The North Sea Storm Surge Atlas

Total Page:16

File Type:pdf, Size:1020Kb

The North Sea Storm Surge Atlas The North Sea Storm Surge Atlas Performance assessment and uncertainty analysis Jurgen Klein February 2015 The North Sea Storm Surge Atlas Performance assessment and uncertainty analysis Master thesis Civil Engineering and Management Faculty of Engineering Technology University of Twente Author: Jurgen Klein Location and date: Amersfoort, February 26, 2015 Exam committee: Graduation supervisor Prof. dr. S.J.M.H. Hulscher University of Twente Daily supervisor Dr. ir. P.C. Roos University of Twente External supervisors Dr. ir. M. Van Ledden Royal HaskoningDHV Ir. N.J.F. Van den Berg Royal HaskoningDHV Dr. ir. H.W. Van den Brink Royal Dutch Meteorological Institute Abstract Current storm surge forecasting is often carried out by detailed real-time computer modeling. These models are accurate, but also have long calculation times. Also, the forecast horizon is short and the possibilities for scenario assessment are limited. For safety issues, such as the operation of storm surge barriers, as well as for shipping, forecasting on the mid-term (4-10 days ahead) is important. In 2014, a North Sea Storm Surge Atlas was developed by Royal HaskoningDHV, KNMI and Deltares, which uses a new and innovative method to predict storm surges in the North Sea area. As such, it provides quick insight of storm surges for five to ten days ahead, based on a large offline database of predefined and pre-calculated storms, rather than performing all calculations real-time. Currently, a pilot version of the North Sea Storm Surge Atlas is operational. Parallel to the operational method of the Storm Surge Atlas, another method to use the database for storm surge forecasting is developed. This research focuses on the validation and uncertainty identification of two possible methods for the North Sea Storm Surge Atlas. This is done by hindcasting 33 historical storms and comparing these simulations to observed water levels. The Storm Surge Atlas uses an EOF analysis to decompose pressure fields in to time coeffi- cients (principal components) of derived spatial patterns (EOFs). With this method, a pressure field can be described by 50 principal components, rather than over 2000 grid points. The first method (A - resampling) is based on comparing the principal components of pressure fields of a weather forecast to those of the pressure fields in the database. When the best matching pres- sure is found, the corresponding pre-calculated storm surge is retrieved and used as a forecast of the storm surge. The matched storm surges for every pressure field in the weather forecast are concatenated to make a storm surge forecast for several days. The second method (B - regression) uses a multiple linear regression model. The direct correlation between the principal components of the pressure fields in the database and the pre- calculated surges is used for the regression. To forecast the storm surge from a forecasted pressure field, the regression coefficients are multiplied with the principal components of the forecasted pressure field. To assess the performance of both Storm Surge Atlas methods A and B, 33 historical storms have been selected and hindcasted and compared to observed water levels. The performance assessment is done for 11 locations, of which 6 are located at the North Sea coast of the United Kingdom and 5 at the Dutch coast. A comparison between method A and B is then made for the performance on peak water level, duration of the storm water level and timing of the peak. In general, the results show that method A performs slightly better than method B. When looking more in-depth to the results of peak water levels, we see that method A has a more structural underestimation with less variability, whereas method B has a larger variability in i under- and overestimation. At Hoek van Holland the Storm Surge Atlas performs rather well. Heavy storms as in De- cember 1999 and December 2013 are underestimated by method A, whereas method B is better able to predict the storm surge. However, in other situations method B has much larger devia- tions. At this location also simulated water levels made by the state-of-the-art numerical model WAQUA are available (using the same input data). This model is also used to build the database of pre-calculated storm surges. Method A performs better at Hoek van Holland compared to the WAQUA simulations, although a systematic underestimation (bias) of 12 centimeters is found. The next step in this research is the identification and classification of different sources of uncertainty in methods A and B in the Storm Surge Atlas. A list of uncertainties is made and several of these sources are assessed for their sensitivity regarding