<<

Protistology 6 (1), 3–13 (2009)

Systema Naturae or the outline of living world classification

Alexey B. Shipunov

Marine Biological Laboratory, Woods Hole, Massachusetts, USA

Summary

Here we present the short outline of the classification of living things (to the level of classes), given with two main goals: to provide a compact, synthetic overview of the biological diversity; and to supply users with up-todate information of latest taxonomic achievements. The latter is especially important in the recent epoch of “molecular revolution” in the .

Key words: living organisms classification, kingdoms, phyla, classes

The era of fundamental works with the depth and come available, classification is also changed. To breadth of “Systema Naturae” almost ended with the last approach changeability, we use simple versioning edition of this great book (Linnaeus, 1767). However, (RCS-based) system. The version presented here oveviews of the diversity of living things, both collective has number 5.8020, more recent versions periodi- (Adl et al., 2005, Hibbett et al., 2007) and individual (Cor- cally appear on the Web page http://herba.msu.ru/ liss, 1984, 1994; Cavalier-Smith, 1998, 2004 and many shipunov/os/os-en.htm, older versions are also others) continued to appear regularly until the recent time. stored there. Here we present the similar work. 3) Synthesis. The classification is fully synthetic: it is compiling from numerous sources treated as Features multiple opinions. Any suggestion addresses any triplet of relevant taxa (which could be represented 1) Coverage. The classification cover all in- like “A,(B,C)”) is taking into account with no se- disputable living things. This means that viruses, lection between scientific sources. Weighting of the virus-like forms and prions are not included. Author opinions is also a major component of classification believes that classification should be a “slice” of construction. the recent diversity, therefore fossil taxa also are 4) Concepts. Kingdoms as highest taxa have not listed. We restricted the level of classification a special treatment. We use a holistic approach to with classes. designate kingdoms according to the three levels of 2) Currentness. The classification presented organization: (1) prokaryotic cells, (2) eukaryotic here is very changeable: when new data (any sug- cells, (3) tissues/ organs (multitissued organisms gestions about closeness of particular groups) be- sensu Corliss, 1989). On the third level, two kindoms

