Thermodynamic Investigation on As(III) and As(V) in Aqueous Solution and Extraction from Natural Water Samples by Polymer Inclusion Membranes (Pims)

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Investigation on As(III) and As(V) in Aqueous Solution and Extraction from Natural Water Samples by Polymer Inclusion Membranes (Pims) UNIVERSITÀ DEGLI STUDI DI MESSINA Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali DOTTORATO DI RICERCA IN SCIENZE CHIMICHE XXXII CICLO Thermodynamic investigation on As(III) and As(V) in aqueous solution and extraction from natural water samples by Polymer Inclusion Membranes (PIMs) Donatella Chillé Supervisor Prof. Claudia Foti Coordinator Prof. Paola Dugo Academic Year 2018 – 2019 This thesis was finantial supported by FSE (Fondo Sociale Europeo) regional fund. Project: Dottorati FSE XXXII Ciclo Unime CIP 2014.IT.05.SFOP.014/3/10.5/9.2.02/0006 CUP G47E16000030009 “Tenta l’incompiuto, lo straordinario Vivi in eccesso, cominciando adesso Goditi il trionfo, crea il tuo miracolo Cerca il vero amore dietro ad ogni ostacolo!” (Il mestiere della vita – Tiziano Ferro) Acknowledgements Three years could appear like an infinitely long period of time but now that I am going to write my doctoral thesis, I realize that they have passed really quickly. During this period, I had the pleasure to meet so many people who have enriched me from a professional but mainly human point and to them I address my thanks. However, there are people who deserve to be mentioned as they were pillars for me during this experience. In particular, my supervisor Prof. Claudia Foti, a very important person who, every day, guided my research activity always providing me with valuable advices. Also every single member of the analytical research group and especially Anna, Rosalia and Antonio with whome, having to share the office, I also shared “joys and sorrows”. Thank you very much for EVERYTHING. I spent part of the second year of my PhD at the University of Girona (Spain), guest of the Prof. Clàudia Fontàs. A kind person, always available both at work and out, who allowed me to know, appreciate and even "export" a research line very far from mine. Receiving compliments, especially in the context of an international congress, was a great satisfaction for me! Many thanks also to Laura, Gemma and Ruben. You were really important figures for me because you made me feel like home from the first day I have been there, alleviating the lack of all the affections I had left in my beloved Sicily (or Chichilia), where you will always be welcome. Thanks also to Soetkin, Ibrahim, Marta and Mayra, who accompanied my days in the laboratory between a PIM and a laugh! Of course, I cannot fail to mention Enriqueta, always friendly and present for any suggestion, and Eva who patiently explained to me the principles of EDXRF, helping to carry out part of my research work. All of you will always have a special place in my heart! Among the special thanks, I cannot fail to include Fausta, my so-called left arm (since she is left-handed). We shared high school, graduation years and part of the PhD period, thus we can say that we have been supporting each other for more than half of our lives! Thanks for all the tips, relative to work and life, and to always being there even when we have been located in different countries. A deserved thanks goes to my FAMILY. My parents and my sister know that I am not a person of many words, but on this occasion I want to say that a good part of my success is due to them, to their advices, to their continuous encouraging me to overcome the limits that I have often imposed myself unjustifiably. Finally, I want also thank all the people who, in part, contributed to my research work. Especially, Prof. Anna Napoli and Dr. Donatella Aiello for the mass spectrometry measurements; Prof. Carmelo Sgarlata and Prof. Ottavia Giuffré for the calorimetric titrations; Dr. Franz Sajia, Dr. Sebastiano Trusso, Dr. Rosina Ponterio, Dr. Viviana Mollica Nardo and Dr. Fausta Giacobello for the computationl and Raman studies, as well as Dr. Giuseppe Cassone for the molecular dynamics simulations. Thank you so much! Index Aim of the work ........................................................................................................................ 1 Introduction .............................................................................................................................. 