Isotopic Exchange Reactions in Liquid Hydrogen Sulfide
Total Page:16
File Type:pdf, Size:1020Kb
ISOTOPIC EXOHAUGE REACTIONS Il'T LI~UID hYDROGEl SULF'IDE by JOHN RA"D. OND ~ ICKELSEl A THESIS submitted to OREGON STATE COLLEGE 1.n partial fulfillment of the requirements for the degree of DOCTOR OF' PHILOSOPHY June 1956 lSEBoYsDt Redacted for Privacy lusolrtr Frof,clror of, Bhmlrtry Ia Cbrrgo of, ltrJor Redacted for Privacy Chrlrura of Drprrtntnt Shod,rtry Redacted for Privacy Ghrlrnrn of, Sohool Ondurtr Sul.ttal Redacted for Privacy Dmn of Orr&urtr Sobool Drtr tbrrh Ia prtrcat Eyprd by Joha il. Itolrllra ACKNO LEDGMENT This opportunity 1s taken to thank Professor T. H, Norris for his time and energy that he has generously contributed throughout the course of this work . The work was supported ln part by the tomio Energy Commission under con tract No . T (46-l)-244 . TABLE OF COllTENTS Page I. INTRODUCTION. • • • • • • • • • • • • • • • l II. EXPERIMENTAL. • • • • • • • • • • • • • • • 10 A. Handling of Volatile Materials••••• 10 B. Counting Procedure••••••••••• l~ c. Preparation of Materials•••••••• 15 1. Hydrogen sulfide•••••••••• 15 2. Sulfur•••••••••••••• • 16 3. Phosphorus pentasulflde • • • • • • 16 4. Triethylamine • • • • • • • • • • , 1'7 5. Carbon disulfide, •••••••• • 1'7 6. Ethyl mercaptan • • • • • • • • • • 18 7. Demethyl sulfide, ••••••••• 18 8. A.ntimony pentasulfide, antimony trlsulflde and arsenic trisulflde • 18 9 . Arsenic pentasulfide•••••••• 18 10. Labeled sulfur. • • • • • • • • • • 19 11. Labeled hydrogen sulfide. • • ••• 20 12. Labeled carbon disulfide•••••• 20 III. RUN PROCEDURE AND DATA •• • • • • • • • • • 24 A, Elemental Sulfur Exchange Experiments • 24 B. Elemental Sulfur Exchange Experiments with Triethylamine Added•••••••• 32 1. Observations on sulfur solub111t1es and on the residue from triethylamlne•containlng solutions • • • • • • • • • • • • • 32 2. Exchange experiment procedures••• 33 c. Arsenic Tr1sulf1de Exchange Exp eriments • • • • • • • • • • • • • • 42 D. Arsenic Pentasulfide Exc hange Experiments .• • • • • • • • • • • • • • 46 E. Antimony trisulfide and Antimony Pentasulfide Exchange Experiments • • • 47 • Exchange Experiments with Phosphorus Pentasulfide •••••••••••••• 49 Ethyl Mercaptan Exchange Expertments•• 61 Dimethyl Sulfide Exchange Experiments • 63 Carbon Disulfide Exchange Experiments • 64 IV. RESULTS • • • • • • • • • • • • • • • • • • 8'7 A. Elemental Sulf~r Exeh~1ge Experiments • 87 B. Exchange Experiments with Group V Sulfldea•••••••••••••••• 89 c. Organic Sulfide Exchange Exper1ments •• 94 • Page D. Carbon Disulfide Exchange Experiments • 95 1. The observed exchange rates • • • • 95 2. Depe,ndence of the rate on reactant concentrations • • • • • • 101 3. Trial rate laws • • • • • • • • • • 107 4. _Rate variation with temperature • • 116 V. DISCUSSION. • • • • • • • • • • • • • • • • 120 A· G~oup V Sulfides Exchange Experiments • 120 B. Ele.mental Sulfur Exchange Exp~riments • 126 c. Organic Sulfide Exchange Experiments. • 128 D. Carbon Disulfide Exchange Experiments • 129 VI. SUMMARY • • • • • • • • • • • • • • • • • • "137 VII. BIBLIOGRAPHY. • • • • • • • • • • • • • • • 1!9 LIST OiJ1 TABLES . I. Eleme-ntal Sulfur Excb.ange Experiments at 2soc ••••••••••••••••• rr. Elemental Sul fur Exchange E;xperiments at ooc.. • • • . • • • • • • • • • • • • 31 III. Element 1 Sulfttr Exchange Experiments with Triethylamine Added • • • • • • • • 36 IV. Arsenio Tr1sulf1de Exchange Exper iments•••••••••••• , •• 45 v. Arsenic Pentasulf1de Exchange Ex.p rlments. • • • • • • • • • • • • • • 48 VI. Antimony Sulfide Exch e •xper1ments•• 50 VII. Phosphorus Pentasulf1de Exchange Exper1ments . • • • • • • • • • • • • • • 53 VIII. Phosphorus Pentasulf1de Exchange Experiments at l 4 .50C . • • • •. • • • • • 54 IX . Phosphor us Pentasulfide Exchange Experiments at •1500 ••••••• • • • fl 55 x. Phosphorus Pentasulfide Exchange Experiments at - 7eOC ••••••• • • • • 56 XI . Phosphorus Pentasulfide Exchange Experiments at 25oc . DoublewTlp Reaction Tubes: Inactive Solvent Removed before Addition of Labeled Solvent. • • • • • • • • • • • • • • • • 59 XII. Phosphorus Pentasulfide Exohange Experiments at 2500. Double- Tip Reaction Tubes: Labeled Solvent Added d1rectl1 to In1t1 1 Inactive Solvent. • • • • • • , • • • • • • • • • 60 XIII. Ethyl Mercaptan Exchange per1ments • • 62 XIV. Ca~bon Disulfide Exchange Experiments at 26°0. (No Triethyl ine) , ••••• 71 xv. Carbon Dis·ul:f1de. Exchange Experiments at - 230C.. • • • • • • • • • 72 XVI .• Carbon Disulfide Exchange Experim nt.s at -5600... • • • • • • • • • 83 XVII. Carbon Disulfide Exchange Experiments at 000 ••••• . .. ~ 84 XVIII. Carbon Disulfide Exchange Experiments at 12oc•••• . ' . .. .. 