the performance of the Storm Surge Atlas. From this analysis, it is found that method A can be improved by including the barometric average of the pressure field in finding the best match. Also, improvements are found when the database is enlarged. Last, improvement is found when no smoothening function is used. This smoothening function corrects for any discontinuities in the concatenated storm surge. This indicates that the peak storm surge is quite influenced by any bad matches prior to the peak water level. It can be concluded that the North Sea Storm Surge Atlas is able to hindcast historical storm surges quite well, with large time savings compared to real-time modeling. The North Sea Storm Surge Atlas can be a valuable addition in the field of storm surge forecasting, e.g. for scenario analysis, quick assessments of possible developments of a storm. It is recommended to use Storm Surge Atlas method A (resampling) as basis for further development. Further improvement of the Storm Surge Atlas may be found by including the pressure gradients or wind fields in the matching with the database. Furthermore, a coupling of a parameterization of extra-tropical storms and the Storm Surge Atlas may provide additional information in finding a matching storm in the database. ii Preface This thesis is the final part of my master Civil Engineering and Management at the University of Twente. The thesis focuses on a performance assessment and uncertainty analysis of the North Sea Storm Surge Atlas. The North Sea Storm Surge Atlas is a new and innovative way of storm surge forecasting, developed by Royal HaskoningDHV, in collaboration with KNMI and Deltares. Writing this preface marks the end of a great and very interesting period. I worked with great pleasure on the subject and learned a lot about meteorology in combination with hydrodynamics. In the beginning I had to put a lot of effort in learning Python, Fortran, LATEX and of course refreshing MATLAB, but in the end it paid off and I really enjoyed it. First, I would like to thank all my supervisors. To start with Mathijs for his enthusiasm and interesting ideas and discussions during my graduation project. Thank you Niels, for all your help on daily basis and your hands-on tips and tricks. Henk, thank you for all your feedback and good ideas, I really enjoyed our meetings at KNMI. Pieter, you were the one who tipped me about this topic and this graduation project. Thank you for this and all your feedback and motivation in past months. Suzanne, thank you for your critical view and questions during our meetings. I am very grateful to have worked at Royal HaskoningDHV during this graduation project. It was great to work with so many interesting and smart people around me and I want to thank all my colleagues in who helped me and gave me a great time. The winners certificate of `Wie is de Mol' in Utrecht still hangs proudly on the wall! Special thanks to Erwin, who helped me during the difficult start of the project to get the Storm Atlas working. Last, but not least, I would like to thank all my family, friends and fellow master students for their support and the great time during my years at the university! Jurgen Klein Amersfoort, February 26, 2015 iii iv Contents Abstract i Preface iii 1 Introduction 1 1.1 Storms surge forecasting . .1 1.2 North Sea Storm Surge Atlas . .2 1.3 Research objective and research questions . .2 1.4 Research methodology . .3 1.5 Report outline . .4 2 Storms, storm surges and storm surge forecasting 5 2.1 Introduction . .5 2.2 The development of a storm . .5 2.3 The development of a storm surge . .7 2.4 Current storm surge forecasting . .9 3 The North Sea Storm Surge Atlas 13 3.1 Introduction . 13 3.2 Building the database of pre-calculated storm surges . 14 3.3 Description of pressure fields by EOF analysis . 16 3.4 Method A - resampling from database . 18 3.5 Method B - multiple linear regression . 23 4 Storm Atlas performance 29 4.1 Introduction . 29 4.2 Performance indicators . 29 4.3 Selection of locations . 32 4.4 Selection of historical storms . 34 4.5 Data selection . 34 4.6 Validation . 36 v 4.7 Comparison of methods A and B . 47 5 Uncertainty analysis 49 5.1 Introduction . 49 5.2 Identification and classification of sources of uncertainty . 49 5.3 Overview of classification of uncertainties . 55 5.4 Prioritization of sources of uncertainty . 57 6 Discussion 59 6.1 Performance assessment methodology . 59 6.2 Performance of the Storm Atlas compared to real-time models . 62 6.3 Method A - resampling . 62 6.4 Method B - regression . 62 7 Conclusions and recommendations 63 7.1 Conclusions . 63 7.2 Recommendations . 65 Bibliography 67 Appendices 71 A EOF analysis 71 A.1 Introduction . 71 A.2 Preprocessing . 72 A.3 Finding the Empirical Orthogonal Functions (EOFs) .
