Chlorophyta Is a Division of Green Algae, Informally Called

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophyta Is a Division of Green Algae, Informally Called Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name. Brown algae are unique among ˌ r o ʊ d ə ˈ f a ɪ t ə /; from Greek: ῥόδον (rhodon) = rose + heterokonts in developing into multicellular forms with φυτόν (phyton) = plant, thus red plant), are one of the differentiated tissues, but they reproduce by means of oldest groups of eukaryotic algae,[2] and also one of the flagellated spores and gametes that closely resemble largest, with about 5,000–6,000 species [3] of mostly cells of other heterokonts. Genetic studies show their multicellular, marine algae, including many notable closest relatives to be the yellow-green algae. seaweeds. Other references indicate as many as 10,000 [4] species; more detailed counts indicate ~4,000 in ~600 Bryophyte is a traditional name used to refer to all genera (3,738 marine spp in 546 genera and 10 orders embryophytes (land plants) that do not have true (plus the unclassifiable); 164 freshwater spp in 30 [5] vascular tissue and are therefore called 'non-vascular genera in 8 orders). plants'.[1] Some bryophytes do have specialized tissues The red algae form a distinct group characterized by the for the transport of water; however since these do not following attributes: eukaryotic cells without flagella contain lignin, they are not considered to be true and centrioles, using floridean starch as food reserve, vascular tissue.[2] Currently bryophytes are thought not with phycobiliproteins as accessory pigments (giving to be a natural or monophyletic group; however the them their red color), and with chloroplasts lacking name is convenient and remains in use as a collective external endoplasmic reticulum and containing term for mosses, hornworts, and liverworts. Bryophytes unstacked thylakoids. [4] Most red algae are also produce enclosed reproductive structures (gametangia multicellular, macroscopic, marine, and have sexual and sporangia), but they produce neither flowers nor reproduction. seeds, reproducing via spores. The term bryophyte Many of the coralline algae, which secrete calcium comes from Greek βρύον - bryon, "tree-moss, oyster- carbonate and play a major role in building coral reefs, green" + φυτόν - fyton "plant". belong here. Red algae such as dulse (Palmaria palmata) and laver (nori/gim) are a traditional part of Vascular plants (also known as tracheophytes or European and Asian cuisine and are used to make other higher plants) are those plants that have lignified products like agar, carrageenans and other food [6] tissues for conducting water, minerals, and additives. photosynthetic products through the plant. Vascular plants include the clubmosses, Equisetum, ferns, The Phaeophyceae or brown algae (singular: alga), is gymnosperms (including conifers) and angiosperms (flowering plants). Scientific names for the group a large group of mostly marine multicellular algae, [2] [3] including many seaweeds of colder Northern include Tracheophyta and Tracheobionta. Hemisphere waters. They play an important role in Vascular plants are distinguished by two primary marine environments, both as food and for the habitats characteristics: they form. For instance Macrocystis, a kelp of the order 1. Vascular plants have vascular tissues which Laminariales, may reach 60 m in length, and forms circulate resources through the plant. This prominent underwater forests. Another example is feature allows vascular plants to evolve to a Sargassum, which creates unique habitats in the tropical larger size than non-vascular plants, which lack marattioid ferns , and ophioglossoid ferns . The term these specialized conducting tissues and are pteridophyte also refers to ferns and a few other therefore restricted to relatively small sizes. seedless vascular plants (see classification section 2. In vascular plants, the principal generation below). A pteridologist is a specialist in the study of phase is the sporophyte, which is usually diploid pteridophytes in a broader sense that includes the more with two sets of chromosomes per cell. Only the distantly related lycophytes. germ cells and gametophytes are haploid. By Ferns first appear in the fossil record 360 million years contrast, the principal generation phase in non- ago in the Carboniferous but many of the current vascular plants is usually the gametophyte, families and species did not appear until roughly 145 which is haploid with one set of chromosomes million years ago in the early Cretaceous (after per cell. In these plants, generally only the spore flowering plants came to dominate many stalk and capsule are diploid. environments). One possible mechanism for the presumed switch from Ferns are not of major economic importance, but some emphasis on the haploid generation to emphasis on the are grown or gathered for food, as ornamental plants, diploid generation is the greater efficiency in spore for remediating contaminated soils, and have been the dispersal with more complex diploid structures. In other subject of research for their