when there is evidence from animal studies, possibly supplemented with other information, to provide a strong presumption that the substance has the capacity to cause ED effects in humans or animals living in the environment. The animal studies shall provide clear evidence of ED effect in the absence of other toxic effects, or if occurring together with other toxic effects, the ED effects should be considered not to be a secondary non-specific consequence of other toxic effects. However, when there is e.g. mechanistic information that raises doubt about the relevance of the adverse effect for humans or the environment, Category 2a may be more appropriate. Substances can be allocated to this category based on: - Adverse in vivo effects where an ED mode of action is highly plausible - ED mode of action in vivo that is clearly linked to adverse in vivo effects (by e.g. read- across) Category 2a - Suspected ED Substances are placed in Category 2a when there is some evidence from humans or experimental animals, and where the evidence is not sufficiently convincing to place the substance in Category 1. If for example limitations in the study (or studies) make the quality of evidence less convincing, Category 2a could be more appropriate. Such effects should be observed in the absence of other toxic effects, or if occurring together with other toxic effects, the ED effect should be considered not to be a secondary non-specific consequence of other toxic effects. Substances can be allocated to this category based on: - Adverse effects in vivo where an ED mode of action is suspected - ED mode of action in vivo that is suspected to be linked to adverse effects in vivo - ED mode of action in vitro combined with toxicokinetic in vivo data (and relevant non test information such as read across, chemical categorisation and QSAR predictions) Category 2b – Substances with indications of ED properties (indicated ED) Substances are placed in Category 2b when there is in vitro/in silico evidence indicating potential for endocrine disruption in intact organisms. Evidence could also be observed effects in vivo that could be ED-mediated. A substance can be considered an ED (category 1) based on data from: • In vivo assays providing data on effects clearly linked to endocrine mechanisms (OECD, conceptual Framework (CF) level
Recommended publications
  • COMBINED LIST of Particularly Hazardous Substances
    COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane
    [Show full text]
  • Toxicological Profile for Bisphenol A
    TT TOXICOLOGICAL PROFILE FOR BISPHENOL A September 2009 Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency Toxicological Profile for Bisphenol A September 2009 Prepared by Office of Environmental Health Hazard Assessment Prepared for Ocean Protection Council Under an Interagency Agreement, Number 07-055, with the State Coastal Conservancy LIST OF CONTRIBUTORS Authors Jim Carlisle, D.V.M., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch Dave Chan, D. Env., Staff Toxicologist, Integrated Risk Assessment Branch Mari Golub, Ph.D., Staff Toxicologist, Reproductive and Cancer Hazard Assessment Branch Sarah Henkel, Ph.D., California Sea Grant Fellow, California Ocean Science Trust Page Painter, M.D., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch K. Lily Wu, Ph.D., Associate Toxicologist, Reproductive and Cancer Hazard Assessment Branch Reviewers David Siegel, Ph.D., Chief, Integrated Risk Assessment Branch i Table of Contents Executive Summary ................................................................................................................................ iv Use and Exposure ............................................................................................................................... iv Environmental Occurrence ................................................................................................................. iv Effects on Aquatic Life ......................................................................................................................
    [Show full text]
  • California Proposition 65 (Prop65)