Recommended publications
  • Maeslant Barrier
    Technical report Maeslant barrier Alternative solution for the upgrading of the Maeslant barrier Jonas Riteco (4167759) 16. January 2017 Prof. Dr. Ir. Jonkman, S.N. Research project Ir. Molenaar, W.F. Fallsemester 2016 Cover Closed Maeslant Barrier, Bird’s eye view Source: Beeldbank Rijkswaterstaat https://beeldbank.rws.nl/MediaObject/Details/Luchtfoto_van_de_gesloten_Maeslantkering_ in_de_nieuwe_Waterweg_nabij_Hoek_van_Holland_158813 Date: 17.10.2016 TU Delft - Project work Alternative solution Maeslant barrier Preface I am an exchange student from the Swiss Federal Institute of Technology in Zürich (ETH). Part of the master program at the ETH is writing an additional thesis in each study direction you are following. This is therefore the report to my project for hydraulic engineering. The goal of this thesis is to demonstrate the ability to use all the knowledge gathered in the last years and to perform research at an academic level. The aim of this research is to investigate alternative solutions for the upgrading of the Maeslant barrier. Based on the experience about the Ramspol barrier an alternative design with an inflatable rubber barrier is worked out. I like to use the opportunity to thank my supervisor ir. Wilfred Molenaar for his support. Jonas Riteco, Delft, January 2017 TU Delft - Project work Alternative solution Maeslant barrier I Abstract The Maeslant barrier was the final piece of the Delta works which protects a large area of the Netherlands. However the present barrier seems to fulfil his function, several Dutch experts have doubts about the system. However the discussion on the Maeslant barrier not being safe enough refers mostly to future scenarios. Experts expect that the barrier already will not pro- vide enough protection from storm surges as of 2070.
    [Show full text]
  • NO CALM BEFORE the STORM a Landward Coastal Defence Alternative in the Westland As Guide for New Spatial Developments
    NO CALM BEFORE THE STORM A landward coastal defence alternative in the Westland as guide for new spatial developments Judit Bax Graduation thesis Urbanism, Delft Uni- versity of Technology in cooperation with the Rijkswaterstaat National Institute for Coastal and Marine Management /RWS RIKZ. June 2005 No calm before the storm | Judit Bax 1 2 No calm before the storm | Judit Bax NO CALM BEFORE THE STORM A landward coastal defence alternative in the Westland as guide for new spatial developments Judit Bax Graduation thesis Urbanism, Delft University of Technology In cooperation with the Rijkswaterstaat National Institute for Coastal and Marine Management /RWS RIKZ June 2005 supervisors ir. Inge Bobbink Landscape architecture prof. ir. Joost Schrijnen City and region ir. Willem Hermans Urban design drs. Moniek Löffler RWS RIKZ external examiner ir. Hein de Haan Urban management and renewal for more information about the author visit http://home.deds.nl/~stormenzand [email protected] No calm before the storm | Judit Bax 3 4 No calm before the storm | Judit Bax Tussen wolken en aarde de tekens: Between clouds and earth the signs: dit waren wij, zijn wij. Kijk maar, this is who we were, who we are. Just look, wij graven land uit het water, we dig land from the water, stapelen stenen tot torens, stack stones to towers, onze blik laat geen ruimte met rust. our view leaves no space alone. Aan de rafelige rand van ons blikveld At the frayed edge of our horizon, raakt het oog nog vluchtig verleden: the eye catches the past still briefly: het scheve hek, de vergeten the leaning fence, the forgotten wan in de graanschuur, het muntgeld winnow in the granary, the coins met het scheepswrak mee opgegraven, dug up with the wrecked ship, de gebroken boog van de brug.
