Plant Evolution and Diversity B. Importance of Plants C. Where Do Plants Fit, Evolutionarily? What Are the Defining Traits of Pl

Total Page:16

File Type:pdf, Size:1020Kb

Plant Evolution and Diversity B. Importance of Plants C. Where Do Plants Fit, Evolutionarily? What Are the Defining Traits of Pl Plant Evolution and Diversity Reading: Chap. 30 A. Plants: fundamentals I. What is a plant? What does it do? A. Basic structure and function B. Why are plants important? - Photosynthesize C. What are plants, evolutionarily? -CO2 uptake D. Problems of living on land -O2 release II. Overview of major plant taxa - Water loss A. Bryophytes (seedless, nonvascular) - Water and nutrient uptake B. Pterophytes (seedless, vascular) C. Gymnosperms (seeds, vascular) -Grow D. Angiosperms (seeds, vascular, and flowers+fruits) Where? Which directions? II. Major evolutionary trends - Reproduce A. Vascular tissue, leaves, & roots B. Fertilization without water: pollen C. Dispersal: from spores to bare seeds to seeds in fruits D. Life cycles Æ reduction of gametophyte, dominance of sporophyte Fig. 1.10, Raven et al. B. Importance of plants C. Where do plants fit, evolutionarily? 1. Food – agriculture, ecosystems 2. Habitat 3. Fuel and fiber 4. Medicines 5. Ecosystem services How are protists related to higher plants? Algae are eukaryotic photosynthetic organisms that are not plants. Relationship to the protists What are the defining traits of plants? - Multicellular, eukaryotic, photosynthetic autotrophs - Cell chemistry: - Chlorophyll a and b - Cell walls of cellulose (plus other polymers) - Starch as a storage polymer - Most similar to some Chlorophyta: Charophyceans Fig. 29.8 Points 1. Photosynthetic protists are spread throughout many groups. 2. Plants are most closely related to the green algae, in particular, to the Charophyceans. Coleochaete 3. Plantae has expanded to include green algae, red algae and glaucophyte Chara algae. What is in common? 1 - Apical meristem “Land” plants only C&R 29.3 - Multicelluar gametangia: antheridia an “Land” plants only d archegonia - Alternation of generations (sporic life cycle) (some butAll not “Land” all green plants algae) 30.13 Moss life cycle C&R 29.6 The Phylogeny of Green Plants Bacteria Archaea - Multicellular, dependent embryos Eukarya Rhodophyta (red algae) Ulvophyceae (ulvophytes) “Land” plants only Coleochaetophyceae (coleochaetes) Charaphyceae (stoneworts) Green plants Green algae Hepaticophyta (liverworts) Nonvascular plants Anthocerophyta Seedless vascular plants (hornworts) Bryophyta Land plants (mosses) 29.17a Lycophyta (lycophytes) Vascular plants Psilotophyta (whisk ferns) Æ Sphenophyta (horsetails) “Embryophytes” Pteridophyta (ferns) Gymnosperms Seed plants Cycadophyta Chloroplasts containing chlorophyll (cycads) Ginkgophyta Ability to live on land (ginkgo) Other conifers Vascular tissue (redwoods et al.) Gnetophyta Angiosperms (gnetophytes) Seeds Pinophyta (pines et al.) Flowers Anthophyta (angiosperms) a + b and β -carotene D. Problems of land life: 30.14 Adaptations for living in air 30.20 2 1. Desiccation of plant 2. Resource acquisition - water and minerals Fig. 30.10 REE, Fig. 1.10 - Roots - Water conservation - epidermis w/cuticle, REE, Fig. 1.10 stomata, guard cells 4. No water for reproduction 3. Light acquisition a. gamete dispersal and desiccation b. spore dispersal and desiccation C&R Fig. 29.7 a. Surface area - Leaves b. Fight gravity - Support c. Fluid transport - Vascular tissue, xylem and phloem Fig. 1.10 - Fertilization and dispersal that are independent of water (some). II. Overview of Taxa 1. Bryophytes Liverworts (Hepaticophyta) Hornworts Mosses (Bryophyta) ~6500 species, moist (Anthocerophyta) ~12,000 species, environments ~100 species widespread 3 Bryophyte ecology: Bryophyte ecology: b. Global carbon cycle a. Groundcover and epiphytes Groundcover Epiphytes B. Seedless vascular plants (Pteridophytes) What’s new? 1. Vascular tissue, true leaves, true roots 2. Sporophyte dominant Lycophyta Psilotophyta Sphenophyta Pterophyta - “club mosses” 30.17b Other SVP developments: true leaves Other SVP developments: true roots Moss phyllids http://www.palaeos.com/Plants/Bryophyta/Bryophyta.html Angiosperm, Fig. 29.10 Club moss, REE Fig. 19-3 4 Figure 30-9 Bacteria Archaea C. Seed