Amphimedon Queenslandica

Total Page:16

File Type:pdf, Size:1020Kb

Amphimedon Queenslandica Deciphering the genomic tool-kit underlying animal- bacteria interactions Insights through the demosponge Amphimedon queenslandica Benedict Yuen Jinghao B.MarSt. (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Biological Sciences Deciphering the genomic tool-kit underlying animal-bacteria interactions Abstract All animals are inhabited by bacteria, and maintaining homeostasis in the multicellular environment of the host involves the complex balancing act of promoting the survival of symbionts while defending against intruders. Sponges (Porifera), in addition to housing diverse bacterial symbiont assemblages, also rely on bacteria filtered from the water column for nutrition. My research uses the genome-enabled demosponge, Amphimedon queenslandica, a member of one of the earliest-diverging animal phyletic lineages, as an experimental platform to investigate the genomic toolkit underpinning animal-bacteria interactions. Using comparative bioinformatics tools, I characterised a surprisingly large and complex repertoire of innate immune receptors from the NLR family of genes encoded in the A. queenslandica genome. I then used a high throughput RNAseq approach to profile the sponge’s global transcriptomic response to foreign versus its own native bacteria. Conserved metazoan innate immune pathways were activated in response to both foreign and native bacteria. However, only the native bacteria elicited the expression of a more extensive suite of signalling pathways, involving TGF-β signalling and the transcription factors NF-κB and FoxO. Upregulation of the nutrient sensor AMPK in all treatments along with immune signalling genes, which all regulate FoxO activity, further suggests an interplay between metabolic homeostasis and immunity. Finally, I used microscopy to track the cellular-level processing of the different bacteria by the sponge. Consistent with the observed transcriptional response, the native bacteria were ingested by archaeocytes more rapidly than the foreign bacteria. The slower processing of foreign bacteria also correlated with the expression of numerous Nrf2-associated detoxification genes, indicative of cellular stress, only in response to foreign bacteria. ii Deciphering the genomic tool-kit underlying animal-bacteria interactions Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iii Deciphering the genomic tool-kit underlying animal-bacteria interactions Publications during candidature Peer-reviewed paper Yuen B, Bayes JM, Degnan SM 2015. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol. Biol. Evol. 31(1):106. Conference abstracts Yuen B, Degnan SM 2013. Why does the genome of the sponge, Amphimedon queenslandica encode highly complex and diversified innate immune receptor systems? In: 9th World Sponge Conference: 2013; Fremantle, Western Australia. Yuen B, Degnan SM 2015. Why does the genome of the humble marine sponge, Amphimedon queenslandica, encode the potential for a complex innate immune response? In: The 2nd Annual EMBL Australia PhD Symposium – Completing the pipeline: from biology to bioinformatics and back again: 2015; Melbourne, Victoria. Publications included in this thesis Publication citation – incorporated as Chapter 2. Yuen B, Bayes JM, Degnan SM 2015. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol. Biol. Evol. 31(1):106. Contributor Statement of contribution Benedict Yuen (Candidate) Designed experiments (50%) Data analysis and interpretation (80%) Wrote the paper (90%) Joanne Marie Bayes Designed experiments (20%) Data analysis and interpretation (10%) Sandra M Degnan Designed experiments (30%) Data analysis and interpretation (10%) Wrote and edited paper (10%) iv Deciphering the genomic tool-kit underlying animal-bacteria interactions Contributions by others to the thesis Sandra M. Degnan contributed to the conception and design of this research, advised on methods and analyses, and provided critical comments on the thesis and on the associated publication in Chapter 2 Joanne M. Bayes was also involved in the of Chapter 2 of this thesis. conception and the analysis of 10% of the data – specifically the identification of the clade AqNLRsC . Selene Fernandez Valverde, William Hatleberg and Shunsuke Sogabe produced several of the datasets analysed across this thesis (these contributions are specifically acknowledged in the relevant chapters). Transcriptome sequencing was conducted by the Ramaciotti Centre for Genomics, University of New South Wales, NSW, Australia Statement of parts of the thesis submitted to qualify for the award of another degree None. v Deciphering the genomic tool-kit underlying animal-bacteria interactions Acknowledgements I would like to begin by expressing my heartfelt gratitude to my supervisor, Sandie Degnan, for all the guidance you have given me since I first joined the lab as an Honours student in 2011. Thank you for patiently keeping me on track with encouragement and tough love when it was necessary. My career in science is only just beginning and I could not have picked a better mentor to guide me through the transition from an undergraduate to a post-graduate student. I also wish to thank Bernie Degnan, because I believe this journey began when he sparked my interest in evolution as an undergraduate student in his Marine Invertebrates course back in 2010. I am also grateful for having been given the opportunity to tutor in that same course years later. Thank you both for all the wisdom you have imparted in aspects of both work and life, and for teaching me how to science with rigour and integrity. I wish to thank