Hidden Diversity of Acoelomorpha Revealed Through

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Diversity of Acoelomorpha Revealed Through View metadata, citation and similar papers atDownloaded core.ac.uk from http://rsbl.royalsocietypublishing.org/ on June 20, 2017 brought to you by CORE provided by Digital.CSIC Evolutionary biology Hidden diversity of Acoelomorpha rsbl.royalsocietypublishing.org revealed through metabarcoding Alicia S. Arroyo1, David Lo´pez-Escardo´1, Colomban de Vargas2,3 and In˜aki Ruiz-Trillo1,4,5 Research 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marı´tim de la Barceloneta, 37-49, Cite this article: Arroyo AS, Lo´pez-Escardo´ D, 08003 Barcelona, Spain 2CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France de Vargas C, Ruiz-Trillo I. 2016 Hidden 3Sorbonne Universite´s, Universite´ Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de diversity of Acoelomorpha revealed through Roscoff, Place Georges Teissier, 29680 Roscoff, France metabarcoding. Biol. Lett. 12: 20160674. 4Departament de Gene`tica, Microbiologia i Estadı´stica, Universitat de Barcelona, Avinguda Diagonal 643, 08028 http://dx.doi.org/10.1098/rsbl.2016.0674 Barcelona, Spain 5ICREA, Pg. Lluı´s Companys 23, 08010 Barcelona, Spain IR-T, 0000-0001-6547-5304 Received: 16 August 2016 Animals with bilateral symmetry comprise the majority of the described Accepted: 6 September 2016 species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoe- lomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts Subject Areas: have focused mainly on coastal areas, leaving potential gaps in our under- evolution, ecology standing of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic Keywords: and pelagic habitats worldwide. Our results show that acoels have a greater richness in planktonic environments than previously described. Interest- Xenoacoelomorpha, metabarcoding, molecular ingly, we also identified a putative novel clade of acoels in the deep diversity, origins of Bilateria, acoels benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acoel clade. Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which Author for correspondence: might be useful for reconstructing the early evolution of Bilateria. In˜aki Ruiz-Trillo e-mail: [email protected] 1. Introduction The vast majority of the described animal species are bilaterally symmetrical [1]. The establishment of two orthogonal body axes provided the basis for enormous structural complexity compared with radially symmetrical animals, which allowed a more diverse evolutionary outcome [2]. However, how bilaterians evolved and the nature of the first bilaterian animal remains elusive. Bilaterian animals are separated into four major groups: Acoelomorpha, Ecdy- sozoa, Lophotrochozoa (or Spiralia) and Deuterostomia [1,3,4]. Although there has been some disagreement, it now seems clear that Xenacoelomorpha is the sister group to the rest of Bilateria (also known as Nephrozoa [5]) [6–8]. Thus, Xenacoelomorpha is a key taxon to compare with the rest of the bilaterians and reconstruct the nature of the last bilaterian common ancestor, namely Urbilateria. Members of Xenacoelomorpha, which is formed by Acoela, Nemertoderma- tida and Xenoturbella, are morphologically quite simple: the digestive system only has one opening, they lack circulatory, respiratory and excretory systems, Electronic supplementary material is available and also lack a body cavity between the gut and the epidermis [8,9]. Xenacoelo- online at https://dx.doi.org/10.6084/m9.fig- morphs live in benthic habitats, and the majority of described species have come share.c.3469881. & 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. Downloaded from http://rsbl.royalsocietypublishing.org/ on June 20, 2017 2 rsbl.royalsocietypublishing.org 60 50 50 latitude 0 latitude 40 −50 Biol. Lett. 30 −100 10203040 longitude 12 OTU richness depth −100 0 100 : 20160674 1–5 pelagos longitude 6–10 11–15 benthos (deep sea) 16–20 benthos (coast) 18S rDNA project NGS platform sampling site depth region worldwide TaraOceans v9 Illumina pelagos (open water