    20 NOVEMBER 2018 To Whom It May Concern: Certificate of Compliance California Proposition 65 California’s Proposition 65 entitles California consumers to special warnings for products that contain chemicals known to the state of California to cause cancer and birth defects or other reproductive harm if those products expose consumers to such chemicals above certain threshold levels. This is to certify that Alliance Memory comply with Safe Drinking Water and Toxic Enforcement Act of 1986, commonly known as California Proposition 65, that are ‘known to the state to cause cancer or reproductive toxicity’ as of December 29, 2017, by following the labelling guidelines set out therein. Alliance Memory labelling system clearly states a ‘Prop65 warning’ as and when necessary, on product packaging that is destined for the state of California, USA. This document certifies that to the best of our current knowledge and belief and under normal usage, Alliance Memory’s IC products are in compliance with California Proposition 65 – The Safe Drinking Water and Toxic Enforcement Act, 1986) and do not contain chemical elements of those listed within the California Proposition 65 chemical listing as shown below. Signature : Date: 20 November 2018 Name : Kim Bagby Title : Director QRA Department/Alliance Memory California Proposition 65 list of chemicals. The following is a list of chemicals published as a requirement of Safe Drinking Water and Toxic Enforcement Act of 1986, commonly known as California Proposition 65, that are ‘known to the state to cause
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Commission Staff Working Document "Monitoring of Pesticide Residues in Products of Plant Origin in the European Union, Norway, Iceland and Liechtenstein 2006"
    COUNCIL OF Brussels, 3 December 2008 THE EUROPEAN UNION 16734/08 AGRI 424 ENV 933 COVER NOTE from: Secretary-General of the European Commission, signed by Mr Jordi AYET PUIGARNAU, Director date of receipt: 21 November 2008 to: Mr Javier SOLANA, Secretary-General/High Representative Subject: Commission Staff Working Document "Monitoring of Pesticide Residues in Products of Plant Origin in the European Union, Norway, Iceland and Liechtenstein 2006" Delegations will find attached Commission document SEC(2008) 2902 final. ________________________ Encl.: SEC(2008) 2902 final 16734/08 VLG/sla 1 DG B II EN COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 20/11/2008 SEC(2008) 2902 final COMMISSION STAFF WORKING DOCUMENT Monitoring of Pesticide Residues in Products of Plant Origin in the European Union, Norway, Iceland and Liechtenstein 2006 EN EN COMMISSION STAFF WORKING DOCUMENT Monitoring of Pesticide Residues in Products of Plant Origin in the European Union, Norway, Iceland and Liechtenstein 2006 TABLE OF CONTENTS ABBREVIATIONS & SPECIAL TERMS USED IN THE REPORT .....................................4 1. Introduction ..............................................................................................................5 2. Legal basis................................................................................................................5 3. Maximum Residue Levels (MRL), Acceptable Daily Intakes (ADI) and Acute Reference Doses (ARfD) ..........................................................................................6 4.
    [Show full text]
  • A Toxic Eden: Poisons in Your Garden an Analysis of Bee-Harming Pesticides in Ornamental Plants Sold in Europe
    A TOXIC EDEN: POISONS IN YOUR GARDEN AN ANALYSIS OF BEE-HARMING PESTICIDES IN ORNAMENTAL PLANTS SOLD IN EUROPE A TOXIC EDEN: POISONS IN YOUR GARDEN AN ANALYSIS OF BEE-HARMING PESTICIDES IN ORNAMENTAL PLANTS SOLD IN EUROPE April 2014 Technical Report 1 A TOXIC EDEN: POISONS IN YOUR GARDEN AN ANALYSIS OF BEE-HARMING PESTICIDES IN ORNAMENTAL PLANTS SOLD IN EUROPE A TOXIC EDEN: POISONS IN YOUR GARDEN An analysis of bee-harming pesticides in ornamental plants sold in Europe Summary and recommendations by Greenpeace 3 1. Introduction 5 2. Materials & Methods 6 2.1 Overview of Results 6 2.2 Bee-harming pesticides 8 2.3 The maximum concentrations of bee-harming pesticides detected 10 2.4 Most frequently detected pesticides 11 2.5 Authorization status of the detected pesticides 14 2.6 Pesticide residue categories 16 2.7 Manufacturer/Authorization Holder of the bee-harming pesticides 17 3. Annex 18 4. Literature 41 For more information contact: [email protected] Written by: Wolfgang Reuter, ForCare, Freiburg - Germany Dipl.-Biol., Fach-Toxikologe Layout by: Juliana Devis Cover image by: Axel Kirchhof Greenpeace International Ottho Heldringstraat 5 1066 AZ Amsterdam The Netherlands greenpeace.org © Greenpeace / Herman van Bekkem © Greenpeace 2 A TOXIC EDEN: POISONS IN YOUR GARDEN AN ANALYSIS OF BEE-HARMING PESTICIDES IN ORNAMENTAL PLANTS SOLD IN EUROPE SUMMARY AND RECOMMENDatIONS BY GREENPEACE © Greenpeace / Christine Gebeneter Current industrial agriculture relies on diverse synthetic chemical inputs, ranging from synthetic fertilisers through to toxic pesticides. These pesticides are designed to address insect and fungal pests as well as control weed plant species.