5 Section I: Experimental Section ............................................................................................ 13 1 Chemicals, analytical techniques, mathematical and computational approaches used for thermodynamic studies .................................................................................................... 14 1.1 Chemicals .......................................................................................................................... 14 1.2 Potentiometry ................................................................................................................... 16 1.2.1 General aspects ............................................................................................................... 16 1.2.2 Potentiometric equipment and procedure ....................................................................... 17 1.3 UV-Vis spectrophotometry ............................................................................................. 20 1.3.1 General aspects ............................................................................................................... 20 1.3.2 UV-Vis equipment and procedure ................................................................................... 21 1.4 Calorimetry ...................................................................................................................... 23 1.4.1 General aspects ............................................................................................................... 23 1.4.2 Instrumental equipment and procedure ........................................................................... 23 1.5 Raman Spectroscopy ....................................................................................................... 27 1.5.1 General aspects ............................................................................................................... 27 1.5.2 Instrumental equipment ................................................................................................... 27 1.6 Mass Spectrometry .......................................................................................................... 28 1.6.1 General aspects ............................................................................................................... 28 1.6.2 Instrumental equipment ................................................................................................... 29 1.7 Computational methods ................................................................................................... 30 1.7.1 Ab initio molecular dynamics .......................................................................................... 30 1.7.2 Ab initio molecular dynamics simulations of acid-base properties of As(III) and As(V) 30 1.7.3 Ab initio molecular dynamics simulation of As(III)- tla, tma and dmsa systems ............ 31 1.8 Calculations ....................................................................................................................... 32 1.8.1 Computer programs ......................................................................................................... 32 1.8.2 Equilibrium constants ...................................................................................................... 34 1.8.3 Dependence of the stability constants on the ionic strength ........................................... 35 1.8.4 Dependence of the stability constants on the Temperature ............................................ 37 1.9 Sequestering ability .......................................................................................................... 38 2 Analytical techniques for arsenic determination in water samples ................................ 39 2.1 Chemicals .......................................................................................................................... 39 2.2 Inductive Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) .................. 40 2.2.1 General aspects ............................................................................................................... 40 2.2.2 Instrumental equipment and procedure ........................................................................... 41 2.3 Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometry ............................... 