and coast) pelagos, benthos BioMarks v4 Roche 454 Europe (coast) v1–v3 Atlantic and Pacific DeepSea Roche 454 benthos v7–v8 Ocean (deepsea) Figure 1. Worldwide distribution of Xenacoelomorpha OTUs. Top: distribution of Acoelomorpha across sampling sites and depth. Bottom: sequencing platforms and sampling information for the projects where the data were collected. from sediments, mainly in coastal areas [10–12]. This A final ML tree using both the RefTree sequences and our morphological simplicity of Xenacoelomorpha seems to sup- OTUs was inferred using RAxML [21], with the same con- port the planuloid–acoeloid hypothesis proposed by Von ditions as above. A Bayesian tree was built using MrBayes Graff [13] and Hyman [14], which envisaged Urbilateria v. 3.2.6 [23] using a GTR þ I þ G model of evolution. Pplacer to be a simple, benthic acoelomate organism exhibiting v. 1.1 [24] was used to perform a phylogenetic placement of the OTUs into the RefTree. Novelty blast percentages were direct development [2,15]. obtained running a blastn 2.2.31 [25] against our curated However, the full diversity and morphological disparity of Acoelomorpha-GenBank database. Xenacoelomorpha is not yet known, because it has never been A more detailed description of Materials and Methods can be approached in a systematic, high-throughput manner. It is found in the electronic supplementary material. therefore possible that there are unobserved or unsampled xenacoelomorph lineages with more complex morphologies or lifestyles, in different habitats, or occupying earlier phylo- genetic positions in the Xenacoelomorpha tree. For example, 3. Results and conclusion some studies have described acoel morphospecies in fresh- Here, we use a comprehensive metabarcoding approach with water [16,17], brackish water [18] and planktonic habitats 18S rDNA to assess xenacoelomorph diversity in marine [19]. Thus, any attempt to understand the nature and ecology environments. The aim was to search for potential novel of Urbilateria will require a more global and systematic lineages that may be of interest to understand the ancestral analyses of Xenacoelomorpha diversity. xenacoelomorph body plan, as well as to identify the environments in which it would be possible to find them. To this end, we analysed the most complete marine eukaryotic metabarcoding datasets to date, comprising both benthic and 2. Material and methods pelagic marine environments and from diverse global sampl- Clustered operational taxonomic units (OTUs) were obtained ings. In particular, we analysed three major metabarcoding from public repositories or directly from the authors. The refer- projects (figure 1): (1) BioMarks, with benthic and pelagic ence tree was constructed from 255 acoelomorph 18S rDNA samples from European coastal areas (biomarks.eu), (2) Tara GenBank sequences (from herein RefTree). Alignment was car- Oceans, with pelagic samplings from all over the world ried out using the E-INS-I option from MAFFT v. 7.271 [20] (oceans.taraexpeditions.org) and (3) a deep-sea project (here- and manually trimmed. The maximum-likelihood (ML) tree was built using RAxML v. 8.0.0 [21] considering a GTR- after DeepSea), with benthic samples from great depths GAMMA substitution model. Nodal support was obtained (more than 3000 m) in both North Pacific and North Atlantic through 1000 bootstrap replicates. We selected the OTUs through Oceans [26]. RAxML-EPA [22] and chose those whose abundance was greater We found a total of 101 Xenacoelomorpha environmental than 10 reads. OTUs (figure 1 and Material and Methods; see electronic Downloaded from http://rsbl.royalsocietypublishing.org/ on June 20, 2017 (a)(b) 3 Nemertodermatida rsbl.royalsocietypublishing.org Acoela Diopisthoporidae non-bilateria, unicellular Holozoa Hallangiidae 96/1 Nephrozoa Nemertodermatida Hofsteniidae Deep-sea Acoela clade 1 99/1 Diopisthoporidae Acoela Proporidae 95/1 Paratomellidae Hofsteniidae 68/0.91 Hallangiidae Isodiametridae 47/0.52 86/0.99 Solenofilomorphidae 59/0.59 Deep-sea Acoela clade 2 Dakuidae 85/0.99 14/– Proporidae Mecynostomidae 92/1 Isodiametridae 