ability to remove some words, elaboration of the spore stalk enabled the chemical pollutants from the air. Some are significant production of more spore and the ability to release it weeds. They also play a role in mythology, medicine, higher and to broadcast it farther. Such developments and art. may include more photosynthetic area for the spore- bearing structure, the ability to grow independent roots, woody structure for support, and more branching. The spermatophytes (from the Greek word "Σπερματόφυτα") (also known as phanerogams) Water transport happens in either xylem or phloem: comprise those plants that produce seeds. They are a xylem carries water and inorganic solutes upward subset of the embryophytes or land plants. The living toward the leaves from the roots, while phloem carries spermatophytes form five groups: organic solutes throughout the plant. • cycads , a subtropical and tropical group of plants with a large crown of compound leaves Lycopodiopsida is a class of plants often loosely and a stout trunk, grouped as the fern allies. Traditionally the group • Ginkgo , a single living species of tree, included not only the clubmosses and firmosses, but also the spikemosses (Selaginella and relatives) and the • conifers , cone-bearing trees and shrubs, quillworts (Isoetes and relatives). However, the latter • gnetophytes , woody plants in the genera are now usually separated off into a separate class, Gnetum, Welwitschia, and Ephedra, and Isoetopsida. • angiosperms , the flowering plants, a large group Clubmosses are thought to be structurally similar to the including many familiar plants in a wide variety earliest vascular plants, with small, scale-like leaves, of habitats. homosporous spores borne in sporangia at the bases of In addition to the taxa listed above, the fossil record the leaves, branching stems (usually dichotomous), and contains evidence of many extinct taxa of seed plants. generally simple form. The so-called "seed ferns" (Pteridospermae) were one The Class Lycopodiopsida as interpreted here contains of the earliest successful groups of land plants, and a single living order, the Lycopodiales, and a single forests dominated by seed ferns were prevalent in the extinct order, the Drepanophycales. late Paleozoic. Glossopteris was the most prominent tree genus in the ancient southern supercontinent of Gondwana during the Permian period. By the Triassic A fern is any one of a group of about 12,000 species of period, seed ferns had declined in ecological plants belonging to the botanical group known as [3] importance, and representatives of modern Pteridophyta. Unlike mosses, they have xylem and gymnosperm groups were abundant and dominant phloem (making them vascular plants). They have through the end of the Cretaceous, when angiosperms stems, leaves, and roots like other vascular plants. Ferns radiated. Another Late Paleozoic group of probable reproduce via spores and have neither seeds nor spermatophytes
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • The VICTORIA NATURALIST
    The VICTORIA NATURALIST JTA-J OFHCECOPY ' <*' PUBLISHED EVERY TWO MONTHS BY THE VICTORIA NATURAL HISTORY SOCIETY, P.O. BOX NO. 5220 ; VICTORIA. B.C. VBR 6N4 * - ' - - VOL. 42, NO. 2 ISSN O049 612X SEPTEMBER-OCTOBER, 19B5 VICTORIA NATURAL HISTORY SOCIETY Mailing Address: P.O. Box No. 5220, Victoria, B.C. V8R 6N4 COVER PHOTO: by Mark Nyhof 1 Young Great Horned Owl with Male Mallard Albert R. Davidson - Miss E.K. Lemon - Mrs. L.E. Chambers VICTORIA NATURAL HISTORY SOCIETY E.E. Bridgen - Mrs. H.W.S. Soulsby - A. Douglas Turnbull A BIOLOGICAL APPROACH TO WINTER MOTH CONTROL Mrs. Peggy Goodwill - Vic Goodwill [A AummaAy o& Rob&it MoyoJ*1 lucid asitlcJLa ^mtuAtd In Monday Magaz-lnz - July 18-24 publication) OFFICERS AND DIRECTORS 1985 Introduced into Canada (Nova Scotia) from Europe in the 60s, it OFFICERS wasn't till the mid-70s that the Winter Moth found its way to Victoria. COMMITTEE That it had come to stay, was made evident by the gradual year by year President Mary Richmond 385-0504 increase in defoliation of deciduous trees. Vice President Roy Prior 383-2347 Magazine Past President Mary-Lou Florian 387-5552 Programme The pest, once thought to be Bruce Spanworm, was later correctly identified as the larval stage_of the Winter Moth - the green looper. Treasurer Arthur B. Durkee 388-6077 Finance It was the absence of its natural enemies, due to its recent implantation, Secretary Isobel Dawson 721-7965 which enabled the moth to thrive and multiply in great numbers. DIRECTORS A biological control method developed in Nova Scotia to check Winter Ed Coffin 592-0964 Membership Moth infestation has now been in operation in Victoria for the past five Lyndis Davis 477-9952 years showing very positive results.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]
  • A Brief History of Plants by Luke Wallace