    [Show full text]
  • List of Reproductive Toxins
    STATE OF CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT OF 1986 CHEMICALS KNOWN TO THE STATE TO CAUSE CANCER OR REPRODUCTIVE TOXICITY November 23, 2018 The Safe Drinking Water and Toxic Enforcement Act of 1986 requires that the Governor revise and republish at least once per year the list of chemicals known to the State to cause cancer or reproductive toxicity. The identification number indicated in the following list is the Chemical Abstracts Service (CAS) Registry Number. No CAS number is given when several substances are presented as a single listing. The date refers to the initial appearance of the chemical on the list. For easy reference, chemicals which are shown underlined are newly added. Chemicals or endpoints shown in strikeout were placed on the Proposition 65 list on the date noted, and have subsequently been removed. Chemical Type of Toxicity CAS No. Date Listed A-alpha-C (2-Amino-9H-pyrido Cancer 26148-68-5 January 1, 1990 [2,3-b]indole) Abiraterone acetate developmental, female, 154229-18-2 April 8, 2016 male Acetaldehyde Cancer 75-07-0 April 1, 1988 Acetamide cancer 60-35-5 January 1, 1990 Acetazolamide Developmental 59-66-5 August 20, 1999 Acetochlor Cancer 34256-82-1 January 1, 1989 Acetohydroxamic acid Developmental 546-88-3 April 1, 1990 2-Acetylaminofluorene Cancer 53-96-3 July 1, 1987 Acifluorfen sodium Cancer 62476-59-9 January 1, 1990 Acrylamide Cancer 79-06-1 January 1, 1990 Acrylamide developmental, male 79-06-1 February
    [Show full text]
  • PAN International List of Highly Hazardous Pesticides
    PAN International List of Highly Hazardous Pesticides (PAN List of HHPs) December 2016 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Pesticide Action Network International Impressum © PAN International c/o PAN Germany, Nernstweg 32, 22765 Hamburg, Germany December, 2016 This 'PAN International List of Highly Hazardous Pesticides' was initially drafted by PAN Germany for PAN International. The 1st version was adopted by PAN International 2008 and published January 2009. Since then the list has been updated several times as classifications changed for numerous individual pesticides. In 2013/2014 the PAN International Working Group on “HHP criteria” revised the criteria used in this list to identify highly hazardous pesticides. This December 2016 version of the list is based on these hazard criteria adopted by PAN International in June 2014. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Contents Background and introduction ................................................................................................. 4 About this List ........................................................................................................................ 8 What is new in this List ........................................................................................................ 10 Work in progress ................................................................................................................
    [Show full text]
  • Appendix B Androgen 07/03 13 DRAFT -- DO NOT CITE OR QUOTE
    Appendix B Androgen 07/03 13 DRAFT -- DO NOT CITE OR QUOTE Appendix B: Mammalian Studies Describing the Effects of Chemicals That Disrupt the Androgen Signaling Pathways 1 | P a g e Appendix B Androgen 07/03 13 DRAFT -- DO NOT CITE OR QUOTE Contents of the Appendix of Studies Describing the Effects of Chemicals That Disrupt the Androgen Signaling Pathways *Numbers of studies reviewed (studies with 6 or more dose groups, total studies examined) B. ANDROGEN SIGNALING PATHWAY B.1 Androgen Receptor Antagonists B.1.a Flutamide (FLU) (2, 9)* B.1.b Vinclozolin (VIN) (4, 8) B.1.c Procymidone (4, 6) B.1.d Fenitrothion (1, 4) B.2 Inhibition of Androgen Synthesis –Phthalates (12, 26) B2.a DEHP - In utero and lactational studies in rats B2.b DBP - In utero and lactational studies in rats B2.c Peripubertal exposure effects of DEHP on male rat reproductive development B2.d Peripubertal exposure effects of DBP on male rat reproductive development B.2.e In utero and lactational exposure effects of DEHP reproductive development in male mice B.3 Inhibition of DHT Synthesis –Finasteride (2, 6) B.4 Hypothesized alteration of the androgen signaling pathway -Semicarbazide (1, 3) B.5 Pesticides that disrupt the Androgen signaling pathway via multiple mechanisms B.5.a Prochloraz (PCZ) (3, 5) B.5.b Linuron (0, 6) B.6 Androgen Receptor Agonists B.6.a Trenbolone (TB) (0, 2) B.6.b Testosterone (12, 13) B.7 Selective Androgen Receptor Modulators (SARMS) (3, 7) B.7.a LGD2226 B.7.b C6 B.7.c LGD-4033 in men B.7.d LGD2226 B.7.e S-101479 B.7.f JNJ-28330835 B.7.g TFM-4AS-1 B.8 Disruption of androgen-dependent tissues via the AhR 2 | P a g e Appendix B Androgen 07/03 13 DRAFT -- DO NOT CITE OR QUOTE B.