plants - Gymnosperms Eukarya Rhodophyta (red algae) Ulvophyceae (ulvophytes) Coleochaetophyceae (coleochaetes) Charaphyceae (stoneworts) Green plants Green algae Hepaticophyta (liverworts) Nonvascular plants Anthocerophyta Seedless vascular plants (hornworts) Bryophyta Land plants (mosses) Lycophyta (lycophytes) Vascular plants Psilotophyta (whisk ferns) Sphenophyta (horsetails) Pteridophyta (ferns) Gymnosperms Seed plants Cycadophyta Chloroplasts containing chlorophyll (cycads) Ginkgophyta Ability to live on land (ginkgo) Other conifers Vascular tissue (redwoods et al.) Gnetophyta Angiosperms (gnetophytes) Seeds Pinophyta 1. Gymnosperms: Who are they? (pines et al.) Flowers Anthophyta (angiosperms) a + b and β -carotene Conifers Phyla: Biggest Ginkgophyta - 1 genus, 1 species: Giant sequoia Cycadophytabiloba - ~100 species Conifers - 550 species: Pinophyta & “other” Gnetophyta(redwoods, - 3 genera, cypresses, 70 spp. junipers, etc.) Tallest? Coast redwood Ginkgo Conifers Conifers highest oldest Bristlecone pine – 4795 in 2007 Conifers Furthest north White spruce 5 Conifers Most photographed Monterey cypress Conifers Widespread (boreal forest, temperate rain forest)Conifers Very important timber species 3. What’s new? http://www.pc.gc.ca/canada/nature/archives/2003/fe/ Wet conditions ART_IMAGES/map_boreal.gif Black spruce a. Secondary growth b. Continued g’phyte reduction c. Pollen and heterospory d. Seeds Conifers D. Seed plants: Angiosperms Dry conditions (Phylum Anthophyta) Juniper Red algae Ulvophytes Coleochaetes Stoneworts Green algae Liverworts Nonvascular plants Hornworts Land plants~270,000 species Seedless vascular plants Mosses Vascular plants Heterospory Lycophytes Whisk ferns Horsetails Gymnosperms Ferns Seed plants Cycads Simple gametangia Retention of egg on parent Thick-walled spores Ginkgo Complex gametangia RetentionAlternation of embryo of generations on parent Redwoods et al. Sporophyte-dominated life Gnetophytes Heterospory Pollen Seeds Pines et al. Angiosperms Flowers Fruit cycle Fruit Figure 30-26 6 1. Who are they? 2. Why are they important? Monocots: ~ 60,000 spp. a. Most diverse phylum, huge radiation Lilies, orchids, b. Base of many terrestrial food webs grasses, palms c. Basis of agriculture Dicots: Fruits Most of the rest Vegetables Trees, shrubs, forbs Grains Eudicots and ‘other’ d. Secondary compounds – drugs, medicines A. What is “vascular tissue” III. Major Evolutionary Trends and what does it do? 1. Xylem A. Structure: Vascular tissue, leaves, & roots - water and nutrients up from B. Reproduction: Fertilization without water: pollen roots to stem, leaves: one way - hollow C. Reproduction: Dispersal of progeny: from spores to bare seeds to seeds in fruits - dead at maturity - secondary cell walls, lignin D. Life cycles Æ reduction of gametophyte, dominance of sporophyte 2. Phloem - photosynthate from leaves to roots, shoots, meristems - living at maturity - no secondary cell walls 3. Evolutionary Sequence Observed in Water- Conducting Cells Simple water- First vascular tissue Tracheids Vessel elements conducting cells Ends have gaps in secondary cell wall (inside) Ends have gaps through primary and secondary cell walls Primary wall Primary wall Primary wall Primary wall (with cellulose) (with cellulose) (with cellulose) (with cellulose) Lignin Secondary wall Secondary wall (with lignin) (with lignin) Little structural Some structural Increased structural Found in gnetophytes support. Found in support. Found support. Found in and angiosperms fossils and present- in fossils all vascular plants day mosses 7 B. Fertilization without water 4. Secondary growth 1.pollen and heterospory a. In Gymnosperms b. (lateral meristem - draw) Conifer life cycle 29.14d Co-evolution with animals 2. Flowers - more efficient fertilization (pollination) Stamen = microsporangia Ovule = megasporangium plus integuments Carpel = stigma + style + ovary Petals and sepals = modified leaves, attract pollinators C&R, 30.13 Many crops depend on natural pollinators Darwin’s Hawk Moth http://www.pbs.org/wnet/nature/bestofnature/video.html US Postal Service http://www.berkeley.edu/news/media/releases/2006/10/25_pollinator.shtml http://encarta.msn.com/media_461530192_761578331_-1_1/Darwin's_Hawk_Moth.html 8 C. New mode of dispersing