    A Brief History of Plants by Luke Wallace Let us skip the first two and a half their success on land. Today, these plants new group, the seed-bearing gymnosperms, billion years of the Earth’s history from only survive in the groups known as the Club came to dominate. Placed in this group is when organic compounds in our early mosses, Whisk fern, Horsetails and, a group I Ginkophyta (Ginkgo biloba being the only Evidence shows that atmosphere made the transition to single am sure we are all familiar with, the Ferns. extant member of this group), Gnetophyta, during the Permian celled organisms via the creation of It is in a small number of Fern species that Cycads and, of course, the Conifers. For the nucleotides, RNA and DNA. For the sake of era a new group, we first see the production of separate male most part, gymnosperms did relatively well brevity, we will also have to gloss over the the seed-bearing sperm cells and female egg cells, the earliest throughout the Permian, Triassic and Jurassic adaptive radiation of early multicellular known plant lineage capable of this biological periods, exhibiting much more diversity and gymnosperms, organisms that would eventually lead phenomenon. This is thought to be crucial abundance than we see now. to the colonisation of the land 425 - 475 came to dominate. to the evolution of seed-bearing plants. million years ago. These stories could not However, during the Jurassic, another group of Placed in this group Simply put, up until this point plants produced be done justice here! plants were rapidly growing in dominance and identical sex cells and relied on water to by the Cretaceous this new plant superpower is Ginkophyta, Mosses, Liverworts and Hornworts (known bring these together.
    [Show full text]
  • Plant Evolution and Diversity B. Importance of Plants C. Where Do Plants Fit, Evolutionarily? What Are the Defining Traits of Pl
    Plant Evolution and Diversity Reading: Chap. 30 A. Plants: fundamentals I. What is a plant? What does it do? A. Basic structure and function B. Why are plants important? - Photosynthesize C. What are plants, evolutionarily? -CO2 uptake D. Problems of living on land -O2 release II. Overview of major plant taxa - Water loss A. Bryophytes (seedless, nonvascular) - Water and nutrient uptake B. Pterophytes (seedless, vascular) C. Gymnosperms (seeds, vascular) -Grow D. Angiosperms (seeds, vascular, and flowers+fruits) Where? Which directions? II. Major evolutionary trends - Reproduce A. Vascular tissue, leaves, & roots B. Fertilization without water: pollen C. Dispersal: from spores to bare seeds to seeds in fruits D. Life cycles Æ reduction of gametophyte, dominance of sporophyte Fig. 1.10, Raven et al. B. Importance of plants C. Where do plants fit, evolutionarily? 1. Food – agriculture, ecosystems 2. Habitat 3. Fuel and fiber 4. Medicines 5. Ecosystem services How are protists related to higher plants? Algae are eukaryotic photosynthetic organisms that are not plants. Relationship to the protists What are the defining traits of plants? - Multicellular, eukaryotic, photosynthetic autotrophs - Cell chemistry: - Chlorophyll a and b - Cell walls of cellulose (plus other polymers) - Starch as a storage polymer - Most similar to some Chlorophyta: Charophyceans Fig. 29.8 Points 1. Photosynthetic protists are spread throughout many groups. 2. Plants are most closely related to the green algae, in particular, to the Charophyceans. Coleochaete 3.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
    Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • Poster Listings
    Posters A-Z Aiyar, Prasad Influence of biotic and abiotic factors on intracellular calcium profile in 53 the green unicellular algae Chlamydomonas reinhardtii Alacid, Elisabet Parasitoid-host interactions: Parvilucifera sinerae killing dinoflagellates, 54 from the cell to the field Alcolombri, Uria Smell of the sea: Identification of the algal dimethyl sulfide releasing 55 enzyme Alexander, Harriet Nutrient pulses uniquely drive physiological ecology of cosmopolitan 56 phytoplankton strains Antoine-Lorquin, Aymeric Logol : Expressive Pattern Matching in sequences 57 Arndt, Hartmut Deep-sea benthic microeukaryotes: A plea for morphological and 58 ecological studies as a necessary addition to metagenomics and a proposal for a concerted study across the oceans Arroyo, Alicia Diversity of the micrometazoan phyla Acoelomorpha in diverse marine 59 environments: a metabarcoding approach Ashworth, Justin Integration, clustering and systems biology of [diatom] transcriptome 60 data Beisser, Daniela Comparative Transcriptome Analysis of 18 Chrysophyceae Species 61 Bellaaj Zouari, Amel Contribution of Chlorophyta and non-Chlorophyta to the picoeukaryotic 62 community in the Gulf of Gabès (Eastern Mediterranean Sea) Page 17 EMBO | EMBL Symposium: A New Age of Discovery for Aquatic Microeukaryotes Bendif, El Mahdi When the Cheshire Cat meets Gaia: puzzling speciation and adaptive 63 patterns in the Gephyrocapsa complex Berdjeb, Lyria Marine eukaryote network revealed by high frequency temporal survey 64 in the San Pedro Ocean Time-Series station Berney, Cédric UniEuk: a universal taxonomic framework and integrated reference gene 65 databases for eukaryotic biology, ecology, and evolution Bhardwaj, Vaibhav Investigating algae-bacteria symbiosis using a vitamin B12 dependent 66 alga Bigalke, Arite Autoinduced cell death of the diatom C.