    [Show full text]
  • Antiandrogenic Properties of Parabens and Other Phenolic Containing Small Molecules in Personal Care Products
    Toxicology and Applied Pharmacology 221 (2007) 278–284 www.elsevier.com/locate/ytaap Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products Jiangang Chen a, Ki Chang Ahn b, Nancy A. Gee a,c, Shirley J. Gee b, ⁎ Bruce D. Hammock b,d, Bill L. Lasley a,c, a Center for Health and the Environment, University of California, Davis, CA 95616, USA b Department of Entomology, University of California, Davis, CA 95616, USA c California National Primate Research Center, University of California, Davis, CA 95616, USA d Cancer Research Center, University of California, Davis, CA 95616, USA Received 26 January 2007; revised 18 March 2007; accepted 19 March 2007 Available online 27 March 2007 Abstract To identify the androgenic potency of commonly used antimicrobials, an in vitro androgen receptor-mediated transcriptional activity assay was employed to evaluate the androgenic/antiandrogenic activity of parabens and selected other antimicrobials containing a phenolic moiety. This cell- based assay utilizes a stably transfected cell line that lacks critical steroid metabolizing enzymes and is formatted in a 96-well format. At a concentration of 10 μM, methyl-, propyl- and butyl-4-hydroxybenzoate (parabens) inhibited testosterone (T)-induced transcriptional activity by 40%, 33% and 19%, respectively (P<0.05), while 4-hydroxybenzoic acid, the major metabolite of parabens, had no effect on T-induced transcriptional activity. Triclosan inhibited transcriptional activity induced by T by more than 92% at a concentration of 10 μM, and 38.8% at a concentration of 1.0 μM(P<0.05). Thirty-four percent of T-induced transcriptional activity was inhibited by thymol at 10 μM(P<0.05).
    [Show full text]
  • 1 in Addition to the 19 Constituents FDA Proposes to Add to the List Of
    In addition to the 19 constituents FDA proposes to add to the list of Harmful and Potentially Harmful Constituents, FDA should also add compounds that may be carcinogenic or cause pulmonary or cardiovascular harms when inhaled, especially oils and chemicals and chemical classes found in e-cigarette flavorants, and FDA should use as additional criteria California’s Proposition 65 list of carcinogens and reproductive toxicants and the California Air Resources Board’s list of Toxicant Air Contaminants UCSF TCORS Lauren K. Lempert, JD, MPH; Gideon St.Helen, PhD; Jeff Gotts, MD; Shannon Kozlovich, PhD; Matthew Springer, PhD; Bonnie Halpern-Felsher, PhD; Stanton A. Glantz, PhD Docket No. FDA-2012-N-0143 October 2, 2019 FDA is proposing to add the following 19 toxicants that may be found in tobacco products, including electronic cigarettes, to the list of HPHCs: acetic acid, acetoin, (also known as 3-hydroxy-2-butanon3), acetyl propionyl (also known as 2,3-pentanedione), benzyl acetate, butyraldehyde, diacetyl, diethylene glycol, ethyl acetate, ethyl acetoacetate, ethylene glycol, furfural, glycerol, glycidol, isoamyl acetate, isobutyl acetate, methyl acetate, n-butanol, propionic acid, propylene glycol. (These constituents are shown in Table 1 of FDA’s Notice and Request for Comments.) We support adding these 19 toxicants to the HPHC list. The proposed list, however, omits several important toxicants delivered by new products, notably e-cigarettes and heated tobacco products. In addition to the 19 toxicants FDA proposed, the list should be expanded to include other important toxicants and chemical classes delivered by these products. It its especially important for FDA to update the HPHC list to take into account the ingredients, additives, and smoke and aerosol constituents in e- cigarettes and other newly deemed tobacco products (including cigars, hookah, and heated tobacco products such as IQOS) that will likely be included in PMTAs filed in the coming months.
    [Show full text]
  • New EU Criteria for Endocrine Disrupters Consequences for the Food Chain
    New EU criteria for endocrine disrupters Consequences for the food chain New EU criteria for endocrine disrupters TemaNord 2018:537 New EU criteria for endocrine disrupters ISBN 978-92-893-5685-5 (PRINT) ISBN 978-92-893-5686-2 (PDF) ISBN 978-92-893-5687-9 (EPUB) http://dx.doi.org/10.6027/TN2018-537 TemaNord 2018:537 ISSN 0908-6692 Standard: PDF/UA-1 ISO 14289-1 © Nordic Council of Ministers 2018 Cover photo: Shutterstock Print: Rosendahls Printed in Denmark Disclaimer This publication was funded by the Nordic Council of Ministers. However, the content does not necessarily reflect the Nordic Council of Ministers’ views, opinions, attitudes or recommendations. Rights and permissions This work is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) https://creativecommons.org/licenses/by/4.0 Translations: If you translate this work, please include the following disclaimer: This translation was not pro- duced by the Nordic Council of Ministers and should not be construed as official. The Nordic Council of Ministers cannot be held responsible for the translation or any errors in it. Adaptations: If you adapt this work, please include the following disclaimer along with the attribution: This is an adaptation of an original work by the Nordic Council of Ministers. Responsibility for the views and opinions expressed in the adaptation rests solely with its author(s). The views and opinions in this adaptation have not been approved by the Nordic Council of Ministers. Third-party content: The Nordic Council of Ministers does not necessarily own every single part of this work.
    [Show full text]