    [Show full text]
  • 'Lothar Successor' - the Forgotten Storm After Christmas 1999
    Phenomenological examination of 'Lothar Successor' - the forgotten storm after Christmas 1999 by F. Welzenbach Institute for Meteorology and Geophysics Innsbruck 04 April 2010, preliminary version Abstract The majority of scientific research to the notorious storms in December 1999 focuses on 'Lothar' and 'Martin' causing most of the damage to properties and fatalities in Central Europe. Few studies have been performed in the framework of the passage of storm 'Lothar Successor' (introduced in a case study of the Manual of synoptic satellite meteorology featured by ZAMG) between these two events being responsible for some gusts in exceed of 90 km/h between Northern France, Belgium and Southwestern Germany. The present study addresses to the phenomenology and possible explanations of that secondary cyclogenesis just after the passage of 'Lothar' and well before the arrival of 'Martin'. Facing different theories and findings in several papers it will be shown that the storm possessed a closed circulation and a fully developed frontal system. That key finding is especially in contrast to the analysis of the German Weather Service which suggested that solely a 'trough line' crossed Germany. The point whether a warm or a cold conveyor belt cyclogenesis produced the storm could not be entirely clarified. Finally, reasons are given for which 'Lothar Successor' had not become a 'second Lothar', amongst others the unfavourable position between two jetstreams with lack of sufficient cyclonic vorticity advection. 1. Introduction The motivation for reviewing the events from late December 1999 is mainly due to personal experience between the passage of 'Lothar' (26.12.1999) and 'Martin' (28.12.1999) in Lower Franconia close to Miltenberg (at the river Main between Frankfurt and Wuerzburg).
    [Show full text]
  • Climate Change Impact Assessment and Adaptation Under Uncertainty
    Climate change impact assessment and adaptation under uncertainty Arjan Wardekker 2011 1 Research presented in this thesis was carried out at the Department of Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht, The Netherlands, and at the Information Services and Methodology Team (IMP), Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands. Copyright © 2011, Arjan Wardekker. All rights reserved. Cite as: Wardekker, J.A. (2011). Climate change impact assessment and adaptation under uncertainty. PhD dissertation. Utrecht University, Utrecht. (for the journal-published chapters (3-6), preferably cite the journal articles) Cover design: Filip de Blois (based on an idea by Arjan Wardekker). Globe image used: “The Blue Marble” (2002 east version) by NASA. Printed by: Proefschriftmaken.nl || Printyourthesis.com. ISBN: 978-90-8891-281-8. 2 Climate change impact assessment and adaptation under uncertainty Effectbeoordeling en aanpassing aan klimaatverandering onder onzekerheid (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 15 juni 2011 des ochtends te 10.30 uur door Johannes Adrianus Wardekker geboren op 5 September 1981 te Amersfoort 3 Promotor: Prof.dr. W.C. Turkenburg Co-promotoren: Dr. J.P. van der Sluijs Prof.dr. A.C. Petersen Dit proefschrift werd mede mogelijk gemaakt met financiële steun van het Planbureau voor de Leefomgeving (PBL) en nationaal onderzoeksprogramma Klimaat voor Ruimte. The research presented in this thesis has been made possible through the financial support of the Netherlands Environmental Assessment Agency (PBL) and national research programme Climate changes Spatial Planning.
    [Show full text]
  • Advies Deltaprogramma Rijnmond-Drechtsteden Stuurgroep Rijnmond-Drechtsteden Colofon
    Deltaprogramma | Rijnmond-Drechtsteden Advies Deltaprogramma Rijnmond-Drechtsteden Stuurgroep Rijnmond-Drechtsteden Colofon Dit is een uitgave van Deltaprogramma | Rijnmond-Drechtsteden Uitgevoerd door Programmateam Rijnmond-Drechtsteden: Ministerie van Economische Zaken Ministerie van Infrastructuur en Milieu Provincie Zuid-Holland Hoogheemraadschap van Schieland en de Krimpenerwaard Havenbedrijf Rotterdam Gemeente Dordrecht Gemeente Rotterdam Omslag: De Urbanisten, D.EFAC.TO. Afbeeldingen: Alle afbeeldingen zijn van De Urbanisten en D.EFAC.TO. behalve: - naast Inhoud: Theo Bos - Deltabeslissing Rijn-Maasdelta (p.3): Delta-Atelier - Sterke urbane dijken (p.8), Toekomstbestendige Rivierdijken (p.10): Marijn Kik - Hoogwater buitendijks in Rotterdam op 6 december 2013 (p.14) - Dijkversterking aan de Lek (p.16): Theo Bos - Adaptatiepad voorkeursstrategie waterveiligheid Rijnmond-Drechtsteden (p.17): Delta-Atelier - Inlaatpunt Gouda (p.22-23): Desiree Bokma - Glazen Bollen (p.24): Suzan Fotografie - Architectuur Biënnale, Making Cities, 2012 (p.27): Marijn Kik - Dag van de kansrijke Strategie (p.28): Sylvia de Hoog Opmaak: Fred Sophie (nxix) Kijk voor meer informatie op: www.deltacommissaris.nl Juni 2014 VI Deltaprogramma | Rijnmond-Drechtsteden Deltaprogramma | Rijnmond-Drechtsteden Advies Deltaprogramma Rijnmond-Drechtsteden Stuurgroep Rijnmond-Drechtsteden Advies Deltaprogramma Rijnmond-Drechtsteden I Voorwoord Voor u ligt het advies van het Delta- Rijnmond-Drechtsteden. De Stuurgroep programma Rijnmond-Drechtsteden. Rijnmond-Drechtsteden heeft in de daaropvolgende jaren verder onderzoek In opdracht van de toenmalige staatsecre- gedaan naar de specifi eke opgave en taris van het ministerie van Verkeer en mogelijke oplossingen. Daarbij is intensief Waterstaat en van de minister van samengewerkt met Rijk, regionale over- Volkshuisvesting, Ruimtelijke Ordening heden, kennisinstellingen, belangen- en Milieu startt en wij als Stuurgroep organisaties, ondernemers, ontwerpers, Rijnmond-Drechtsteden in 2009 met onze een wetenschappelijke refl ectiegroep werkzaamheden.