46/0.61 Otocelis sandara Convolutidae Dakuidae 81/0.98 0 102030405060708090100 39/0.94 Mecynostomidae 13/0.80 Convolutidae richness (%) Biol. Lett. 0.3 blast identity (%) 100 99 98 97 96 95 94 93 92 91 90 <90 12 (c) Nephrozoa : 20160674 non-bilateria, unicellular Holozoa Nemertodermatida deep-sea Acoela clade 1 0.962 0.022 Convolutidae 0.015 0.329 Diopisthoporidae 0.382 Acoela 0.288 Paratomellidae deep-sea Hallangiidae Hofsteniidae Acoela clade 2 Solenofilomorphidae Proporidae Mecynostomidae Dakuidae Isodiametridae coastal sediments deep-sea benthos pelagic environments Figure 2. Molecular novelty in Acoelomorpha. (a) Blast identity of 101 acoelomorph OTUs against the Acoelomorpha 18S GenBank database in known well- described families [27]. Note the high percentage of richness with low sequence similarity
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J
    Tropical Marine Invertebrates CAS BI 569 Phylum Echinodermata by J. R. Finnerty Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata *Nematoda *Platyhelminthes Acoelomorpha Calcispongia Silicispongiae PROTOSTOMIA Phylum Phylum Phylum CHORDATA ECHINODERMATA HEMICHORDATA Blastopore -> anus Radial / equal cleavage Coelom forms by enterocoely ! Protostome = blastopore contributes to the mouth blastopore mouth anus ! Deuterostome = blastopore becomes anus blastopore anus mouth Halocynthia, a tunicate (Urochordata) Coelom Formation Protostomes: Schizocoely Deuterostomes: Enterocoely Enterocoely in a sea star Axocoel (protocoel) Gives rise to small portion of water vascular system. Hydrocoel (mesocoel) Gives rise to water vascular system. Somatocoel (metacoel) Gives rise to lining of adult body cavity. Echinoderm Metamorphosis ECHINODERM FEATURES Water vascular system and tube feet Pentaradial symmetry Coelom formation by enterocoely Water Vascular System Tube Foot Tube Foot Locomotion ECHINODERM DIVERSITY Crinoidea Asteroidea Ophiuroidea Holothuroidea Echinoidea “sea lilies” “sea stars” “brittle stars” “sea cucumbers” “urchins, sand dollars” Group Form & Habit Habitat Ossicles Feeding Special Characteristics Crinoids 5-200 arms, stalked epifaunal Internal skeleton suspension mouth upward; mucous & Of each arm feeders secreting glands on sessile podia Ophiuroids usually 5 thin arms, epifaunal ossicles in arms deposit feeders act and appear like vertebrae
    [Show full text]
  • Chlorophyta Is a Division of Green Algae, Informally Called
    Chlorophyta is a division of green algae, informally waters of the Sargasso Sea. Many brown algae, such as called chlorophytes. The name is used in two very members of the order Fucales, commonly grow along different senses so that care is needed to determine the rocky seashores. Some members of the class are used as use by a particular author. In older classification food for humans. systems, it refers to a highly paraphyletic group of all Worldwide there are about 1500–2000 species of brown the green algae within the green plants (Viridiplantae), algae.[4] Some species are of sufficient commercial and thus includes about 7,000 species [4] [5] of mostly importance, such as Ascophyllum nodosum , that they aquatic photosynthetic eukaryotic organisms. Like the have become subjects of extensive research in their own land plants (bryophytes and tracheophytes), green algae right.[5] [4] contain chlorophylls a and b, and store food as starch Brown algae belong to a very large group, the in their plastids. Heterokontophyta, a eukaryotic group of organisms In newer classifications, it refers to one of the two distinguished most prominently by having chloroplasts clades making up the Viridiplantae, which are the surrounded by four membranes, suggesting an origin chlorophytes and the streptophytes or charophytes.[6][7] from a symbiotic relationship between a basal In this sense it includes only about 4,300 species.[3] eukaryote and another eukaryotic organism. Most brown algae contain the pigment fucoxanthin, which is responsible for the distinctive greenish-brown color that The red algae, or Rhodophyta ( / r o ʊ ˈ d ɒ f ɨ t ə / or / gives them their name.
