Acoelomorpha: Earliest Branching Bilaterians Or Deuterostomes?

Total Page:16

File Type:pdf, Size:1020Kb

Acoelomorpha: Earliest Branching Bilaterians Or Deuterostomes? Org Divers Evol DOI 10.1007/s13127-015-0239-1 REVIEW Acoelomorpha: earliest branching bilaterians or deuterostomes? Iñaki Ruiz-Trillo1,2,3 & Jordi Paps4 Received: 22 July 2015 /Accepted: 29 September 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The Acoelomorpha is an animal group comprised this long-standing issue. Specifically, we argue for the benefits by nearly 400 species of misleadingly inconspicuous flat- of (1) obtaining additional genomic data from acoelomorphs, worms. Despite this, acoelomorphs have been at the centre in particular from taxa with slower evolutionary rates; (2) the of a heated debate about the origin of bilaterian animals for development of new tools to analyse the data; and (3) the use 150 years. The animal tree of life has undergone major chang- of metagenomics or metatranscriptomics data. We believe the es during the last decades, thanks largely to the advent of combination of these three approaches will provide a defini- molecular data together with the development of more rigor- tive answer as to the position of the acoelomorphs in the an- ous phylogenetic methods. There is now a relatively robust imal tree of life. backbone of the animal tree of life. However, some crucial nodes remain contentious, especially the node defining the Keywords Acoela . Metazoa . Phylogeny . Acoelomorpha . root of Bilateria. Some studies situate Acoelomorpha (and Bilateria Xenoturbellida) as the sister group of all other bilaterians, while other analyses group them within the deuterostomes which instead suggests that the last common bilaterian ances- tor directly gave rise to deuterostomes and protostomes. The resolution of this node will have a profound impact on our Historically—and even today—the Turbellaria domi- understanding of animal/bilaterian evolution. In particular, if nate much of our phylogenetic thinking on the lower acoelomorphs are the sister group to Bilateria, it will point to a Metazoa; hardly any other group of invertebrates has simple nature for the first bilaterian. Alternatively, if been accorded a position of comparable importance or acoelomorphs are deuterostomes, this will imply that they been subjected to so many different interpretations are the result of secondary simplification. Here, we review (Peter Ax, Relationships and phylogeny of the the state of this question and provide potential ways to solve Turbellaria. In The Lower Metazoa. University of Cali- fornia Press, Berkeley, 1963, ed. E. C. Dougherty). * Iñaki Ruiz-Trillo [email protected]; [email protected] The phylum Acoelomorpha 1 Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Acoelomorpha is a group of bilaterally symmetric animals 08003 Barcelona, Catalonia, Spain with an apparent morphological simplicity: they lack body 2 Departament de Genètica, Universitat de Barcelona, Av. Diagonal, cavities, corporal segmentation, circulatory and respiratory 645, 08028 Barcelona, Catalonia, Spain systems, nephridia or protonephridia and larval stages, and 3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig their digestive system only has one opening to the exterior. Lluís Companys, 23, 08010 Barcelona, Catalonia, Spain The Acoelomorpha have been included in the phylum 4 School of Biological Sciences, University of Essex, Colchester, UK Platyhelminthes since it was created (Gegenbaur 1859)and I. Ruiz-Trillo, J. Paps are divided in two major clades: acoels and nemertodermatids. Molecular phylogenies situate Acoelomorpha Platyhelminthes were, at the same time, split in three major as the sister-group to the rest of Bilateria lineages: Acoelomorpha, Catenulida and Rhabditophora and Platyhelminthes as lophotrochozoans (Ehlers 1985). However, it was already pointed out that there were no clear, unequivocal synapomorphies to unite the three The first molecular phylogenies, based on the small subunit groups of Platyhelminthes (for a review, see Haszprunar 1996; ribosomal gene or 18S (18S rRNA), rearranged the main lin- Julian et al. 1986). The sister group relationship of Acoela and eages of the animal tree of life and pointed to a Bnew animal Nemertodermatida (that together form the clade phylogeny^ (Adoutte et al. 2000;PhilippeandTelford2006). Acoelomorpha) was based on somehow stronger arguments. A major change within the Bilateria was the definition of the These included the ciliary rootlet system, a peculiar duet superclades Ecdysozoa (Aguinaldo et al. 1997)and spiral cleavage during the early stages of development, Lophotrochozoa (Halanych et al. 1995). Ecdysozoa included lack of nephridia, well-defined guts and through-gut, all animals whose body is encapsulated by an external cuticle even though the lack of complex structures could be a that undergoes moulting (ecdysis) (Aguinaldo et al. 1997). plesiomorphic feature (Achatz et al. 2012). There are, as Lophotrochozoa united animals with no clear morphological well, some important morphological differences be- synapomorphies (as the name indicates, some sport a feeding tween these two groups of worms, the acoels and the structure called lophophore, others a trochophore larvae, nemertodermatids. For example, acoel sperm has two others none of these) (Halanych et al. 1995). Other authors flagella and their statocyst bear single lithocyte, while have used the term Spiralia to group some or all the members nemertodermatid sperm has a single flagellum and their of the Lophotrochozoa, based on the idea that the last common statocysts hold two lithocytes. An in depth description ancestor or the group likely displayed spiral cleavage during of the morphology of acoelomorphs has been recently development; however, this trait is not present in all the