© 2009 by Russia, Protistology 4 · Alexey B. Shipunov

(Animalia and Vegetabilia) designated, because their 9) Nomenclature. Double nomenclature is used tissue/organ systems of them are not homologous here: (Ivanov, 1968; Kaiser, 1985a). Traditional names which are largely circum- 5) Lumping. We are holding with large taxa: if scription- and/or volumebased names (Kluge, the aggregation of taxa is feasible on the given rank 2000). We removed the authorship from all names level, we treat them as one taxon. This approach fol- because most of names for higher taxa have been lows the simple Occam razor (Swinburne, 1997). used in various senses (it is especially frequent in 6) Traditions. The classification is traditional ), therefore, designation an authorship will from many points of view: (1) it is fully hierarchi- make situation even less clear. In that regard, we cal, (2) uses only habitual ranks, (3) suggestions are generally agree with recent proposal of Dubois based on the morphological material are using with (2007) abut non-citing authors. In some cases, new same extent as “molecular”, (4) retains traditional names have been created, mostly with changed end- names, even in cases where underlying concepts are ings to avoid inter-rank homonymy. These names (slightly) different. are marked with dagger (†). 7) . Classification presented here is in a Typified names as simple -like uninomi- form of hierarchical list. The order of sub-taxa within als without endings but with rank designated by the super-taxon group is important. For example, left-hand superscript (i.e., “ Arthropoda” sub-taxa designated as “peripheral” (Ljubarskij, becomes “Araneus”.). The designator is a number 1996), are usually placing at the beginning or at the with optional decimal part, ranged from 0 (individ- end of their part of list. ual) to 7 (). All intermediate ranks received 8) Fuzziness. To represent multiple opinions the unique fraction part: –0.2 (0.8) for sub-, 0.5 for in one classification, we are using the extended infra-, and 0.2 for super-groups. We hope that from traditional marks: this attempt the list of typified names will finally sed. m. (sedis mutabilis) given if there is a possi- emerge and become an essential part of higher taxa bility to move the taxon “horizontally” either within nomenclature. Types have been chosen types mostly super-taxon, or between supertaxa; in the accordance with the original descriptions, but stat. m. (status mutabilis) is for the possibility for the few taxa we introduced new types. In par- to move the taxon downwards (“stat. m. i.”), or ticular, we chose several type names which sounds upwards (“stat. m. s.”) in the hierarchy; similar to the traditional name of taxon (Tatarinov i. s. () used here only for cases and Shimanskij, 1984). where both previous states are simultaneously ap- plicable; sed. p. (sedis possibilis) designates the possible Kingdoms alternative location of “sed. m.” taxon; s. str. (sensu stricto) marks “sticky” taxa where If we accept that the highest divisions of organic the aggregation with neighbor taxa is the alterna- world should be as broad as possible, we may end tive; up with two different conceptions. We call them s. a. (sensu amplo) used here for “fragile” taxa “kingdoms” and “domains” (Blackwell, 2004). The which can be easily split; first concept is the logical derivate of symbiogenetic s. aggr. (sensu aggregato) when both previous theory (Merezhkovsky, 1909) and based on the idea states are applicable; of levels of organization. These levels correspond (z) used in case of hemiohomonyms (Kluge, with four kingdoms: Monera (or Prokaryota), Pro- 2000) for ICZN names; tista, Vegetabilia (or Plantae) and Animalia (or MY (dagger) for “traditional” names introduced Metazoa). The third, multi-tissued level is the least here (see below); stable: it corresponds with two kingdoms and several “quotes” are for environmental groups which groups of protists which also reached this level of have only DNA sequencebased descriptions; here organization, notably lichenized fungi and higher we list the most prominent of them, but usually not brown like Fucales and Laminariales (Smith, as separate items of the classification list; 1939; Kaiser, 1985b; Buedel and Scheidegger, 2008). * (asterisk) used for paraphyletic taxa; in gen- These latter groups are usually not considered as eral, our intention is to eliminate , but kingdoms because of lesser gap between them and some high taxa here are paraphyletic; their non-multitissued relatives. The other problem / (slash) used for marginal notes designating of “kingdoms” concept is the absence of positive domains (see below). description for protists. It is possible, however, to Protistology · 5 define protists as “eukaryotic organisms with cells Table 1. Two concepts of highest taxonomic categories. forming a homogeneous assemblages or developing independently after the division”, but it will not im- Monera Vegetabilia Protista Animalia prove our understanding of protists as a paraphyletic group. Monera also have problems with paraphyly and non-negative description, which may be at least Panplantae Pananimalia partly solved (Martin and Koonin, 2006). The reductionist “domains” conception takes Vegetabilia Only three phyla reflecting the into account mostly molecular characters and better major features of the cycle (with gametophyte coincides with cladistic way of thought. Bacteria, dominance; with sporophyte dominance and free Archaea and Eukarya are usually considered as gametophyte; and with a seed) are accepted here. “primary” domains, Panplantae (aka “bikonts”) On the Fig. 1, the “girt” shows that with the and Pananimalia (“unikonts”) may also belong here. approach this kingdom should be treated as a part In many publications, they are monophyletic, and of Panplantae. primary domains appear in every analysis of the en- Animalia Historically, phyla reflect vironmental DNA. However, recent genomic find- the traditional idea of “bauplan”. However, since ings such as “tree of 1%” (Dagan and Martin, 2006) , coelenterates, placozoans and acoels are became less supportive for domains; genome-wide now the “hot spots” of animal classification, groups data of prokaryotes is also in favor to the Monera, here should be considered as generally unstable. The then to domains (Koonin and Wolf, 2008). There position of the latter group in Deuterostomia is based are also some concerns about strict monophyly of on the recent publications (Deutsch, 2008 and oth- Archaea (Cox et al., 2008; Yutin et al., 2009) and ers). The volume of phylum is also discuss- even Bacteria (Lake et al., 2008). In addition, this able. With the domain approach, the kingdom will conception simply ignores morphological diversity become a part of Pananimalia (“unikonts”). of higher groups whereas it is well known that differ- ent taxonomic characters may play different roles in The outline the classification of distant taxa (Ljubarskij, 1996). It is not an easy task to interbreed these concep- Regnum Monera [ 7Bacillus ] /Bacteria tions together (see Table 1). We are accepting here Subregnum Bacteria [ 6.8Bacillus ]*1 more traditional “kingdoms” conception as having Superphylum Terrabacteria [ 6.2Bacillus ] s.a. more explanatory power, and also as a better inter- Phylum 1. THERMOBACTERIA† [ 6Deinococcus] s.a. science communication tool. However, we desig- Classis 1(1). [ 5Aquifex ] sed.m.2 nate domains as marginal notes in the outline, and 2(2). [ 5Thermotoga ] sed.m. also as “girts” in the classification scheme (Fig. 1). 3(3). Deinococci [ 5Deinococcus ]3 There are the list of accepted kingdoms: Phylum 2. ACTINOBACTERES † [ 6Actynomyces ] Monera This kingdom corresponds with two Classis 1(4). [ 5Actinomyces ] domains: Bacteria and Archaea, which are treated Phylum 3. [ 6Bacillus ] s.a., sed.m.4 here as subkingdoms (Fig. 1). The classification Classis 1(5). Clostridia [ 5Clostridium ]5 based mostly on the results of sequence comparisons 2(6). Bacilli [ 5Bacillus ] and wholegenome analyses. During the widespread 3(7). Erysipelotrichi [ 5Erysipelothrix ] HGT events (Koonin and Wolf, 2008), the stability 4(8). Mollicutes [ 5Mycoplasma ]6 of higher taxa is lower than for other kingdoms. 5(9). Dictyoglomia [ 5Dictyoglomus ] sed.m. Protista This is a good example of paraphyletic 6(10). [ 5Fusobacterium ] sed.m. but integral (according to the level of organization) Phylum 4. OBSCUROBACTERES† 7 taxon. Since the idea (Stechmann and Cavalier- Smith, 2002) about two major eukaryotic branches 1Incl. “Nanobacteria” i.s. et dubitativa (here we use names Pananimalia and Panplantae 2Incl. Desulfurobacteriaceae, Thermodesulfobacteriaceae, reflecting the their cross-kingdom nature) is obtain- Hydrogenothermaceae. 3Incl. Thermales. ing more support (Hampl et al., 2009), we marked 4 them as domains. Infrakingdom Apusobionta may Incl. “OP9” and probably other environmental groups. 5Incl. Symbiobacteria, Thermolithobacteria stat.m., Sulfoba- finally appear as non-natural because the support for cillus i.s., Thermaerobacter i.s. the position and unity of this group is quite moderate 6Incl. Lumbricincola. (Cavalier-Smith et al., 2008). Fungi in our classifi- 7“TM7”–“OP11” group, one of the largest and best deline- cation belong to protists since they generally lack ated environmental groups. Probably includes “TM7”, “OD1”, organ/tissue systems. “OP11”, “WS6”, “WWE3” and some other lineages. 6 · Alexey B. Shipunov

Fig. 1. The schematic view of the classification. This scheme is a variant of nested treemap, a compact alternative to the tree-like presentations (Johnson and Shneiderman, 1991). The most outer squares designate kingdoms, text strings represent phyla, all other squares represent taxa of the intermediate ranks. To make the scheme even more compact, all names of taxa higher than phyla, and squares for the phyla are omitted. “Channels” between squares designate cases of accepted paraphyly on the level of kingdoms.

Phylum 5. CHLOROFLEXES [ 6Chloroflexus ]8 Phylum 8. ENDOMICROBES† [ 6Endomicrobium ] Classis 1(11). [ 5Thermomicrobium ] sed.m. 2(12). [ 5Chloroflexus ] Classis 1(20). Endomicrobia [ 5Endomicrobium ]12 3(13). Dehalococcoidetes [ 5Dehalococcoides] Phylum 9. [ 6Bacteroides ] s.a.13 4(14). Anaerolineae [ 5Anaerolinea ]9 Classis 1(21). [ 5Gemmatimonas ] 5(15). Ktedonobacteria [ 5Ktedonobacter ] sed.m. Phylum 6. [ 6Nostoc ] sed.m. 2(22). Fibrobacteria [ 5Fibrobacter ] Classis 1(16). Gloeobacteria [ 5Gloeobacter ] 3(23). Chlorobia [ 5Chlorobium ] 2(17). Oscillatorineae* [ 5Oscillatoria ]10 4(24). Bacteroidia [ 5Bacteroides ]14 3(18). Nostocineae [ 5Nostoc ] 5(25). Salinibacteriay [ 5Salinibacter ] Superphylum Gracilicutes [ 6.2Rhodospirillum] s.a. stat.m.s. Phylum 7. SPIROCHAETAE [ 6Spirochaeta ] sed.m. Phylum 10. PLANCTOBACTERIA [ 6Planctomyces ]15 Classis 1(19). [ 5Spirochaeta ] s.a.11 Classis 1(26). Planctomycea [ 5Planctomyces] 2(27). “Poribacteria” [ 5“Poribacter” ]