42 2.3.1 General aspects ............................................................................................................... 42 2.3.2 Instrumental equipment and procedure ........................................................................... 43 Section II: Arsenic(III): acid-base properties and interaction with different classes of ligands in aqueous solution .................................................................................................... 44 1 As(III) acid-base properties: results and discussion ........................................................ 45 1.1 Computational results ...................................................................................................... 46 1.2 Experimental results ........................................................................................................ 47 1.2.1 Protonation constants determination .............................................................................. 47 1.2.2 Dependence on ionic strength ........................................................................................
Recommended publications
  • General Listing Background Document for the Inorganic Chemical Listing Determination
    GENERAL LISTING BACKGROUND DOCUMENT FOR THE INORGANIC CHEMICAL LISTING DETERMINATION August, 2000 U.S. ENVIRONMENTAL PROTECTION AGENCY ARIEL RIOS BUILDING 1200 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20460 TABLE OF CONTENTS Page LIST OF TABLES .............................................................ii LIST OF FIGURES ............................................................ii LIST OF APPENDICES .........................................................ii 1. INTRODUCTION .......................................................1 1.1 BACKGROUND ...................................................1 1.2 EXISTING INORGANIC CHEMICAL LISTINGS ........................2 1.3 OTHER EPA REGULATORY PROGRAMS AFFECTING THE INORGANIC CHEMICAL INDUSTRY ............................................3 2. INDUSTRY DESCRIPTION .........................................5 2.1 INDUSTRY PROFILE ..............................................5 2.2 INDUSTRY SECTORS .............................................5 2.2.1 Antimony Oxide ..............................................8 2.2.2 Barium Carbonate ............................................8 2.2.3 Boric Acid ..................................................8 2.2.4 Cadmium Pigments ............................................8 2.2.5 Inorganic Hydrogen Cyanide ....................................8 2.2.6 Phenyl Mercuric Acetate .......................................8 2.2.7 Dry Process Phosphoric Acid ....................................8 2.2.8 Phosphorous Pentasulfide .......................................8
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin Et Al
    USOO91 01662B2 (12) United States Patent (10) Patent No.: US 9,101,662 B2 Tamarkin et al. (45) Date of Patent: *Aug. 11, 2015 (54) COMPOSITIONS WITH MODULATING A61K 47/32 (2013.01); A61 K9/0014 (2013.01); AGENTS A61 K9/0031 (2013.01); A61 K9/0034 (2013.01); A61 K9/0043 (2013.01); A61 K (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot 9/0046 (2013.01); A61 K9/0048 (2013.01); (IL) A61 K9/0056 (2013.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir (58) Field of Classification Search Eini, Ness Ziona (IL); Doron Friedman, CPC ........................................................ A61 K9/12 Karmei Yosef (IL); Tal Berman, Rishon See application file for complete search history. le Ziyyon (IL); David Schuz, Gimzu (IL) (56) References Cited (73) Assignee: Foamix Pharmaceuticals Ltd., Rehovot U.S. PATENT DOCUMENTS (IL) 1,159,250 A 11/1915 Moulton (*) Notice: Subject to any disclaimer, the term of this 1,666,684 A 4, 1928 Carstens patent is extended or adjusted under 35 1924,972 A 8, 1933 Beckert 2,085,733. A T. 1937 Bird U.S.C. 154(b) by 0 days. 2,390,921 A 12, 1945 Clark This patent is Subject to a terminal dis 2,524,590 A 10, 1950 Boe claimer. 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely 2,767,712 A 10, 1956 Waterman (21) Appl. No.: 14/045,528 2.968,628 A 1/1961 Reed 3,004,894 A 10/1961 Johnson et al. (22) Filed: Oct. 3, 2013 3,062,715 A 11/1962 Reese et al.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • The Migration of Arsenic and Lead in Surface Sediments at Three Kids Mine Henderson, Nevada