    [Show full text]
  • Platyhelminthes) at the Queensland Museum B.M
    VOLUME 53 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 NOVE mb ER 2007 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Volume 53 is complete in one part. NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum THE STUDY OF TURBELLARIANS (PLATYHELMINTHES) AT THE QUEENSLAND MUSEUM B.M. ANGUS Angus, B.M. 2007 11 30: The study of turbellarians (Platyhelminthes) at the Queensland Museum. Memoirs of the Queensland Museum 53(1): 157-185. Brisbane. ISSN 0079-8835. Turbellarian research was largely ignored in Australia, apart from some early interest at the turn of the 19th century. The modern study of this mostly free-living branch of the phylum Platyhelminthes was led by Lester R.G. Cannon of the Queensland Museum. A background to the study of turbellarians is given particularly as it relates to the efforts of Cannon on symbiotic fauna, and his encouragement of visiting specialists and students.
    [Show full text]
  • Zootaxa, Platyhelminthes, Acoela, Acoelomorpha, Convolutidae
    Zootaxa 1008: 1–11 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1008 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Waminoa brickneri n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea MAXINA V. OGUNLANA1, MATTHEW D. HOOGE1,4, YONAS I. TEKLE3, YEHUDA BENAYAHU2, ORIT BARNEAH2 & SETH TYLER1 1Department of Biological sciences, The University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA., e-mail: [email protected], [email protected], [email protected] 2 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel., e-mail: [email protected] 3 Department of Systematic Zoology, Evolutionary Biology Centre, Upsala University, Norbyvägen 18D, SE- 752 36 Uppsala, Sweden., e-Mail: [email protected] 4 Author of correspondence Abstract While the majority of acoels live in marine sediments, some, usually identified as Waminoa sp., have been found associated with corals, living closely appressed to their external surfaces. We describe a new species collected from the stony coral Plesiastrea laxa in the Red Sea. Waminoa brickneri n. sp. can infest corals in high numbers, often forming clusters in non-overlapping arrays. It is bronze-colored, owing to the presence of two types of dinoflagellate endosymbionts, and speckled white with small scattered pigment spots. Its body is disc-shaped, highly flattened and cir- cular in profile except for a small notch at the posterior margin where the reproductive organs lie. The male copulatory organ is poorly differentiated, but comprises a seminal vesicle weakly walled by concentrically layered muscles, and a small penis papilla with serous glands at its juncture with the male pore.