mem- published by Achatz et al. (2012). bers of the clade and displays homoplasy as result of second- Despite the absence of clear synapomorphies to unite ary simplification (for a review, see (Giribet 2008). acoelomorphs and the rest of flatworms, most morphological The first 18S rRNA molecular phylogeny including a phylogenetic studies positioned Acoelomorpha within flatworm situated Platyhelminthes as the earliest branching Platyhelminthes, which appeared in different positions within bilaterians (Field et al. 1988). This result was reproduced in Metazoa, usually within Protostomia (Fig. 1a, see references more recent analyses (Winnepenninckk et al. 1995). This in Baguñà and Riutort 2004a). However, Haszprunar placed supported the classical morphological view placing Acoelomorpha as the sister lineage to the rest of Bilateria Platyhelminthes as the sister group to the rest of Bilateria, (Haszprunar 1996) (Fig. 1b). In particular, Platyhelminthes and suggested an acoelomate-to-coelomate ladder-like evolu- was suggested to be a paraphyletic assemblage with tion in bilaterians. The results, however, had to be taken with Acoelomorpha as the earliest branching clade, followed by caution, since the 18S rRNA sequences of Platyhelminthes Rhabditophora, then Catenulida, and then the rest of showed remarkably long-branches, indicating that they had Bilateria. This scenario is reminiscent of the planuloid- higher rates of nucleotide substitution than other metazoans acoeloid hypothesis supported by Von Graff (Graff 1882) (Winnepenninckk et al. 1995). At that time, the Blong-branch and Hyman (Hyman 1940), in which an acoel-like flatworm attraction artefact^ (LBA) had been already described, in was suggested as the first bilaterian animal. In any case, the which taxa with longer branches tend to artifactually group dominating hypotheses situated Acoelomorpha either within together, usually incorrectly, because they cluster closer to the Platyhelminthes or as sister to Rhabditophora, Catenulida and outgroup (Felsenstein 1978). LBA is a pervasive problem in the rest of Bilateria. molecular phylogenies, not just in the ribosomal rRNA genes The possibility that Platyhelminthes, and specially Acoela but also in large phylogenomic datasets, where it often ob- and Nemertodermatida are an offshoot of the first bilaterians, scures the relationships between key taxa. Different ap- is crucial to our view of animal evolution (Baguñà and Riutort proaches to overcome such systematic problems have been 2004b). The planuloid-acoeloid proposal supports a simple suggested in the literature (Anderson and Swofford 2004; last common ancestor of the bilaterians, similar to the planula Bergsten 2005;Papsetal.2009a). Interestingly, in the first larvae of cnidarians, that lacked coelom, segmentation, phylogenetic tree inferred with a wide taxon sampling of though-gut, larval stages and many organ systems. The Platyhelminthes and other animal phyla, Platyhelminthes competing hypothesis is the archicoelomate theory (Sedgwick (without Acoela) appeared related to the Protostomia and not 1884;Jagersten1955), which suggests a rather complex as the earliest-branching bilaterians (Carranza et al. 1997). last bilaterian ancestor with a coelom, through-gut and However, the phylogenetic position of acoels was considered a complex nervous system. Thus, molecular data ap- unreliable by the authors (Carranza et al. 1997), due to LBA. peared as an ideal, independent dataset in which to test Indeed, the only two acoel sequences available at that time had these contrasting hypotheses. even longer branches than those from other Platyhelminthes. Acoelomorpha: earliest branching bilaterians or deuterostomes? Fig. 1 Diverse phylogenetic hypotheses on the
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]
  • Chlorophyta Is a Division of Green Algae, Informally Called
    Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
    Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • Poster Listings
    Posters A-Z Aiyar, Prasad Influence of biotic and abiotic factors on intracellular calcium profile in 53 the green unicellular algae Chlamydomonas reinhardtii Alacid, Elisabet Parasitoid-host interactions: Parvilucifera sinerae killing dinoflagellates, 54 from the cell to the field Alcolombri, Uria Smell of the sea: Identification of the algal dimethyl sulfide releasing 55 enzyme Alexander, Harriet Nutrient pulses uniquely drive physiological ecology of cosmopolitan 56 phytoplankton strains Antoine-Lorquin, Aymeric Logol : Expressive Pattern Matching in sequences 57 Arndt, Hartmut Deep-sea benthic microeukaryotes: A plea for morphological and 58 ecological studies as a necessary addition to metagenomics and a proposal for a concerted study across the oceans Arroyo, Alicia Diversity of the micrometazoan phyla Acoelomorpha in diverse marine 59 environments: a metabarcoding approach Ashworth, Justin Integration, clustering and systems biology of [diatom] transcriptome 60 data Beisser, Daniela Comparative Transcriptome Analysis of 18 Chrysophyceae Species 61 Bellaaj Zouari, Amel Contribution of Chlorophyta and non-Chlorophyta to the picoeukaryotic 62 community in the Gulf of Gabès (Eastern Mediterranean Sea) Page 17 EMBO | EMBL Symposium: A New Age of Discovery for Aquatic Microeukaryotes Bendif, El Mahdi When the Cheshire Cat meets Gaia: puzzling speciation and adaptive 63 patterns in the Gephyrocapsa complex Berdjeb, Lyria Marine eukaryote network revealed by high frequency temporal survey 64 in the San Pedro Ocean Time-Series station Berney, Cédric UniEuk: a universal taxonomic framework and integrated reference gene 65 databases for eukaryotic biology, ecology, and evolution Bhardwaj, Vaibhav Investigating algae-bacteria symbiosis using a vitamin B12 dependent 66 alga Bigalke, Arite Autoinduced cell death of the diatom C.