8Incl. Thermobaculum i.s. 12 9Incl. Caldilineae. = “TG1”. 13 10Incl. Synechococcineae stat.m., ‘Prochlorophyceae’, Incl. “TG3”. 14 Acaryochloris. Incl. Flavobacteria, Sphingobacteria, Cytophagia. 15 11Incl. Leptospira. = “PVC”, incl. “OP3”. Protistology · 7

3(28). [ 5Chlamydia ] 2(47). Choanomonadea [ 5Codosiga ] 4(29). Lentisphaeria [ 5Lentisphaera ] 3(48). Ichthyosporea [ 5Ichthyophonus ]26 5(30). Verrucomicrobiae [5Verrucomicrobi- 4(49). Cristidiscoidia [ 5Nuclearia ]27 16 um] Phylum 18. EOMYCOTAY [ 6Mucor ]* s.a. Phylum 11. [ 6Rhodospirillum ] s.a. Classis 1(50). Chytridiomycetes [ 5Chytridiopsis ]28 Classis 1(31). Caldiseria† [ 5Caldisericum ] i.s.17 2(51). Blastocladiomycetes [ 5Blastocladium ] 2(32). Aminanaerobia [ 5Deferribacter ] i.s. et s.a.18 3(52). Rozellomycetes [ 5Rozella ]29 3(33). [ 5Acidobacterium ] sed.m.19 4(53). Kickxellomycetes [ 5Kickxella ]30 4(34). Desulfobacteria [ 5Desulfobacter ] s.a.20 5(54). Mucoromycetes [ 5Mucor ]*31 5(35). Rhodobacteria [ 5Rhodobacter ]21 6(55). Glomeromycetes [ 5Glomus ] Subregnum Archaebacteria [ 6.8Methanobac- Phylum 19. MICROSPORIDIA [ 6Microsporidium ] terum ]* /Archaea Classis 1(56). Microsporea [ 5Microsporidium ]32 6 Phylum 12. [ Nanoarchaeum ] Phylum 20. [ 6Agaricus ] stat.m. Ustilagomycotina [ 5.8Ustilago ] Classis 1(36). Nanoarchea [ 5Nanoarchaeum ] Classis 1(57). Exobasidiomycetes [ 5Exobasidium ] Phylum 13. [ 6Methanobacte- 2(58). Ustilaginomycetes [ 5Ustilago ] rium ] Subphylum Pucciniomycotina [ 5.8Uredo ] Classis 1(37). Thermococci [ 5Thermococcus ] Classis 3(59). Pucciniomycetes [ 5Uredo ] 2(38). Methanobacteria [ 5Methanobacterium ] 4(60). Atractiellomycetes [ 5Atractiella ] s.a.22 5(61). Cystobasidiomycetes [ 5Cystobasidium ] 3(39). Thermoplasmata [ 5Thermoplasma ] 6(62). Agaricostilbomycetes [ 5Agaricostilbum ] 4(40). Archaeoglobi [ 5Archaeoglobus ] 7(63). Microbotryomycetes [ 5Microbotryum ]33 5(41). Halomebacteria [ 5Halobacterium ]23 8(64). Mixiomycetes [ 5Mixia ] Phylum 14. [ 6Korarchaeum ] Subphylum Agaricomycotina [ 5.8Agaricus ] stat.m. Classis 9(65). Wallemiomycetes [ 5Wallemia ] Classis 1(42). Korarchaea [ 5Korarchaeum ] sed.m.34 Phylum 15. THAUMARCHEOTA [ 6Cenarchaeum ] 10(66). Bartheletiomycetesy [ 5Bartheletia ] stat.m. 11(67). Tremellomycetes [ 5Tremella ] Classis 1(43). Cenarchaea [ 5Cenarchaeum ] 12(68). Dacrymycetes [ 5Dacrymyces ] Phylum 16. [ 6Sulfolobus ] 13(69). Agaricomycetes [ 5Agaricus ] 5 Classis 1(44). Thermoprotei [ Thermoproteus ] Phylum 21. [ 6Ascomyces ]35 2(45). Sulfolobea [ 5Sulfolobus ]24 Subphylum Taphrinomycotina [ 5.8Ascomyces ]*36 Classis 1(70). Taphrinomycetes [ 5Ascomyces ]37 Regnum Protista [ 7Euglena ]* 2(71). Schizosaccharomycetes [ 5Schizosac- Infraregnum Panmycota† [ 6.5Agaricus ]* caromyces ]38 /Pananimalia 3(72). Saccharomycetes [ 5Saccaromyces ] Superphylum Myconta† [ 6.2Agaricus ]* s.a. 4(73). Neolectomycetes [ 5Neolecta ] Phylum 17. CHOANOZOA [ 6Codosiga ] s.a. Subphylum Pezizomycotina [ 5.8Tuber ] Classis 1(46). Filasterea [ 5Capsaspora ]25

26Incl. Amoebidium, Eccrinales, Aphelidea sed.m., - 16Incl. Opitutae, Spartobacteria. lochytrium. 27 17=“OP5”, the formal name is not yet published. Incl. Nucleariidae, Pompholyxophryidae sed.m. 28 18Incl. Synergistetes, Chrysiogenetes i.s., Nitrospira i.s., Incl. Neocallimastigales, Thalassochytrium sed.m. 29 Calditrix i.s. Incl. Olpidium et Caulochytrium sed.m. 30 19Incl. Halophagae, Solibacteres. Incl. Basidiobolaceae, Harpellales, Asellariales, Zoopagales, 20Incl. Deltaproteobacteria, Epsilonproteobacteria. Entomophthorales, Nephridiophaga. 31 21Incl. Alphaproteobacteria, Betaproteobacteria, Gamm- Incl. Endogonales, Mortierellales. 32 aproteobacteria. Incl. Metchnikovellidea sed.m., Mikrocytos mackini sed.m. 33 22Incl. Methanobacteriales, Methanococcales stat.m., Meth- Incl. Cryptomycocolacales, Classiculales. 34 anopyrales i.s. Incl. Entorrhiza stat.m.i. 35 23Incl. Methanomicrobiales, Methanosrcinales, Halobacte- Incl. Spirogyromyces i.s. 36 riales. Incl. “SCGI” group. 37 24Incl. Desulfurococcales, Caldisphaerales. Incl. Saitoella. 38 25Incl. Ministeria. Incl. Pneumocystis. 8 · Alexey B. Shipunov