    [Show full text]
  • Plant Diversity Ecol 182 – 3-1-2007 Posted on Web – 2-28-07 at 5:30 Pm Summary from Last Time
    Plant Diversity Ecol 182 – 3-1-2007 Posted on web – 2-28-07 at 5:30 pm Summary from last time • We talked about? The Tracheophytes •A leaf is a flattened photosynthetic structure emerging laterally from a main axis or stem and possessing true vascular tissue. • Two leaf types: microphylls and megaphylls. •The microphyll has a single vascular strand that has departed from the stem without disturbing the stem’s vascular structure. – Club mosses have microphylls. – Microphylls may have evolved from sterile sporangia. Figure 29.13a The Evolution of Leaves The Tracheophytes • The megaphyll is larger, and more complex found in ferns and seed plants. • May have arose from flattening of stems and development of overtopping (one branch differentiates from and extends beyond rest). Introducing the Tracheophytes • Plants that bear a single type of spore are said to be homosporous. – The most ancient tracheophytes were all homosporous. – Both the gametophyte and the sporophyte are independent and usually photosynthetic. – A single type of gametophyte bears both female and male reproductive organs. Introducing the Tracheophytes • Plants with two distinct types of spores evolved later, and are said to be heterosporous. – In heterosporous plants, the megaspore develops into a larger, specifically female gametophyte (megagametophyte). – The microspore develops into the smaller, male gametophyte (microgametophyte). • Heterospory evolved independently and repeatedly, suggesting that it affords selective advantages. Figure 29.14a & b Homospory and Heterospory The Surviving Nonseed Tracheophytes • The club mosses (phylum Lycophyta) have microphylls, exhibit apical growth, and have roots that branch dichotomously. • Sporangia in many Lycophyta are contained within structures called strobili (clusters of spore-bearing leaves) – There are both homosporous and heterosporous species.
    [Show full text]
  • Rain Garden in Baxter Jackie Froemming, University of Minnesota Extension, (218) 824-1068, [email protected]
    July - August 2008 #86 Rain Garden in Baxter Jackie Froemming, University of Minnesota Extension, (218) 824-1068, [email protected] hat might be the biggest rain garden in central WMinnesota was planted in Baxter in May of 2008. The 8,500-sq. ft. rain garden was designed by Westwood Professional Services, Inc., to handle the stormwater runoff from a 4.5-acre, low-impact development site – Fairview Office Park. The rain garden was the practical portion of a rain garden workshop presented by Eleanor Burkett, University of Minnesota Extension educator, and sponsored by the Northland Arboretum in Brainerd. In addition to workshop participants, Crow Wing County Master Gardeners and site developers also assisted with this hands-on portion of the Wild Bergemot ( Monarda fistulosa ), one of the native species project. planted in the rain garden. The sides of the rain garden (3,014 sq. ft.) were seeded with rain garden were covered by grants from the Minnesota Grassland LoGRO (a no-mow-grass seed mix) and covered Pollution Control Agency and the Crow Wing County with an erosion blanket. The bottom of the rain garden Water Plan. The owners of Fairview Office Park agreed to (5,486 sq. ft.) was amended with about 4 inches of a mixture water and weed the commercial site’s rain garden on an of 2/3 peat and 1/3 sandy loam and tilled. Two inches of ongoing basis. shredded mulch were added afterwards. Here, 853 plants were planted. Plant selection included ornamental grasses, Educational signage with information about rain gardens perennials, and shrubs.
    [Show full text]