    [Show full text]
  • The Evolution of Bilaterian Body‐Plan: Perspectives from the Developmental Genetics of the Acoela (Acoelomorpha)
    The evolution of bilaterian body‐plan: perspectives from the developmental genetics of the Acoela (Acoelomorpha) Marta Chiodin ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Summary of Thesis 4
    Contents List of Papers 2 Abstract 3 Introduction 5 Biodiversity – why should we care? 5 Marine meiofauna 6 What are Nemertodermatida 7 General morphology 8 Ultrastructure 8 Historical overview of the taxon 9 Phylogenetic position 11 Classification 12 Methods 13 Sampling 13 Infrastructure and general workflow 14 Fixation 16 Abundance and patchiness 18 Collection effort for this thesis 19 Confocal Laser Scanning Microscopy (CLSM) 20 Principal of CLSM 20 Phalloidin staining of F-actin 21 Immunolabelling of the nervous system 22 Molecular Analyses 24 DNA extraction, amplification & sequencing 25 Data properties 26 Phylogenetic analyses 27 Discussion and future perspectives 27 Literature cited 33 Acknowledgements 39 List of papers Paper I Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013): The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology 132: 239–252. doi:10.1007/s00435-013-0191-6. Paper II Meyer-Wachsmuth I, Curini Galletti, M, Jondelius U (in press): Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLOS One 9: e107688. doi:10.1371/journal.pone.0107688 Paper III Meyer-Wachsmuth I, Jondelius U: A multigene molecular assessment reveals deep divergence in the phylogeny of Nemertodermatida. (Manuscript) Paper IV Raikova OI, Meyer-Wachsmuth I, Jondelius U: Nervous system and morphology of three species of Nemertodermatida (Acoelomorpha) as revealed by immunostainings, phalloidin staining, and confocal and differential interference contrast microscopy. (Manuscript) 2 Abstract Nemertodermatida is a group of microscopic marine worm-like animals that live as part of the marine meiofauna in sandy or muddy sediments; one species lives commensally in a holothurian. These benthic worms were thought to disperse passively with ocean currents, resulting in little speciation and thus wide or even cosmopolitan distributions.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • The Making of a Photosynthetic Animal
    303 The Journal of Experimental Biology 214, 303-311 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.046540 The making of a photosynthetic animal Mary E. Rumpho1,*, Karen N. Pelletreau1, Ahmed Moustafa2 and Debashish Bhattacharya3 1Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA, 2Department of Biology and Graduate Program in Biotechnology, American University in Cairo, New Cairo 11835, Egypt and 3Department of Ecology, Evolution and Natural Resources, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA *Author for correspondence ([email protected]) Accepted 6 August 2010 Summary Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun’s rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ~10months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei.
    [Show full text]
  • Xenoturbella Bocki Exhibits Direct Development with Similarities to Acoelomorpha
    ARTICLE Received 24 Jul 2012 | Accepted 28 Jan 2013 | Published 26 Feb 2013 DOI: 10.1038/ncomms2556 OPEN Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha Hiroaki Nakano1,2, Kennet Lundin3, Sarah J. Bourlat1,4, Maximilian J. Telford5, Peter Funch6, Jens R. Nyengaard7, Matthias Obst1 & Michael C. Thorndyke1,8 Xenoturbella bocki, a marine animal with a simple body plan, has recently been suggested to be sister group to the Acoelomorpha, together forming the new phylum Xenacoelomorpha. The phylogenetic position of the phylum is still under debate, either as an early branching bilaterian or as a sister group to the Ambulacraria (hemichordates and echinoderms) within the deuterostomes. Although development has been described for several species of Acoelomorpha, little is known about the life cycle of Xenoturbella. Here we report the embryonic stages of Xenoturbella, and show that it is a direct developer without a feeding larval stage. This mode of development is similar to that of the acoelomorphs, supporting the newly proposed phylum Xenacoelomorpha and suggesting that the last common ancestor of the phylum might have been a direct developer. 1 Department of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE-451 78 Fiskeba¨ckskil, Sweden. 2 Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan. 3 Go¨teborg Natural History Museum, Box 7283, SE-402 35 Go¨teborg, Sweden. 4 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden. 5 Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
    [Show full text]