progeny 1. Seeds Seed formation Incorrect color in “c” - should be C&R, Fig. 30.2 blue for food supply, which is haploid (megagametophyte). Conifer life cycle 29.14d 2. Fruits - more efficient dispersal Fruits - different kinds Wind-dispersed Animal dispersed - eaten Pine seed Animal dispersed - riding Coevolution with animals Water-dispersed C&R, 30.15 30.20, 30.25 3. Angiosperm life cycle 2. Bryophyte life cycle and structure a. ovule inside carpel b. smaller g’phyte 1. G’phyte vs. s’phyte c. Double fert: 2. Archegonia and endosperm - 3n antheridia d. After fert: 3. Water for fert. Ovule Æ seed 4. Embryo on g’phyte Ovary wall Æ fruit 5. Spores for dispersal 6. Roots and leaves? Fig. 30.17a 9.
Recommended publications
  • Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
    Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred.
    [Show full text]
  • Origin of Gibberellin-Dependent Transcriptional Regulation by Molecular Exploitation of a Transactivation Domain in DELLA Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/398883; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Article - Discoveries Origin of gibberellin-dependent transcriptional regulation by molecular exploitation of a transactivation domain in DELLA proteins Jorge Hernández-García1, Asier Briones-Moreno1, Renaud Dumas2, and Miguel A. Blázquez1 1Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Valencia, Spain 2Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives/Biosciences and Biotechnology Institute of Grenoble, Institut National de la Recherche Agronomique (INRA), Grenoble, France Corresponding author: Miguel A. Blázquez ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/398883; this version posted December 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract DELLA proteins are land-plant specific transcriptional regulators known to interact through their C-terminal GRAS domain with over 150 transcription factors in Arabidopsis thaliana. Besides, DELLAs from vascular plants can interact through the N-terminal domain with the gibberellin receptor encoded by GID1, through which gibberellins promote DELLA degradation. However, this regulation is absent in non-vascular land plants, which lack active gibberellins or a proper GID1 receptor.
    [Show full text]
  • Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr
    1 Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr. Sanjeev Kumar Vidyarthi Department of Botany Dr. L.K.V.D. College, Tajpur Microsporogenesis and Microgametogenesis Microsporogenesis Microspores i.e., the pollen grains are developed inside microsporangia. The microsporangia are developed inside the corners of the 4-lobed anther. Young anthers are more or less oblong in shape in section and made up of homogeneous mass of meristematic cells without intercellular space with further development, the anther becomes 4-lobed. The outer layer of anther is called epidermis. Below the epidermis, at each corner, some cells become differentiated from others by their dense protoplasm- archesporium or archesporial cells. Each archesporial cell then divides mitotically and forms an outer primary parietal cell and an inner primary sporogenous cell. The outer primary parietal cells form primary parietal cell layer at each corner. Below the parietal cell layer, the primary sporogenous cells remain in groups i.e., the sporogenous tissue. The cells of primary parietal layer then divide both periclinally and anticlinally and form multilayered antheridial wall. The innermost layer of antheridial wall, which remains in close contact with the sporogenous tissue, functions as nutritive layer, called tapetum. The primary sporogenous cells either directly function as spore mother cells or divide mitotically into a number of cells which function as spore mother cells. The spore mother cell undergoes meiotic division and gives rise to 4 microspores arranged tetrahedrally. Structure of Microspores Dr. Sanjeev Kumar Vidyarthi, Dept. of Botany, Dr. L.K.V.D. College, Tajpur 2 Microspore i.e., the pollen grain is the first cell of the male gametophyte, which contains only one haploid nucleus.
    [Show full text]
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Ap09 Biology Form B Q2
    AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.