Classis 5(74). Orbiliomycetes [ 5Orbilia ] Classis 1(96). Anisomonadea [ 5Collodictyon ] i.s.53 6(75). Pezizomycetes [ 5Tuber ] 2(97). Malawimonadea [ 5Malawimonas ] 7(76). Dothideomycetes [ 5Dothidea ]39 sed.m. 8(77). Eurotiomycetes [ 5Penicillium ] 3(98). Jakobea [ 5Jakoba ]54 9(78). Lecanoromycetes [ 5Lecanora ]40 4(99). Heterolobosea [ 5Naegleria ]55 10(79). Laboulbeniomycetes [ 5Laboulbenia ] 5(100). Hemimastigea [ 5Spironematella ] i.s.56 11(80). Leotiomycetes [ 5Leotia ] Subphylum [ 5.8Euglena ] 12(81). Sordariomycetes [ 5Sordaria ] Classis 6(101). Euglenophyceae [ 5Euglena ]* s.a.57 Superphylum Sarcobionta† [ 6.2Amoeba ] 7(102). Kinetoplastea [ 5Bodo ] 6.5 Phylum 22. [ 6Amoeba ]41 Infraregnum Chlorobionta [ Volvox ]* Subphylum Lobosea [ 5.8Amoeba ]42 Superphylum [ 6.2Cercomonas ] Classis 1(82). Tubulinea [ 5Amoeba ] Phylum 27. [ 6Cercomonas ] s.a.58 2(83). Flabellinea [ 5Vannella ] Subphylum Monadofilosea [ 5.8Cercomonas ] 3(84). Acanthopodida [ 5Acanthamoeba ]43 Classis 1(103). Chlorarachniophyceae [ 5Chlorar- 4(85). Thecamoebida i.s.[ 5Thecamoeba ] achnion ] 5(86). Mayorellida† [ 5Mayorella ] i.s.44 2(104). Metromonadea [ 5Metromonas ] stat.m. Subphylum Conosea [ 5.8Physarum ] 3(105). [ 5Heliomorpha ]59 Classis 6(87). Variosea [ 5Filamoeba ] sed.m.45 4(106). Sarcomonadea [ 5Cercomonas ]* s.a60 7(88). Mastigamoebidae [ 5Mastigamoeba ]46 5(107). [ 5Coelodendrum ] s.a.61 8(89). Mycetozoa [ 5Physarum ]47 Subphylum [ 5.8Gromia ] 5 62 Phylum 23. BREVIATOZOA† [ 6Breviata ] i.s. Classis 6(108). [ Rotalia ] Classis 1(90). Breviatea [ 5Breviata ] 7(109). Gromiidea [ 5Gromia ] Infraregnum Apusobionta† [ 6.5Apusomonas ] i.s. 8(110). [ 5Filoreta ]63 /Panplantae 9(111). Plasmodiophorea [ 5Plasmodiophora ]64 5 65 Phylum 24. APUSOZOA [ 6Apusomonas ] 10(112). [ Haplosporidium ] Classis 1(91). Apusomonadea [ 5Apusomonas ]48 Phylum 28. [ 6Acanthometra ] 2(92). Planomonadea [ 5Planomonas ] sed.m.49 Classis 1(113). Acantharia [ 5Acanthometra ] Infraregnum [ 6.5Euglena ] Phylum 25. METAMONADA [ 6Trichomonas ] s.a. 53Incl. Diphylleia (z), Collodictyon, Sulcomonas. Classis 1(93). Preaxostyla [ 5Oxymonas ]50 54Incl. . 2(94). Parabasalea [ 5Trichomonas ]51 55Incl. Pleurostomum, Acrasis, Guttulinopsis sed.m., Fonticula 3(95). Fornicata [ 5Hexamita ]52 sed.m., stat.m.i. ISCOBA 6 Phylum 26. D [ ] s.a. 56 Subphylum Jakobozoay [ 5.8Jacoba ] Sed.p. juxta Thecofilosea; incl. Hemimastix, Stereonema, Paramastix sed.m. 57Incl. Diplonemea (= Diplosonematea) stat.m., Symbiontida stat.m. (Calkinsia, ), Notosolenus, Petalomonas. 39Incl. Arthoniales. 58Incl. Meteora i.s. 40Incl. Lichniales. 59Incl. , Limnofila, Nanofila, Mesofila, Desmotho- 41Incl. ‘X-cells’ i.s. racida, Gymnosphaeridae sed.m., Heliomonadida, Microcometes 42Incl. Trichosphaerium i.s., Vermistella i.s., Cochliopodium i.s., sed.m., Boveemonas sed.m., Pseudodimorpha sed.m., Kibisdytes Corallomyxa i.s, Stereomyxa i.s. sed.m. 43Incl. Balamuthia. 60Incl. Cercomopnadida sed.m., Glissomonadida, Pansomon- 44Incl. Dermamoeba. adida, Metopion sed.m., Allantion sed.m. 45Incl. [ 5Phalansterium ], Acramoeba, Multicilia, ‘’ 61Incl. , , Ebriida, Protaspis, Pseu- sensu Tekle et al., 2008. dodifflugia, Spongomonadida, , Pseudopir- 46Incl. Pelomyxa, Entamoeba, Endolimax, Endamoeba. sonia, Auranticordis, . 47Dictyostelia, Protostelia, Copromyxidae sed.m., Ceratiomyxa 62Incl. , , Komokiacea, Schizo- sed.m., Semimorula. cladus. 48Incl. Amastigomonas, Apusomonas. 63Incl. sed.m., Biomyxidae sed.m., Pseudospora 49Incl. “Ancyromonas” = Planomonas, Micronuclearia sed.m. sed.m., Rhizoplasmidae s.aggr., Leucodictyon sed.m., Reticu- 50Incl. Oxymonadida, . loamoeba sed.m. 51Incl. Trichomonadida, Hypermastigida. 64Incl. Phagomyxa. 52Incl. , Hicanonectes, Dysnectes, Retortamona- 65Incl. Paramyxidia, Bonamia, Claustrosporidium, Paradin- dida, Diplomonadida. ium. Protistology · 9