    [Show full text]
  • The Economics of Flood Prevention, a Dutch Perspective1
    CPB Background Document / CPB Achtergronddocument Keynote address by Free Huizinga of a symposium in Houston on flood management. The symposium was organized by the governor of Texas, Texas A&M University, The Royal Netherlands Embassy and 'Bouwend Nederland'. Keynote lezing door Free Huizinga op een symposium in Houston over water veiligheid georganiseerd door de gouverneur van Texas, Texas A&M University, de Nederlandse ambassade en Bouwend Nederland. The economics of flood prevention, A Dutch perspective1 Frederik Huizinga June 2012 1 This lecture was the keynote address at events hosted by the Flood Executive Committee in Norfolk, Virginia, on June 25, 2012, and by The Bay Area Houston Economic Partnership in Houston, Texas, on June 28, 2012. For correspondence write to: Frederik Huizinga, CPB Netherlands Bureau for Economic Policy Analysis, P.O. box 80510, The Hague, The Netherlands. Tel +31 70 3383 380. Web address www.cpb.nl 1 1 Overview Ladies and gentlemen, thank you very much for this invitation to talk to you about one of my favorite subjects, namely water. I feel very honored to speak to such a distinguished audience in this wonderful place right on the waterfront. In my talk I will tell you mostly about the Dutch experience. In the discussion afterwards we may compare notes and see how we both may benefit from each other’s experiences. The figure below illustrates the Dutch issue in a nutshell. Figure 1.1 Geography of The Netherlands The blue part of The Netherlands on the left is in danger of flooding, containing 55% of the country. 26% of the country lies below sea level.
    [Show full text]
  • Achterlandstudie Maeslantkering
    Achterlandstudie Maeslantkering Hoofdrapport RWS-ZH/AP/2006/04 40814081 Maeslant_Rapport.inddMaeslant_Rapportapport.ind.indd2d 2 10-10-2006-10-2006 10:20:10:20:0707 Achterlandstudie Maeslantkering Hoofdrapport 15 oktober 2006 ir. W. Bijl rapport RWS-ZH/AP/2006/04 ISBN 90-369-4823-1 40814081 Maeslant_Rapport.inddMaeslant_Rapport.indndd 1 10-10-2006 12:10:33:10:33 40814081 Maeslant_Rapport.inddMaeslant_Rapport.indapport.indd2d 2 10-10-2006 12:10:312:10:33 Inhoudsopgave . 1 Inleiding 5 1.1 Wettelijke verplichting 5 1.2 Achterlandstudie 5 1.3 Scenario’s 6 1.4 Betrokken partijen 7 1.5 Leeswijzer 8 2. Effect op hydraulische randvoorwaarden 9 3. Effect op waterkeringen 13 3.1 Inleiding 13 3.2 Afbakening en methodiek 14 3.2.1 Algemeen 14 3.2.2 Toetssporen 14 3.2.3 Studiegebied 18 3.3 Resultaten 20 3.3.1 Aannames en uitgangspunten 20 3.3.2 Beoordeling dijkvakken 21 3.3.3 Beoordeling kunstwerken 24 4. Effect op buitendijkse gebieden 27 5. Eindoordeel toetsing 29 Referenties 35 3 Achlddhterlandstudie Maes lant kering: Hoo fdrapport 40814081 Maeslant_Rapport.inddMaeslant_Rapport.inddndd 3 10-10-2006 12:10:312:10:33 4 Achterlandstudie Maeslantkering: Hoofdrapport 40814081 Maeslant_Rapport.inddMaeslant_Rapport.indapport.indd4d 4 10-10-2006 12:10:3:33 1. Inleiding . 1.1 Wettelijke verplichting Uit de huidige, tweede toetsronde van de primaire waterkeringen in het kader van de Wet op de Waterkering is gebleken dat de Maeslant- en Hartelkering – de beweegbare onderdelen van de Europoortkering – beide niet voldoen aan hun technische betrouwbaarheidseis [Arcadis, 2006a, 2006b]. Met name de eis met betrekking tot de kans op niet-sluiten wordt niet gehaald 12.