my co-supervisor Andy Barnes for his advice and also for taking me on as a tutor on the MARS2005 field trips. I’ve had so much fun working with you and the other tutors on Heron, and look forward to one final round this September. I also want to thank my panel of readers Sassan Asgari and Kate Stacey. The frank and honest advice you gave me at each milestone is something I’ve come to greatly appreciate. This project was funded by an Australian Research Council Discovery grant to Sandie Degnan (DP110104601). I also wish to acknowledge the University of Queensland for awarding me the UQ International scholarship that covered my tuition fees and provided me with a stipend so that I would not starve in my quest to further our understanding of the world around us. I would also like to thank Bernie and Sandie for financing my trip to the 9th World Sponge Conference in Fremantle. Thank you also for funding my fieldwork in one of the most magnificently beautiful places on this planet. Doing fieldwork on a remote island is challenging on a good day and nightmarish when the weather is not in your favour. I wish to acknowledge the staff at the Heron Island Research Station for all the support they have provided over the multiple field trips I have undertaken over the years. I have been surrounded by truly intelligent and wonderful colleagues who have made my time learning to science in the Degnan lab immensely enjoyable. I must express my appreciation to the lab members vi Deciphering the genomic tool-kit underlying animal-bacteria interactions who have been so generous with the time they have spent training me and providing technical advice. Special thanks goes out to Kerry, Carmel, Laura, Daniel, Selene, Bec and Will. I wish to thank to wonder woman Kerry for the amazing job that she does keeping the day to day business of the lab running so smoothly. I am grateful to Carmel, the all-knowing oracle, for allowing me to badger her constantly with all manner of science-y questions. Thank you both for helping me get through the CEL-Seq protocol. I am grateful to Laura for her insight and advice over the years, the chats about food and other random things. I’m always going to remember the 90’s dance party on Heron Island. Thank you to Selene and Will for help with the computational stuff and for the precious insight into dealing with large datasets. I am grateful to Daniel who taught me the fundamentals of microscopy and imaging techniques. Thank you Bec for the conversations about microbes. Both of you have helped me put what would otherwise have been abstract data into a meaningful spongy context. A big thank you goes out to all other Degnan Labsters, past and present: Jo, Jaret, Andrew, Jabin, Felipe, Shun, Katia, Fede, Maely, Yasu, Kevin, Claire, Gemma, Markus, Arun, Tahsha, Simone, Eunice, Jake, Mel, Betty, Aude.
Recommended publications
  • Spicule Formation in Calcareous Sponges: Coordinated Expression
    www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Lithistid’ Tetractinellid
    1 Systematics of ‘lithistid’ tetractinellid 2 demosponges from the Tropical Western 3 Atlantic – implications for phylodiversity 4 and bathymetric distribution 1,2 3 4 5 Astrid Schuster , Shirley A. Pomponi , Andrzej Pisera , Paco 5 6 1,7,8 1,8 6 Cardenas´ , Michelle Kelly , Gert Worheide¨ , and Dirk Erpenbeck 1 7 Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, 8 Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 80333 Munich, 9 Germany 2 10 Current address: Department of Biology, NordCEE, Southern University of Denmark, 11 Campusvej 55, 5300 M Odense, Denmark 3 12 Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, 13 Ft Pierce, FL 34946, USA 4 14 Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 15 Warszawa, Poland 5 16 Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Husargatan 17 3, 75123 Uppsala, Sweden 6 18 National Centre for Coasts and Oceans, National Institute of Water and Atmospheric 19 Research, Private Bag 99940, Newmarket, Auckland, 1149, New Zealand 7 20 SNSB-Bayerische Staatssammlung f ¨urPalaontologie¨ und Geologie, Richard-Wagner 21 Str. 10, 80333 Munich, Germany 8 22 GeoBio-CenterLMU, Ludwig-Maximilians-Universitat¨ M ¨unchen, Richard-Wagner Str. 10, 23 80333 Munich, Germany 24 Corresponding author: 1,8 25 Dirk Erpenbeck 26 Email address: [email protected] 27 ABSTRACT PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27673v1 | CC BY 4.0 Open Access | rec: 22 Apr 2019, publ: 22 Apr 2019 28 Background Among all present demosponges, lithistids represent a polyphyletic group with 29 exceptionally well preserved fossils dating back to the Cambrian.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Freshwater Sponges (Porifera: Spongillida) of Tennessee
    Freshwater Sponges (Porifera: Spongillida) of Tennessee Authors: John Copeland, Stan Kunigelis, Jesse Tussing, Tucker Jett, and Chase Rich Source: The American Midland Naturalist, 181(2) : 310-326 Published By: University of Notre Dame URL: https://doi.org/10.1674/0003-0031-181.2.310 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-American-Midland-Naturalist on 18 Sep 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by United States Fish & Wildlife Service National Conservation Training Center Am. Midl. Nat. (2019) 181:310–326 Notes and Discussion Piece Freshwater Sponges (Porifera: Spongillida) of Tennessee ABSTRACT.—Freshwater sponges (Porifera: Spongillida) are an understudied fauna. Many U.S. state and federal conservation agencies lack fundamental information such as species lists and distribution data. Such information is necessary for management of aquatic resources and maintaining biotic diversity.