2(114). Taxopodida [ 5Sticholonche ] 66 4(133). Sporozoa [ 5Plasmodium ] s.s.80 3(115). Polycystinea [ 5Collosphaera ] Subphylum Dinozoa [ 5.8Peridinium ] Superphylum Heteroconta [ 6.2Fucus ] Classis 5(134). Perkinsida [ 5Perkinsus ]81 5 82 Phylum 29. BICOSOECOZOA [ 6Bicosoeca ] 6(135). Ellobiopsea [ ] Classis 1(116). Bicoecea [ 5Bicosoeca ]67 7(136). Syndinea [ 5Syndinium ]83 5 Phylum 30. LABYRINTHOMORPHA [ 6Labyrinthula ] 8(137). Oxyrridea [ Oxyrris ] Classis 1(117). Labyrinthulea [ 5Labyrinthula ]68 9(138). Dinoflagellata [ 5Peridinium ]84 6 Phylum 31. OPALINOMORPHA† [ 6Opalina ] Phylum 35. CILIOPHORA [ ] Classis 1(118). Blastocystea [ 5Blastocystis ] Subphylum Postciliodesmatophora [ 5.8Spirosto- 2(119). Opalinea [ 5Opalina ]69 mum ] 3(120). Actinophryida [ 5Actinophrys ] sed.m.70 Classis 1(139). [ 5Trachelocerca ] 5 Phylum 32. OOMYCOTA [ 6Saprolegnia ] 2(140). Heterotrichea [ ] Classis 1(121). Oomycetes [ 5Saprolegnia ] 71 Subphylum [ 5.8Parame- Phylum 33. CHROMOPHYTA [ 6Fucus ] 72 cium ] Classis 1(122). Bacillariophyceae [ 5Diatoma ] s.a.73 Classis 3(141). Spirotrichea [ 5Oxytricha ]85 2(123). Dictyochophyceae [ 5Dictyocha ] 74 4(142). [ 5Clevelandella ] 3(124). Pelagophyceae [ 5Pelagomonas ] 75 5(143). [ 5Spathidium ] 4(125). Eustigmatophyceae [ 5Eustigmatos ] 6(144). [ 5Podophrya ]86 5(126). Chrysophyceae [ 5Chrysococcus ] s.a.76 7(145). [ 5Nassula ]87 6(127). Pinguiophyceae [ 5Pinguiochrysis ] 8(146). [ 5Colpoda ] 7(128). Raphidophyceae [ 5Rhaphidomonas ] 9(147). [ 5Prorodon ] 8(129). Phaeophyceae [ 5Fucus ] s.a.77 10(148). Plagiopylea [ 5Plagiopyla ] Superphylum Alveolata [ 6.2Paramecium ] 11(149). [ 5Paramecium ] 6.2 Phylum 34. [ 6Peridinium ] Superphylum Cryptobionta [ Cryptomonas ] Subphylum [ 5.8Plasmodium ] Phylum 36. CRYPTISTA [ 6Cryptomonas ] s.a.88 s.a. Classis 1(150). [ 5Cryptomonas ]89 Classis 1(130). Apicomonadea [ 5Colpodella ]78 2(151). Katablepharidea [ 5Katablepharis ] 2(131). [ 5Chromera ] sed.m.90 3(132). Gregarinea [ 5Gregarina ] 79 3(152). “” [ 5“Biliphyta” ]91 4(153). Telonemia [ 5Telonema ] stat.m. Phylum 37. CENTROHELIDA [ 6Acanthocystis ] sed.m. 66Incl. Larcopyle. Classis 1(154). Holosea [ 5Luffisphaera ] i.s.92 67Incl. Placidiales (incl. Wobbia), Borokales, Anoecales (incl. 2(155). Centrohelea [ 5Acanthocystis ]93 Cafeteria, Caecitellus), Bicoecales, Commation sed.m., Discocelis Phylum 38. HAPTOPHYTA [ 6Prymnesium ] sed.m. 68Incl. Diplophrys, Sorodiplophrys, Thraustochytridiales, Labyrinthuloideales. 69Incl. Proteromonadida. 80Incl. sed.m., , Haemosporidia, Ne- 70Sed.p. juxta Pedinellales. phromyces. 71Incl. Developayella, Pirsonia, Hyphochitriomycetales, 81Incl. , , Rastrimonas, Phagodinium “MAST-4, 7, 8” groups. sed.m. 72Incl. Leukarachnion. 82Incl. Ellobiocystis, Parallobiopsis, Rhizellobiopsis, Thalas- 73= Khakista, incl. Bolidomonas stat.m. somyces. 74Incl. Pedinellales, Rhizochromulinales. 83Incl. “Marine Groups I and II”. 75Incl. Sarcinochrysidales. 84Incl. Noctiluca. 76Incl. Picophagus, Synchroma, Chlamydomyxa, Leukara- 85Incl. Protocruzia, Phacodinium, Lycnophora. chnion, Oikomonas, Paraphysomonas, “MAST-1, 2, 3, 6” groups 86Incl. Suctoria, Synchimeniida. sed.m. 87Incl. Nassulina, Microthoracina. 77= Fucistia, incl. Chrysomeridophyceae stat.m., Schizo- 88Incl. Palpitomonas sed.m. cladiophyceae, Xanthophyceae stat.m., Phaeothamniales, 89Incl. Goniomonas, Tetragonidium, Bjornbergiella. Aurearenophyceae. 90Incl. Leucocryptos, Platychilomonas, Hatena. 78Incl. sed.m. Algovora, , Aplphamonas, 91Incl. “Picobiliphyta” Chilovora, , Acrocoelus. 92Incl. Paraluffisphaera. 79Incl. Rhytidocystis stat.m., sed.m., Selenidium. 93Incl. ‘Microheliozoan’. 10 · Alexey B. Shipunov