    [Show full text]
  • Identification of Conifer Trees in Iowa This Publication Is Designed to Help Identify the Most Common Trees Found in Iowa
    Identification of Conifer Trees in Iowa This publication is designed to help identify the most common trees found in Iowa. It is based on vegetative characteristics including leaves, fruit, and bark. It is neither complete nor without possible oversights. Separate species are grouped by similar characteristics, mainly based on type and arrangement of leaves. These groups are; awl- or scale- like needles; single needles, flattened with rounded tips; single needles, square in cross section, with pointed tips; and needles in bundles or fasticles of two or more. Remember, vegetative character- istics are quite variable; use more than one specimen for comparison. Awl- or scale-like needles Juniperus Virginiana Eastern Red Cedar Leaves are dark green; leaves are both awl- and scale-like; cone is dark blue and berry-like. Thuja occidentalis Northern White Cedar Leaves are flattened and only of the scale type; cones have 4-6 scales; foliage is light green. Juniperus communis Common Juniper Leaves are awl shaped; cone is dark blue and berry-like. Pm-1383 | May 1996 Single needles, flattened with rounded tips Pseudotsuga menziesii Douglas Fir Needles occur on raised pegs; 3/4-11/4 inches in length; cones have 3-pointed bracts between the cone scales. Abies balsamea Abies concolor Balsam Fir White (Concolor) Fir Needles are blunt and notched at Needles are somewhat pointed, the tip; 3/4-11/2 inches in length. curved towards the branch top and 11/2-3 inches in length; silver green in color. Single needles, Picea abies Norway Spruce square in cross Needles are 1/2-1 inch long; section, with needles are dark green; foliage appears to droop or weep; cone pointed tips is 4-7 inches long.
    [Show full text]
  • The Moss-Back Alga (Cladophorophyceae, Chlorophyta) on Two Species of Freshwater Turtles in the Kimberleys
    Telopea 12(2) 279–284 The moss-back alga (Cladophorophyceae, Chlorophyta) on two species of freshwater turtles in the Kimberleys Stephen Skinner1,2, Nancy FitzSimmons3 and Timothy J. Entwisle1 1National Herbarium of New South Wales, Mrs Macquaries Road, Sydney NSW 2000 Australia 2Southern ACT Catchment Group Inc., PO Box 2056, Kambah, ACT Author for correspondence: [email protected] 3Institute for Applied Ecology, School of Resource, Environmental & Heritage Sciences, University of Canberra, Canberra, ACT 2601, Australia Abstract The range of the Australian freshwater alga Basicladia ramulosa Ducker is extended, both in its turtle hosts (Chelodina burrungandjii Thomson et al.; Emydura australis (Grey)) and in geography, to tropical northern Western Australia. Along with further morphological observations, sporangia are described for the first time in this taxon. Introduction Moss-back turtles (Fig. 1) have fascinated biologists for many years. While the carapace of a potentially amphibious turtle would be a challenging habitat for most aquatic organisms, it is perhaps surprising there are only a handful of attached algae reported from such sites. Edgren et al. (1953) detailed the range of host turtles then known in North America and the range of epizoic algae that included Rhizoclonium and Cladophora. Two further genera in the Cladophoraceae are the only macroalgae widely reported on turtle carapaces: the prostrate, spreading, endozoic (and possibly disease causing) Dermatophyton radicans Peter, and species of the heterotrichous genus Basicladia, responsible for the name ‘moss-back’. In the United States, Basicladia is considered a small epizoic genus on turtles and water snails, of three to four taxa (John 2003). Hamilton (1948) described sexual reproduction in North American species of Basicladia involving the fusion of biflagellate zooids as is commonly the case in the Cladophoraceae.
    [Show full text]
  • Chlorophyta Is a Division of Green Algae, Informally Called
    Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name.
    [Show full text]
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • The Effects of Sulphur Dioxide on Selected Hepatics" (1978)
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1978 The ffecE ts of Sulphur Dioxide on Selected Hepatics Steven L. Gatchel Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Gatchel, Steven L., "The Effects of Sulphur Dioxide on Selected Hepatics" (1978). Masters Theses. 3192. https://thekeep.eiu.edu/theses/3192 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPF-:R CERTIFICATE #2 TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is receiving a ' number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Date Author I respectfully request Booth Library of .Eastern Illinois University not allow my thesis be reproduced because---------------- Date Author pdm THE EFFECTS OF SULPHUR DIOXIDE ON SELECTED HEPATICS (TITLE} BY Steven L. Gatchel THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS 1978 I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE ol}-~ d2/, 19"/f DATE ADVISER I/ 'Ouue~2\ 1\l~ DATE ' ~RTMENT WHEAD THE EFFECTS OF SULPHUR DIOXIDE ON SELECTED HEPATICS BY STEVEN L.
    [Show full text]