    [Show full text]
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela) Henrike Semmler*1, Xavier Bailly2 and Andreas Wanninger1 Address: 1University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark and 2Station Station Biologique de Roscoff, Place Georges Teissier BP74, F-29682 Roscoff Cedex, France Email: Henrike Semmler* - [email protected]; Xavier Bailly - [email protected]; Andreas Wanninger - [email protected] * Corresponding author Published: 19 September 2008 Received: 5 May 2008 Accepted: 19 September 2008 Frontiers in Zoology 2008, 5:14 doi:10.1186/1742-9994-5-14 This article is available from: http://www.frontiersinzoology.com/content/5/1/14 © 2008 Semmler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software. Results: At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
    Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore
    [Show full text]
  • Comparative Analysis of Acoel Embryonic Development
    Comparative analysis of acoel embryonic development Viviana Cetrangolo Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Comparative analysis of acoel embryonic development Viviana Cetrangolo ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 02.10.2020 Dato for disputas: 1111 © Copyright Viviana Cetrangolo The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Comparative analysis of acoel embryonic development Name: Viviana Cetrangolo Print: Skipnes Kommunikasjon / University of Bergen ! ! ! ! ! ! ! ! ! ! ! ! ! !!!!"##!$%&$!'()!$()*%!! +()!,%&-./0! !"##!$%&$!'()!,%&-./! !!!!!!!!!!!!!!!!,%&-./1!'()0! !!!!!!!!!!!!!2%/!(-#'!#&1$3-.!$4)$%! !!!!!!!!!!!!51!,%&-./0! !!!!!!!!!!!!"#$%&'%!()$*+,! ! ! ! ! ""! "#$%&'$($#!%&)$*+&,%&'! #$%!&'()!*(%+%,-%.!",!-$"+!-$%+"+!&/+!0',.10-%.!",!-$%!2/3'(/-'(4!'5!-$%!6('57!8(!9%:,'2;!/-! </(+!=,-%(,/-"',/2!>%,-(%!5'(!?/(",%!?'2%012/(!@"'2'A4;!B,"C%(+"-4!'5!@%(A%,;!D'(&/47!#$%! -$%+"+!"+!*/(-!'5!-$%!6$8!*('A(/E!'5!-$%!8%*/(-E%,-!'5!@"'2'A"0/2!<0"%,0%+!'5!-$%!B,"C%(+"-4! '5!@%(A%,7! ! ! """! -#.&+/0%12%,%&'3! =!&'12.!2")%!-'!+-/(-!-'!-$/,)!E4!+1*%(C"+'(!6('57!8(!F,.(%/+!9%:,'27!G"(+-24;!5'(!A"C",A!E%! -$%!'**'(-1,"-4!-'!0'E%!-'!$"+!2/3!&$%,!=!&/+!/!5(%+$24!A(/.1/-%.!/,.!,/HC%!+-1.%,-;!/,.! +%0',./("24!5'(!-%/0$",A!E%!-$/-!-$%!6$8!0/,!3%!/!(%/224!$/(.!-"E%!'5!4'1(!2"5%;!31-!"5!4'1!/(%! E'-"C/-%.!%,'1A$!/,.!*1+$!4'1(+%25!-$('1A$!-$%!."55"012-"%+;!"-!5",/224!0'E%+!-'!/,!%,.I!<';!
    [Show full text]
  • Zoology Lab Manual
    General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 .
    [Show full text]
  • Poster Listings
    Posters A-Z Aiyar, Prasad Influence of biotic and abiotic factors on intracellular calcium profile in 53 the green unicellular algae Chlamydomonas reinhardtii Alacid, Elisabet Parasitoid-host interactions: Parvilucifera sinerae killing dinoflagellates, 54 from the cell to the field Alcolombri, Uria Smell of the sea: Identification of the algal dimethyl sulfide releasing 55 enzyme Alexander, Harriet Nutrient pulses uniquely drive physiological ecology of cosmopolitan 56 phytoplankton strains Antoine-Lorquin, Aymeric Logol : Expressive Pattern Matching in sequences 57 Arndt, Hartmut Deep-sea benthic microeukaryotes: A plea for morphological and 58 ecological studies as a necessary addition to metagenomics and a proposal for a concerted study across the oceans Arroyo, Alicia Diversity of the micrometazoan phyla Acoelomorpha in diverse marine 59 environments: a metabarcoding approach Ashworth, Justin Integration, clustering and systems biology of [diatom] transcriptome 60 data Beisser, Daniela Comparative Transcriptome Analysis of 18 Chrysophyceae Species 61 Bellaaj Zouari, Amel Contribution of Chlorophyta and non-Chlorophyta to the picoeukaryotic 62 community in the Gulf of Gabès (Eastern Mediterranean Sea) Page 17 EMBO | EMBL Symposium: A New Age of Discovery for Aquatic Microeukaryotes Bendif, El Mahdi When the Cheshire Cat meets Gaia: puzzling speciation and adaptive 63 patterns in the Gephyrocapsa complex Berdjeb, Lyria Marine eukaryote network revealed by high frequency temporal survey 64 in the San Pedro Ocean Time-Series station Berney, Cédric UniEuk: a universal taxonomic framework and integrated reference gene 65 databases for eukaryotic biology, ecology, and evolution Bhardwaj, Vaibhav Investigating algae-bacteria symbiosis using a vitamin B12 dependent 66 alga Bigalke, Arite Autoinduced cell death of the diatom C.