Classis 1(156). Prymnesiophyceae [ 5Prymnesium ]94 Classis 9(180). Anthocerotopsida [ 5Anthoceros ]107 Superphylum [ 6.2Volvox ] Phylum 43. PTERIDOPHYTA [ 6Pteris ]* Phylum 39. GLAUCOPHYTA [ 6Glaucocystis ] Subphylum Lycopodiophytina [ 5.8Lycopodium ] Classis 1(157). Glaucophyceae [ 5Glaucocystis ] Classis 1(181). [ 5Lycopodium ]108 Phylum 40. RHODOPHYTA [ 6Bangia ] Subphylum Pteridophytina [ 5.8Pteris ] Classis 1(158). [ 5Cyanidium ]95 Classis 2(182). Psilotopsida [ 5Psilotum ] 2(159). s.a.[ 5Rhodella ]96 3(183). Ophioglossopsida [ 5Ophioglossum ] 3(160). Compsogonophyceae [ 5Compsopogon ] 4(184). Equisetopsida [ 5Equisetum ] 4(161). [ 5Bangia ] 5(185). Marattiopsida [ 5Marattia ] 5(162). Florideophyceae [ 5Palmaria ] 6(186). Pteridopsida [ 5Pteris ] Phylum 41. [ 6Volvox ]* s.a. Phylum 44. SPERMATOPHYTA [ 6Magnolia ] s.a. Subphylum Chlorophytina [ 5.8Volvox ] Classis 1(187). Cycadopsida [ 5Cycas ] Classis 1(163). Prasinococcophyceae [ 5Prasinococ- 2(188). Ginkgoopsida [ 5Ginkgo ] cus ] stat.m.s. 3(189). Gnetopsida [ 5Gnetum ] 2(164). Nephroselmidophyceae [ 5Nephrosel- 4(190). Pinopsida [ 5Pinus ]109 mis ]*97 5(191). Angiospermae [ 5Magnolia ] 3(165). Tetraphyceaey [ 5Tetraselmis ] Regnum Animalia [ 7Araneus ] 110 /Pananimalia 4(166). [ 5Pedinomonas ] Subregnum Spongia [ 6.8Spongia ] stat.m.s. Phylum 45. SILICEA [ 6Spongia ] stat.m.s. 5(167). [ 5Volvox ] Classis 1(192). Hexactinellea [ 5Euplectella ] 6(168). [ 5Chlorella ]98 2(193). Demospongia [ 5Spongia ] s.aggr. 7(169). [ 5Ulva ] Phylum 46. CALCISPONGIA [ 6Sycetta ] stat.m.s. Subphylum Charophytina [ 5.8Chara ]* Classis 1(194). Calcarea [ 5Sycetta ] Classis 8(170). Mesostigmatophyceae [ 5Mesostigma ] Phylum 47. HOMOSCLEREA [ 6Oscarella ] stat.m.s. 9(171). [ 5Chara ]*99 Classis 1(195). Homoscleromorpha [ 5Oscarella ] Regnum Vegetabilia [ 7Magnolia ] Subregnum Phagocytellozoa [ 6.8Trichoplax ] Phylum 42. BRYOPHYTA [ 6Bryum ]* Phylum 48. [ 6Trichoplax ] Subphylum Hepaticae [ 5.8Marchantia ] Classis 1(196). Trichoplacoidea [ 5Trichoplax ] Classis 1(172). [ 5Haplomitrium ]100 Subregnum [ 6.8Ctenoplana ] 2(173). [ 5Marchantia ]101 Phylum 49. CTENOPHORA [ 6Ctenoplana ] 3(174). [ 5Jungerman- Classis 1(197). Ctenophoroidea [ 5Ctenoplana ]111 nia ]102 Subregnum [ 6.8Hydra ] Subphylum Bryophytina [ 5.8Bryum ] Phylum 50. [ 6Actinia ] Classis 4(175). Takakiopsida [ 5Takakia ] Classis 1(198). Zoantharia [ 5Actinia ] 5(176). [ 5Sphagnum ]103 2(199). Alcyonaria [ 5Alcyonium ] 6(177). Andreaeopsida [ 5Andreaea ]104 Phylum 51. [ 6Hydra ]* 7(178). Polytrichopsida [ 5Polytrichum ]*105 Classis 1(200). Staurozoa [ 5Lucernaria ] 8(179). [ 5Bryum ]106 2(201). Cubozoa [ 5Carybdea ] Subphylum Anthocerotophytina [ 5.8Anthoceros ] 3(202). Scyphozoa [ 5Aurelia ] 4(203). Hydrozoa [ 5Hydra ] 5(204). Polypodiozoa [ 5Polypodium ] stat.m. 94 Incl. Pavlovophyceae. Phylum 52. [ 6Myxidium ] 95Incl. Cyanidium, Galdieria, Glaucosphaera. Classis 1(205). Malacosporea [ 5Tetracapsula ]112 96Incl. , . 2(206). Myxosporea [ 5Myxidium ]113 97Incl. Pyraminomonadales, Mamiellales, Nephroselmidales, Subregnum [ 6.8Araneus ] . Infraregnum Deuterostomia [ 6.5Felis ] s.a. 98Incl. Helicosporidium, Geminella and Microspora i.s. 99Incl. Conjugatophyceae. 100Incl. Treubiales. 107Incl. Leiosporocerotales. 101Incl. Blasiales, Sphaerocarpales, Monocleales. 108Incl. Isoetopsida stat.m. 102Incl. Pelliales, Fossombroniales, Pallaviciniales. 109Incl. Cupressopsida. 103Incl. Ambuchanania. 110Incl. i.s. et dubitativa. 104Incl. stat.m.i. 111Incl. Tentaculifera, Nuda. 105Incl. Oedipodiales stat.m.i., Tetraphidales stat.m.i. 112= Tetracapsula, Buddenbrockia. 106Incl. Buxbaumiales sed.m., Diphysciales, Timmiales. 113= Actinomyxidia. Protistology · 11