    [Show full text]
  • Budgeting Water Resources Integrated Water Management from the Treasurer’S Perspective
    Budgeting water resources Integrated water management from the treasurer’s perspective 2 Master Thesis: Jesse van Leeuwen Graduation committee: Prof. dr. ir. N.C. van de Giesen Dr. ir. P.J. van Overloop Dr. R.R. Negenborn Dr. ir. J.S. Timmermans Delft University of Technology February 2011 3 4 Preface The following thesis is the final component of a long academic journey. This journey started in Wageningen and is about to end in Delft. In and outside my studies, I have met many interesting people. Some of who have become very dear to me. A lot of interesting lessons were learned along the way. It has taught me much about what I like and perhaps even more about what I do not like. In this section I want to take the opportunity to thank: - God: for coming so that I may have life, and have it to the full (John 10:10). - Peter-Jules: for providing an interesting thesis topic, for guiding me in the process of conducting proper research and for giving me the freedom to focus on what I found interesting. - Suzanne: for listening, giving her thoughts and for sharing her beauty with me. - Mirjam en Tamar: for barging into our lives and being Mirjam and Tamar. - My family and friends: for their support and interest. 5 6 Summary In this thesis, the concept of water budgeting is discussed. This concept is based on a comparison between water resources and financial resources. It aims to approach water resources management problems more like a treasurer would. Water resources can be distributed in such a way as to optimise the chance of achieving a desired goal.
    [Show full text]
  • Leggerdocument Dijkringverbindende Waterkeringen Zuid-Holland
    LEGGERDOCUMENT DIJKRINGVERBINDENDE WATERKERING STORMVLOEDKERINGNIEUWE WATERWEG/EUROPOORT Inhoud 1 Inleiding __________________________________________________________________ 3 1.1 Aanleiding ______________________________________________________________ 3 1.2 Leeswijzer ______________________________________________________________ 3 2 Werkwijze __________________________________________________________________ 4 2.1 Kern- en (buiten)beschermingszone ________________________________________ 4 2.2 Leggerdwarsprofielen ____________________________________________________ 5 2.3 Leggerlengteprofielen ____________________________________________________ 6 3 Kering 8, Stormvloedkering Nieuwe Waterweg / Europoort _____________________________ 7 3.1 Beschrijving kering_______________________________________________________ 7 3.2 Aanwezige constructieve elementen ________________________________________ 8 3.3 Kern- en (Buiten)Beschermingszone ________________________________________ 8 3.4 Leggerdwars- en lengteprofielen __________________________________________ 10 4 Literatuur ___________________________________________________________________ 10 Kenmerk 073916515:B 2 LEGGERDOCUMENT DIJKRINGVERBINDENDE WATERKERING STORMVLOEDKERINGNIEUWE WATERWEG/EUROPOORT HOOFDSTUK 1 Inleiding 1.1 AANLEIDING Binnen het beheersgebied van Rijkswaterstaat dienst Zuid-Holland worden verschillende dijkringverbindende waterkeringen (DVK) onderscheiden. Het betreffen de volgende primaire waterkeringen van de categorie B: Kering 8: Stormvloedkering Nieuwe Waterweg
    [Show full text]
  • “The Netherlands Water Country” “Tipping Points” in Water Policy and Management
    The Climate Proofness of “the Netherlands Water Country” “Tipping points” in water policy and management Jaap Kwadijk, Marjolijn Haasnoot, Marco Hoogvliet, Ad Jeuken, Rob van de Krogt, Niels van Oostrom, Harry Schelfhout, Emiel van Velzen, Marcel de Wit (Deltares). Harold van Waveren, Theo Vulink, Neeltje Kielen (Rijkswaterstaat). Cause for concern Studies into the effects of climate change usually take climate scenarios as their starting point. In this Deltares/Rijkswaterstaat study we started at the opposite end of the effect chain and examined whether, and for how long, current water management will continue to be effective. This has shown, for instance, that climate change and the rise in sea level are more likely to cause a threat to the freshwater provision in the West of the Netherlands than to cause a threat from flooding. Also, environmental