    [Show full text]
  • Species Composition of the Free Living Multicellular Invertebrate Animals
    Historia naturalis bulgarica, 21: 49-168, 2015 Species composition of the free living multicellular invertebrate animals (Metazoa: Invertebrata) from the Bulgarian sector of the Black Sea and the coastal brackish basins Zdravko Hubenov Abstract: A total of 19 types, 39 classes, 123 orders, 470 families and 1537 species are known from the Bulgarian Black Sea. They include 1054 species (68.6%) of marine and marine-brackish forms and 508 species (33.0%) of freshwater-brackish, freshwater and terrestrial forms, connected with water. Five types (Nematoda, Rotifera, Annelida, Arthropoda and Mollusca) have a high species richness (over 100 species). Of these, the richest in species are Arthropoda (802 species – 52.2%), Annelida (173 species – 11.2%) and Mollusca (152 species – 9.9%). The remaining 14 types include from 1 to 38 species. There are some well-studied regions (over 200 species recorded): first, the vicinity of Varna (601 spe- cies), where investigations continue for more than 100 years. The aquatory of the towns Nesebar, Pomorie, Burgas and Sozopol (220 to 274 species) and the region of Cape Kaliakra (230 species) are well-studied. Of the coastal basins most studied are the lakes Durankulak, Ezerets-Shabla, Beloslav, Varna, Pomorie, Atanasovsko, Burgas, Mandra and the firth of Ropotamo River (up to 100 species known). The vertical distribution has been analyzed for 800 species (75.9%) – marine and marine-brackish forms. The great number of species is found from 0 to 25 m on sand (396 species) and rocky (257 species) bottom. The groups of stenohypo- (52 species – 6.5%), stenoepi- (465 species – 58.1%), meso- (115 species – 14.4%) and eurybathic forms (168 species – 21.0%) are represented.
    [Show full text]
  • Marine Flora and Fauna of the Northeastern United States
    NOAA Technical Report NMFS Circular 440 Marine Flora and Fauna of the Northeastern United States. Turbellaria: Acoela and Nemertodermatida Louise F. Bush July 1981 u.s. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration National Marine Fisheries Service Terry L. Leitzell, Assistant Administrator for FisherIes FOREWORD This NMFS Circular is part of the subseries "Marine Flora and Fauna of the Northeastern United States;' which consists of original, illustrated, modern manuals on the identification, classification, and general biology of the estuarine and coastal marine plants and, animals of the northeastern United States. The manuals are published at irregular intervals on as many taxa of the region as there are specialists available to collaborate in their preparation. Geographic coverage of the "Marine Flora and Fauna of the Northeastern United States" is planned to include organisms from the headwaters of estuaries seaward to approximately the 200 m depth on the continental shelf from Maine to Virginia, but may vary somewhat with each major taxon and the interests of collaborators. Whenever possible representative specimens dealt with in the manuals are deposited in the reference collections of major museums of the region. The "Marine Flora and Fauna of the Northeastern United States" is being prepared in col­ laboration with systematic specialists in the United States and abroad. Each manual is based primarily on recent and ongoing revisionary systematic research and a fresh examination of the plants and animals, Each major taxon, treated in a separate manual, includes an introduction, illustrated glossary, uniform originally illustrated keys, annotated checklist with information \vhen available on distribution, habitat, life history, and related biology, references to the major literature of the group, and a systematic jnde:\.
    [Show full text]