Phylum 53. [ 6Convoluta ] sed.m. Subphylum Platyhelminthes [ 5.8Fasciola ] Classis 1(207). [ 5Convoluta ] Classis 6(234). Catenulida [ 5Catenula ] 2(208). [ 5Nemertoderma ] 7(235). [ 5Planaria ]*121 3(209). Xenoturbelloidea [ 5Xenoturbella ] 8(236). Neodermata [ 5Fasciola ]122 stat.m. Phylum 60. KAMPTOZOA [ 6Pedicellina ] Phylum 54. ECHINODERMATA [ 6Echinus ] Classis 1(237). Cycliophora [ 5Symbion ] stat.m. Classis 1(210). Crinoidea [ 5Metacrinus ] 2(238). [ 5Pedicellina ] sed.m. 2(211). Ophiuroidea [ 5Ophiura ] Phylum 61. [ 6Limax ] 3(212). Asteroidea [ 5Asterias ]114 Classis 1(239). Aplacophora [ 5Neomenia ] s.a.123 4(213). Echinoidea [ 5Echinus ] 2(240). Polyplacophora [ 5Chiton ] 5(214). Holothurioidea [ 5Holothuria ] 3(241). Monoplacophora [ 5Monoplacophorus ] Phylum 55. HEMICHORDATA [ 6Balanoglossus ] 4(242). [ 5Mytilus ] Classis 1(215). Enteropneusta [ 5Balanoglossus ]* 115 5(243). Scaphopoda [ 5Dentalium ] 2(216). [ 5Rhabdopleura ] 6(244). [ 5Limax ] Phylum 56. CHORDATA [ 6Felis ] s.a. 7(245). Cephalopoda [ 5Octopus ] Subphylum Cephalochordata [ 5.8Branchiostoma ] Phylum 62. TENTACULATA [ 6Lingula ] s.aggr. Classis 1(217). Leptocardii [ 5Branchiostoma ] Classis 1(246). [ 5Flustra ] stat.m.124 Subphylum Vertebrata [ 5.8Felis ] 2(247). [ 5Plumatella ] Classis 2(218). Cyclostomata [ 5Myxine ] 3(248). Phoronida [ 5Phoronis ] 3(219). Chondrichtyes [ 5Squalus ] 4(249). Linguliformea [ 5Lingula ] 4(220). Actinopterygii [ 5Perca ] 5(250). Craniiformea [ 5Craniscus ] 5(221). Dipnoi [ 5Protopterus ]116 6(251). Rhynchonelliformea [ 5Rhynchonella ] 6(222). Amphibia [ 5Rana ] Phylum 63. [ 6Nemertes ] 7(223). Reptilia [ 5Gecko ]* Classis 1(252). Archynchocoela [ 5Archynchonemertes ] 8(224). Aves [ 5Gallus ] stat.m.s. 2(253). Nemertini [ 5Nemertes ]125 9(225). Mammalia [ 5Felis ] Phylum 64. ANNELIDA [ 6Nereis ] Subphylum Tunicata [ 5.8Ascidia ] stat.m.i. Classis 1(254). Myzostomida [ 5Myzostoma ] sed.m. Classis 10(226). Ascidiacea [ 5Ascidia ]117 2(255). Sipunculida [ 5Sipunculus ] stat.m.126 Infraregnum Protostomia [ 6.5Araneus ] 3(256). Polychaeta [ 5Nereis ] s.a.127 Superphylum Chaetozoa† [ 6.2Sagitta ] Phylum 65. ORTHONECTA [ 6Rhopalura ] sed.m. Phylum 57. [ 6Sagitta ] Classis 1(257). [ 5Rhopalura ] Classis 1(227). Sagittoidea [ 5Sagitta ] Superphylum [ 6.2Araneus ] Superphylum [ 6.2Nereis ] Phylum 66. [ 6Ascaris ] s.a. Phylum 58. RHOMBOZOA [ 6Dicyema ] sed.m. Subphylum Scalidomorpha [ 5.8Priapulus ] s.s. Classis 1(228). [ 5Dicyema ] Classis 1(258). [ 5Kinorhynchus ] Phylum 59. PLATYZOA [ 6Fasciola ] s.a. 2(259). [ 5Priapulus ] Subphylum Gastrotricha [ 5.8Macrodasys ] Subphylum Nematoidea [ 5.8Ascaris ] stat.m.i. Classis 3(260). Nematoda [ 5Ascaris ]128 Classis 1(229). Gastrotrichoidea [ 5Macrodasys ] 4(261). [ 5Gordius ] Subphylum Gnathostomulea† [ 5.8Gnathostomula ] 5(262). [ 5Nanaloricus ] stat.m.i. Phylum 67. TARDIGRADA [ 6Macrobiotus ] Classis 2(230). Gnathostomulida [ 5Gnathostomula ]118 Classis 1(263). Tardigradoidea [ 5Macrobiotus ]129 Subphylum [ 5.8Rotifer ] s.s. Phylum 68. ARTHROPODA [ 6Araneus ] s.a. Classis 3(231). Micrognathozoa [ 5Limnognathia ] 4(232). Diurodrilidae [ 5Diurodrilus ] sed.m.119 121Incl. Macrostomida, Polycladida, Neoophora s.s. 5(233). Syndermata [ 5Rotifer ]120 122Incl. , , . 123Incl. Caudofoveata stat.m.i. 114Incl. Xyloplax. 124Incl. . 115Incl. Planctosphaera. 125Incl. Anopla, Enopla. 116Incl. Latimeria sed.m. 126Incl. Sipunculoidea, Phascolosomatidea. 117Incl. Thaliacea, Larvacea stat.m. 127Incl. Lobatocerebrum sed.m., Jennaria sed.m., Aelosomata, 118Incl. Filospermoidea, Bursovaginoidea. , Echiura stat.m., Sibolginida (Pogonophora et Vesti- 119Sed.poss. juxta Polychaeta. mentifera). 120Incl. Hemirotifera stat.m. (Seison, et Bdel- 128Incl. Adenophorea, . loidea), Monogononta. 129Incl. , Mesotardigrada i.s., Eutardigrada. 12 · Alexey B. Shipunov