86 XIX. Carbon Disulfide Exchange Experiments at 2500 •••• • • • • • • • 86 XX. Carbon Disulfide Exchange Experimentst Rates an~ Rate· ConstQilts • • •••• • • 97 XXI. Variation of Rate Constants with Temperature••••• ·• ••••• ·• • • • 118 LIST 01, F'IG·URES 1. Log{l-F) versus T~e for Phosphorus Pentasul fide Exchange Experiments ••• • • 52 2. Log (l•F) versus Time for hosphorua Pentasulflde Exchange Experl ents: Double• Tip Re.act1on Tubes • • • • • • • • • 58 3. Typical Plot of Log (l-F) versus T1me for Carbon Disulfide Exchange Experiment . • • • • • • • • • • • • • • • • 70 4. Rate-Temperature Dependence of hospt orus Pentasulflde Exchange. • • • • • 91 5 . Log Rate versus Log Carbon Disulfide Conc·entratlon •· • • • • • • • • • • • • • • 103 6 . Log Rate versus Log Triethylamine Concentration • • • • • • • • • • • • • • • 104 7. Log Rate versus Log Triethylamine Concentration • • • • • • • • ·• • • • • • • 106 a. Log Rate versus Log Triethylamine Concentration • • • • • • • • • • • • • • • lll 9. Log Rate versus Log Triethylamine Concentration • • • • • • • • • • • • • • • 113 10. Log Rate versus Log Carbon Disulfide Concentration • • • • • • . • • • • • • • • 115 11. Rate-Temperature Dependence of Carbon Disulfide Exchange • • • • • • • • • ll9 ISOTOPIC EXCHANGE REACTIONS IN LIQUID HYDROGEN SULFIDE I . INTRODUCTION ater, because of its plentiful supply, its ease ot isolation, and its ability to dissolve so many sub stances, is the most used and thus the most important solvent for the field of inorganic chemistry. Oonse• quently, whenever one thinks of the inorganic chemistry of solutions; w.ater as a solvent immediately comes to mind . Since water ionizes into hydrogen ions and hy droxide ions , an acid has come to be thought of as any material that causes an increase in the hydrogen ion concentration and a base as any material that causes an increase 1n the hydroxide ion concentration over that of pure water . This concept has come to be known as the Arhennius theory of acids and bases . Actually this theory is a special case of the t heory of solvent systems (7 , pp . l425- l428~ . The latter theory states that a solvent ionizes into a cation and an anion; any solute that causes an increase in the cation concen tration is an acid and any solute that causes an in crease in the anion concentration over that of the pure solvent is a base . The existence of these non- aqueous ionizing solvents yields an interesting field for the inorganic chemist to explore in order to gain more 2 insight into his chemical. envirO;nment ·• Anhydrous liquid ammonia probably represents the most studied and thus the best known of all of the non• aqueous ionizing olvents (13, pp .l5-75). Liquid am monia is thought of as ionizing into th ammonlQ~ ion (cation) and the amide ion (anion). Since the &m.lllonlum . !on 1 the cation, solutes such as mmon1um chloride or ammon!~ sulfate art not salts, s in the water sys• tam of chemistry, but acids, !nee they will increase the cation concentration eha.racteri.st1c of liquid am monia, Slm1larly, su h solutes as sodium amide or potass1wn amide are bases since th y .111 increase th anion concentration already present in liquid ammonia. ~any other non-aqueous ionizing solvents have been elthor investlgated to greater or lesser extent or· discusse in more or less detail (3, 284p. and 17, 367p.) Among these solvents are sulfur dioxide (17, pp . 20 -307), hydrogen sulfide (15, pp.l97-l98), phos• gene (3, pp.243-245), acetic acid (3, pp.l48-l7l), acetic anhydride (17, pp.307-34l), h1drogen cyanide (17, pp.l20-l68), and d1nitrogen tetroxide (2, pp.l874-l879). Until recently, the investigations of t nese solv~nts have employed the usual methods of phy sical and inorganic chemistry sueh as reaction product s.tudles, solu.b111 ty, electrical ·eonduot1v!.ty, conduct!• metric t1tratlona and freezing point depression 3 measurements . ith.in the last few years a new tool has been made available to the chemist . This is the use of radioactive isotopes, This new tool permits a testing of ionization schemes that have been proposed by various workers in the field of non- aqueous solvents . At Oregon State College there has been in progress for some tlme a project involving the application of radioisotopes to the study of variou of these solvents. Among the solvents investigated have been sulfur dioxide (19, pp . l346· 1352) , sulfuric acid, hydrogen sulfide (27 , 70 numb . leaves), phosgenel, acetic acid, and acetic anhydrid {12, pp . 4985-499l); work with the first three is still going on. The present research is concerned specifically with investigation of chemical phenomena in the solvent liquid hydrogen sulfide by means of' the radioactive tracer technique , The results serve in part to cheek earlier proposals and in part to extend the general knowledge of the nature of chemical reactions 1n this medium . The concept of .liquid hydrogen