management that aims at maintaining certain species is not feasible in a changing climate. These are a few of the results thrown up by the research by Deltares into the consequences of climate change for Dutch water management. The results have been used by the Delta Commission, which in the Netherlands launched an advise to the national government about how to cope rising sealevel and climate change for the next 100 years. Introduction Adaptation of the water system to a changing climate is the primary focus of low-lying Deltas like the Netherlands. Even with the most far-reaching restriction on the worldwide production of greenhouse gasses, the climate will change in the course of the coming century and the sea level will continue to rise.
    [Show full text]
  • Pilot Flood Protection Hollandsche Ijssel
    Pilot Flood Protection Hollandsche IJssel A Practice Brief from the Interreg North Sea Region FAIR project June 2020 Courtesy RWS, mediatheek. Preface The FAIR project The FAIR results FAIR brings together flood protection asset The demonstration and subsequent widespread owners, operating authorities and researchers implementation of the improved approaches and from across the North Sea Region (NSR) to share techniques will reduce the probability of flooding the policy, practice and emerging science of asset and minimise the impact of floods across the management. Despite the diverse character of North Sea Region. This will improve the climate the NSR, asset managers face common challenges resilience at target sites covering most of the NSR. across the region. ‘Target sites’ are those areas being protected by entire flood protection systems (e.g. Danish coast, The FAIR project aims to develop and implement Swedish Coast, Flemish Coast, Dutch Delta) and improved approaches for asset management of individual assets (e.g. Hollandse IJssel storm barrier, flood protection infrastructure. It will optimise Hamburg flood gates, etc). investment planning by exploring mainstreaming of these investments with other policy domains, The result indicators for the FAIR project are: and by mapping planned investments across a wide portfolio of flood protection assets. FAIR will 1. Reduce the life cycle costs of flood also identify cost-optimal adaptive infrastructure protection infrastructure through better upgrades by exploring a variety of technical targeting of investment; designs, with adaptability and life cycle costing for various performance levels. 2. Encourage the multi functionality of flood protection infrastructure through mainstreaming (that is, connecting) investments with other policy objectives; This Practice Brief 3.
    [Show full text]
  • A Summary of Flooding Events in Boston
    1810 flooding (4-10 fatalities) - http://www.lincolnshirelive.co.uk/200-years-flood-end-floods/story-11195470-detail/story.html the text below from the website does mention Fishtoft and Fosdyke as areas that were affected: "AS many as 10 people may have died during the great flood of 1810, which engulfed the area in the pitch black of night and without warning. The total loss of life has only now been revealed, following research into archived material. Historian Hilary Healey has researched the incident and uncovered details of the deaths, which reveal the body count to be much more than the four believed to have perished. In Fosdyke, a servant girl of farmer Mr Birkett found herself surrounded by the sea in a pasture while milking cows and was washed away. Also in Fosdyke, an elderly woman in the course of the night was washed out of an upper window of her cottage and drowned. At Fishtoft, Mr Smith Jessop, a farmer's son, was drowned while trying to rescue some of his father's sheep. Accounts of the flood are few, but the Stamford Mercury recorded some inquests which may have been held at Boston court. These included a youth, William Green, about 16 years old, who drowned at Fishtoft, another unidentified boy, thought to have been from a fishing boat called the Amber Blay, and John Jackson and William Black, also from a wrecked vessel. Inquests were also held into the deaths of two women from Fosdyke, Esther Tunnard and Ann Burton, drowned by the flood inundating their cottages (one of them may have been the person referred to above).
    [Show full text]