Subphylum Lobopoda [ 5.8Peripatus ] stat.m. download as a BibTEX file from http://herba.msu. Classis 1(264). [ 5Peripatus ] ru/shipunov/os/current/synat.bib. Subphylum Cheliceromorpha [ 5.8Araneus ] Adl S.M., Simpson A.G.B., Farmer M.A., An- Classis 2(265). [ 5Araneus ]130 dersen R.A., Anderson O.R., Barta J.R., Bowser 3(266). Pantopoda [ 5Pycnogonum ] S.S., Brugerolle G., Fensome R.A., Fredericq S., Subphylum [ 5.8Scolopendra ] James T.Y., Karpov S., Kugrens P., Krug J., Lane Classis 4(267). Chilopoda [ 5Scolopendra ] C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., 5(268). Pauropoda [ 5Pauropus ] Mccourt R.M., Mendoza L., Moestrup J., Mozley- 6(269). Diplopoda [ 5Julus ] Standridge S.E., Nerad T.A., Shearer C.A., Smir- 7(270). Symphyla [ 5Symphylella ] nov A.V., Spiegel F.W. and Taylor M.F.J.R. 2005. Subphylum Pancrustacea [ 5.8Scarabaeus ] The new higher level classification of Classis 8(271). Branchiura [ 5Argulus ] stat.m. with emphasis on the taxonomy of protists. J. Euk. 9(272). [ 5Cephalobaena ] i.s. Microbiol. 52 (5), 399–451. 10(273). Ostracoda [ 5Cypris ] Blackwell W.H. 2004. Is It Kingdoms or Do- 11(274). Cephalocarida [ 5Hutchinsoniella ] mains? Confusion and Solutions. The American 12(275). [ 5Scarabaeus ] s.a.131 Biology Teacher. 66 (4), 268–276. 13(276). Branchiopoda [ 5Daphnia ] Buedel B. and Scheidegger C. 2008. Thallus 14(277). Copepodoidea [ 5Cyclops ] 132 morphology and anatomy. In: Lichen Biology. 2nd 15(278). Thecostraca [ 5Lepax ] 133 ed. (Ed. T.H. Nash). Cambridge University Press, 16(279). Remipedia [ 5Speleonectes ] Cambridge. pp.40–69. 17(280). Malacostraca [ 5Cancer ]134 Cavalier-Smith T. 1998. A revised six-kingdom system of life. Biol. Rev. 73 (2), 203–266. Cavalier-Smith T. 2004. Only six kingdoms of Acknowledgments life. Proc. R. Soc. B. 271, 1251–1262. Cavalier-Smith T., Chao E.E., Stechmann A., Author is very grateful to books which initiated Oates B. and Nikolaev S. 2008. Planomonadida ord. his child-born interest of global taxonomy, first of all nov. (Apusozoa): ultrastructural affinity with Micro- to “Homunculus” of N. Plavilschikov, and famous nuclearia podoventralis and deep divergences within Russian popular encyclopedias “Zhizn’ rastenij” Planomonas gen. nov. . 159 (4), 535–562. and “Zhizn’ zhivotnykh”. There were many fruit- Corliss J.O. 1984. The kingdom Protista and its ful discussions with A. Aleshin, I. Mirabdullaev, A. 45 phyla. BioSystems. 17 (2), 87–126. Mylnikov, K. Mikrjukov, Th. Cavalier-Smith, L. Corliss J.O. 1989. Protistan diversity and origin Margulis, D. Patterson, S. Glagolev, A. Rautian, of multicellular/ multitissued organisms. Boll. Zool. N. Kluge, A. Chernyshev, V. Filin, D. Sokoloff, 56, 227–234. anonymous reviewer and many others which were Corliss J.O. 1994. An iterim utilitation [“user- the sources of significant improvement of the clas- friendly”] hierarchial classification and characteri- sification. zation of protists. Acta Protozool. 33 (1), 1–51. Cox C.J., Foster P.G., Hirt R.P., Harris S.R. and Embley T.M. 2008. The archaebacterial origin Selected References of eukaryotes. Proc. Natl. Acad. Sci. USA 105, 20356–20361. Nearly 1700 references (mostly articles from Dagan T. and Martin W. 2006. The tree of one 1980s, but also some important books and older percent. Genome Biol . 7 (10), 118. works) have been used for the construction of clas- Deutsch J.S. 2008. Do acoels climb up the sification. Here we list only references cited directly “Scale of Beings”? Evol. Devel. 10, 135–140. in the introductory text; the full list is available for Dubois A. 2007. A partial but radical solution to the problem of nomenclatural taxonomic infla- tion and synonymy load. Biol. J. Linn. Soc. 93, 857–863. 130Incl. Xiphosura. Hampl V., Hug L., Leigh J.W., Dacks J.B., 131Incl. Entognatha stat.m. Lang B.F., Simpson A.G.B. and Roger A.J. 2009. 132Incl. Mystacorarida. Phylogenomic analyses support the monophyly of 133Incl. Tantulocarida, Facetotecta, Ascothoracida. Excavata and resolve relationships among eukaryo- 134Incl. Leptostraca. Protistology · 13 tic “supergroups”. Proc. Natl. Acad. Sci. USA. 106 and general system of insects, with classification of (10), 3859–3864. primary wingless and paleopterous insects. Lan’, Hibbett D.S., Binder M., Bischoff J.F., Black- St.Petersburg. well M., Cannon P.F., Eriksson O.E., Huhndorf Koonin E.V. and Wolf Y.I. 2008. Genomics of S., James T., Kirk P.M., Luecking R., Lumbsch bacteria and archaea: the emerging dynamic view of T., Lutzoni F., Matheny P.B., Mclaughlin D.J., the prokaryotic world. Nucleic Acids Res. 36 (21), Powell M.J., Redhead S., Schoch C.L., Spatafora 6688-6719. J.W., Stalpers J.A., Vilgalys R., Aime M.C., Aptroot Lake J.A., Servin J.A., Herbold C.W. and Sko- A., Bauer R., Begerow D., Benny G.L., Castlebury phammer R.G. 2008. Evidence for a new root of the L.A., Crous P.W., Dai Y.C., Gams W., Geiser D.M., tree of life. Syst. Biol. 57 (6), 835–843. Griffith G.W., Gueidan C., Hawksworth D.L., Linnaeus C. 1767. Systema naturae, per regna Hestmark G., Hosaka K., Humber R.A., Hyde K., tria naturae, secundum classes, ordines, genera, Ironside J.E., Koljalg U., Kurtzman C.P., Larsson species, cum characteribus, differentiis, synonymis, K.H., Lichtwardt R., Longcore J., Miadlikowska J., locis. Typis Ioannis Thomae. Miller A., Moncalvo J.M., Mozley-Standridge S., Ljubarskij G.J. 1996. Arhetype, style and rank Oberwinkler F., Parmasto E., Reeb V., Rogers J.D., in the biological systematics. KMK Ltd., Moscow Roux C., Ryvarden L., Sampaio J.P., Schuessler (in Russian). A., Sugiyama J., Thorn R.G., Tibell L., Untereiner Martin W. and Koonin E.V. 2006. A positive W.A., Walker C., Wang Z., Weir A., Weiss M., definition of prokaryotes. Nature. 441, 868. White M.M., Winka K., Yao Y.J. and Zhang N. Merezhkovsky K.S. 1909. The Theory of Two 2007. A higher-level phylogenetic classification of Plasms as the Basis of Symbiogenesis, a New Study the Fungi. Mycol. Res. 111 (5), 509–547. or the Origins of Organisms. Proc. Studies Imperial Ivanov A.V. 1968. The origin of multicellular Kazan Univer. (in Russian). . Nauka, Leningrad (in Russian). Smith A.I. 1939. The comparative histology of Johnson B. and Shneiderman B. 1991. Treem- some of the Laminariales. Am. J. Bot. 26, 571–585. aps: a space-filling approach to the visualization of Stechmann A. and Cavalier-Smith T. 2002. hierarchical information structures. In: Proc. 2nd Rooting the tree by using a derived gene Intern. IEEE Visualization Conf. pp.284–291. fusion. Science. 297, 89–91. Kaiser H.E. 1985a. Functional comparative Swinburne R. 1997. Simplicity as evidence of histology. 2. Communication: organismic taxonomy truth (Aquinas Lecture). Marquette Univ Pr. ( and animal taxonomy). Gegenbaurs Morphol Tatarinov L.P. and Shimanskij V.P. (Eds.) 1984. Jahrb. 131, 643–699. Handbook of systematics of fossil organisms (taxa Kaiser H.E. 1985b. Functional comparative of the ordinal and higher groups). Nauka, Moscow histology. 3. Communication: distribution of or- (in Russian). ganismic tissues. Gegenbaurs Morphol. Jahrb. 131, Yutin N., Wolf M.Y., Wolf Y.I. and Koonin E.V. 701–716. 2009. The origins of phagocytosis and eukaryogen- Kluge N.J. 2000. Modern systematics of insects. esis. Biol. Direct. 4, 9. Part I. Principles of systematics of living organisms

Address for correspondence: Alexey Shipunov. Marine Biological Laboratory,Woods Hole, Massachusetts, USA 02543, e-mail: [email protected]