    [Show full text]
  • Freshwater Sponge Hosts and Their Green Algae Symbionts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Freshwater sponge hosts and their green algae 2 symbionts: a tractable model to understand intracellular 3 symbiosis 4 5 Chelsea Hall2,3, Sara Camilli3,4, Henry Dwaah2, Benjamin Kornegay2, Christine A. Lacy2, 6 Malcolm S. Hill1,2§, April L. Hill1,2§ 7 8 1Department of Biology, Bates College, Lewiston ME, USA 9 2Department of Biology, University of Richmond, Richmond VA, USA 10 3University of Virginia, Charlottesville, VA, USA 11 4Princeton University, Princeton, NJ, USA 12 13 §Present address: Department of Biology, Bates College, Lewiston ME USA 14 Corresponding author: 15 April L. Hill 16 44 Campus Ave, Lewiston, ME 04240, USA 17 Email address: [email protected] 18 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 In many freshwater habitats, green algae form intracellular symbioses with a variety of 29 heterotrophic host taxa including several species of freshwater sponge. These sponges perform 30 important ecological roles in their habitats, and the poriferan:green algae partnerships offers 31 unique opportunities to study the evolutionary origins and ecological persistence of 32 endosymbioses.
    [Show full text]
  • Climacia Californica Chandler, 1953 (Neuroptera: Sisyridae) in Utah: Taxonomic Identity, Host Association and Seasonal Occurrence
    AQUATIC INSECTS 2019, VOL. 40, NO. 4, 317–327 https://doi.org/10.1080/01650424.2019.1652329 Climacia californica Chandler, 1953 (Neuroptera: Sisyridae) in Utah: taxonomic identity, host association and seasonal occurrence Makani L. Fishera, Robert C. Mowerb and C. Riley Nelsona aDepartment of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA; bUtah County Mosquito Abatement, Spanish Fork, UT, USA ABSTRACT ARTICLE HISTORY We provide a record of spongillaflies (Sisyridae) with an associated Received 30 December 2018 host sponge from a population found in Spring Creek, Utah. We Accepted 15 May 2019 monitored the population for the 2016 field season to identify the First published online insect and its associated host sponge and to establish the sea- 30 September 2019 ’ sonal period of the insect s presence in the adult stage. We also KEYWORDS evaluated the commonly used sampling techniques of sweeping Aquatic Neuroptera; and light trapping and made natural history observations. We Sisyridae; freshwater identified the spongillaflies as Climacia californica Chandler, 1953 sponge; Utah; and the sponge to be Ephydatia fluviatilis (Linnaeus, 1758). We col- Intermountain West lected 1726 adults, and light trapping proved to be the superior collecting method. The population was characterised by a two- week emergence peak occurring at the end of July to beginning of August followed by a steep decline. Other habitats within the state contained E. fluviatilis and should be sampled using light traps at times when peak abundances are predicted to further understand the distribution of C. californica across the state and the Intermountain West. urn:lsid:zoobank.org:pub:F795281F-0042-4F5F-B15B-F6C584FACF2B Introduction Sisyridae, or spongillaflies, and freshwater sponges (Porifera: Spongillidae) are linked together in a parasite–host association (Parfin and Gurney 1956; Steffan 1967; Resh 1976; Pupedis 1980).
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]
  • Chlorophyta Is a Division of Green Algae, Informally Called
    Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name.
    [Show full text]
  • Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia
    Diversity 2016, 8, 21; doi:10.3390/d8040021 S1 of S3 9 Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia Jane Fromont, Muhammad Azmi Abdul Wahab, Oliver Gomez, Merrick Ekins, Monique Grol and John Norman Ashby Hooper 1. Materials and Methods 1.1. Collation of Sponge Occurrence Data Data of sponge occurrences were collated from databases of the Western Australian Museum (WAM) and Atlas of Living Australia (ALA) [1]. Pilbara sponge data on ALA had been captured in a northern Australian sponge report [2], but with the WAM data, provides a far more comprehensive dataset, in both geographic and taxonomic composition of sponges. Quality control procedures were undertaken to remove obvious duplicate records and those with insufficient or ambiguous species data. Due to differing naming conventions of OTUs by institutions contributing to the two databases and the lack of resources for physical comparison of all OTU specimens, a maximum error of ± 13.5% total species counts was determined for the dataset, to account for potentially unique (differently named OTUs are unique) or overlapping OTUs (differently named OTUs are the same) (157 potential instances identified out of 1164 total OTUs). The amalgamation of these two databases produced a complete occurrence dataset (presence/absence) of all currently described sponge species and OTUs from the region (see Table S1). The dataset follows the new taxonomic classification proposed by [3] and implemented by [4]. The latter source was used to confirm present validities and taxon authorities for known species names. The dataset consists of records identified as (1) described (Linnean) species, (2) records with “cf.” in front of species names which indicates the specimens have some characters of a described species but also differences, which require comparisons with type material, and (3) records as “operational taxonomy units” (OTUs) which are considered to be unique species although further assessments are required to establish their taxonomic status.
    [Show full text]