    Publications (WR) Water Resources 12-1997 The Migration of arsenic and lead in surface sediments at Three Kids Mine Henderson, Nevada Douglas Brian Sims Follow this and additional works at: https://digitalscholarship.unlv.edu/water_pubs Part of the Biogeochemistry Commons, Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Geology Commons, and the Soil Science Commons Repository Citation Sims, D. B. (1997). The Migration of arsenic and lead in surface sediments at Three Kids Mine Henderson, Nevada. Available at: https://digitalscholarship.unlv.edu/water_pubs/21 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in Publications (WR) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. THE MIGRATION OF ARSENIC AND LEAD IN SURFACE SEDIMENTS AT THREE KIDS MINE HENDERSON, NEVADA by Douglas Brian Sims ^ Bachelor of Arts University of Nevada, Las Vegas 1995 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Water Resources Management r •:'•• 3 338 . Department of Geoscience University of Nevada, Las Vegas December 1997 The Thesis of Douglas B.
    [Show full text]
  • High Hazard Chemical Policy
    Environmental Health & Safety Policy Manual Issue Date: 2/23/2011 Policy # EHS-200.09 High Hazard Chemical Policy 1.0 PURPOSE: To minimize hazardous exposures to high hazard chemicals which include select carcinogens, reproductive/developmental toxins, chemicals that have a high degree of toxicity. 2.0 SCOPE: The procedures provide guidance to all LSUHSC personnel who work with high hazard chemicals. 3.0 REPONSIBILITIES: 3.1 Environmental Health and Safety (EH&S) shall: • Provide technical assistance with the proper handling and safe disposal of high hazard chemicals. • Maintain a list of high hazard chemicals used at LSUHSC, see Appendix A. • Conduct exposure assessments and evaluate exposure control measures as necessary. Maintain employee exposure records. • Provide emergency response for chemical spills. 3.2 Principle Investigator (PI) /Supervisor shall: • Develop and implement a laboratory specific standard operation plan for high hazard chemical use per OSHA 29CFR 1910.1450 (e)(3)(i); Occupational Exposure to Hazardous Chemicals in Laboratories. • Notify EH&S of the addition of a high hazard chemical not previously used in the laboratory. • Ensure personnel are trained on specific chemical hazards present in the lab. • Maintain Material Safety Data Sheets (MSDS) for all chemicals, either on the computer hard drive or in hard copy. • Coordinate the provision of medical examinations, exposure monitoring and recordkeeping as required. 3.3 Employees: • Complete all necessary training before performing any work. • Observe all safety
    [Show full text]
  • Laboratory Safety and Chemical Hygiene Plan
    Western Kentucky University Laboratory Safety and Chemical Hygiene Plan Rev. 12/10/2018 Laboratory Safety and Chemical Hygiene Plan Table of Contents 1 Introduction 7.3 Safely Handling Particularly Hazardous 1.1 Purpose Substances 1.2 Regulatory Basis 7.4 Nanomaterials and Nanoparticles 8 Emergency Planning 1.3 Scope 8.1 Emergency Procedures for Selected 2 Definitions Emergencies 3 Authority, Roles, and Responsibilities 9 Laboratory Security Measures 3.1 University Environmental Health and Safety 3.2 Chemical Hygiene Officer Appendix I – Laboratory Safety Training 3.3 Deans, Directors, and Department Heads or Documentation Chairs of Academic and Administrative Units Appendix II –Standard Operating Procedures 3.4 Laboratory Supervisors Template 3.5 Laboratory Workers & University Students Appendix III – Emergency Phone Number List Door 4 Standard Operating Procedures Posting 5 Laboratory Safety Guidelines Appendix IV – Chemical Container Compatibility 5.1 Controlling Chemical Exposure Appendix V – Hierarchy of Control Methods (visual) 5.2 Laboratory Safety Training 5.3 Personal Protective Equipment Appendix VI – Laboratory Safety Training Checklist 5.4 Medical Consultation Appendix VII – Laboratory Safety Inspection Checklist 5.5 Laboratory Safety Inspections Appendix VIII – Safe Work Practices for Laboratory 6 Laboratory Safety Systems & Equipment Fume Hoods 6.1 Fume Hoods Appendix IX – Sample Weekly Eye Wash Activation Record 6.2 Safety Interlocks and Alarms 6.3 Eye Wash and Safety Showers Appendix X – Chemical Compatibility Charts 6.4 Fire Extinguishers Appendix XI – GHS Label Elements and Pictograms 7 Chemical Hygiene Appendix XII – List of Highly Toxic Substances 7.1 General Principles Appendix XIII – Laboratory Safety Contacts 7.2 Carcinogens, Reproductive Toxins, and Acutely Toxic Chemicals Page 2 of 46 Laboratory Safety and Chemical Hygiene Plan 1.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • Spectra Library Index Ichem/SDBS Raman Library
    Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン S p e c t r a L i b r a r y I n d e x (Ver. 40) Ichem / SDBS Raman Library ライブラリー名:ラマンスタンダードライブラリー 商品番号:60001-40 株式会社 エス・ティ・ジャパン 〒103-0014 東京都中央区日本橋蛎殻町 1-14-10 Tel: 03-3666-2561 Fax:03-3666-2658 http://www.stjapan.co.jp 1 【販売代理店】(株)テクノサイエンス Tel:043-206-0155 Fax:043-206-0188 https://www.techno-lab-co.jp/ Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン ((1,2-DIETHYLETHYLENE)BIS(P-PHENYLENE))DIACETATE ((2-(3-BENZYLSULFONYL-4-METHYLCYCLOHEXYL)PROPYL)SULFONYLMETHYL)BENZENE ((2,4,6-TRIOXOHEXAHYDRO-5-PYRIMIDINYL)IMINO)DIACETIC ACID ((2-CARBOXYETHYL)IMINO)DIACETIC ACID ((2-HYDROXYETHYL)IMINO)DIACETIC ACID ((2-NITROBENZYL)IMINO)DIACETIC ACID ((2-SULFOETHYL)IMINO)DIACETIC ACID ((3-(1-BROMO-1-METHYLETHYL)-7-OXO-1,3,5-CYCLOHEPTATRIEN-1-YL)OXY)DIFLUOROBORANE ((N-BENZYLOXYCARBONYL-L-ISOLEUCYL)-L-PROLYL-L-PHENYLALANYL)-N(OMEGA)-NITRO-L-ARGININE 4-NITROBENZYL ESTER (-)-2-AMINO-1-BUTANOL (-)-2-AMINO-6-MERCAPTOPURINE RIBOSIDE (-)-6,8-P-MENTHADIEN-2-OL (-)-DIACETYL-L-TARTARIC ACID (-)-DIBENZOYL-L-TARTARIC ACID (-)-DI-P-ANISOYL-L-TARTARIC ACID (-)-DI-P-TOLUOYL-L-TARTARIC ACID (-)-KAURENE (-)-MENTHOL (-)-MYRTENOL (-)-N,N,N',N'-TETRAMETHYL-D-TARTARDIAMIDE (-)-N,N'-DIBENZYL-D-TARTRAMIDE (+)-1,3,3-TRIMETHYLNORBORNANE-2-ONE (+)-2-(2,4,5,7-TETRANITRO-9-FLUORENYLIDENEAMINOOXY)PROPIONIC ACID (+)-2-AMINO-1-BUTANOL (+)-2-PINENE (+)-3,9-DIBROMOCAMPHOR (+)-3-CARENE (+)-5-BROMO-2'-DEOXYURIDINE (+)-AMMONIUM 3-BROMO-8-CAMPHORSULFONATE (+)-CAMPHOR (+)-CAMPHOR OXIME (+)-CAMPHORIC ACID (+)-CATECHIN (+)-DI-P-ANISOYL-D-TARTARIC
    [Show full text]
  • 5. Summary and Conclusion
    5.1 Summary 215 5. Summary and Conclusion 5.1. Summary Nanoparticles are being developed for a multitude of applications in the fields of biomed- icine and reproductive biology to date. An appealing fabrication method is the pulsed la- ser ablation in liquids (PLAL), which enables the production of gold nanoparticles and also their in situ bioconjugation with biomolecules on the timescale of minutes. A crucial drawback of the PLAL process is generally that there is a mis- match between an efficient production yield and the maintenance of optimal conditions for the fabrication of functional nanobioconjugates. For a long time, only a maximum nanobioconjugate yield of approxi- mately 11 µg min-1 had been achieved using femtosecond-pulsed LAL that resulted in nearly 100 % integrity preservation of biomolecules.[39] That was the basis for the development of this thesis. To enhance the nanoparticle yield, it was studied whether longer pulse duration could increase the ablated gold mass per time. In fact, us- ing picosecond pulses for PLAL instead of femtosecond pulses, the nanobioconjugate yield was significantly increased by a factor of 15 to 168 µg min-1. Moreover, the pro- duced nanobioconjugates featured nearly 100 % integrity preservation when fabricated with strictly defined process parameters. Interestingly, the nanoparticle concentration could be further increased by the post-processing techniques of ultrafiltration and solvent evaporation. A maximum concentration factor of 2-3 was reached with ultrafiltration. The up-concentrated nanobioconjugates were functional; however the efficiency of ultrafiltra- tion was highly dependent on the material of the filter membrane. Moreover, high particle losses of approximately 40 % had to be accepted.
    [Show full text]
  • Arsenic and Its Compounds
    ARSENIC AND ITS COMPOUNDS (Arsenic) (Arsenic Trioxido) (Arsenic Chloride) (Copper Arsonito) (Copper Acoto Arsenito) (Arsine) (Cacodylic Acid) (Ethyl Arsine) (Cacodyl) GENERAL INFORMATION INDUSTRIAL HEALTH ASPECTS INDUSTRIES AND OCCUPATIONS SELECTED ABSTRACTS SELECTED REFERENCES OHIO, DEPARTMENT OF HEAlJfcft; R. E. MARKlHI^M. D. Lib Director of Heart]$STjj Columbus, Ohio 1940 This material compiled by the Adult Hygiene Division of the . Ohio Department of Health, assisted by the personnel of Work Projects Administration in Ohio, Official Project No. 665-42-5-413. 1940 ARSENIC AND ITS COMPOUNDS Arsenic and its compounds have been known from ancient times and it is found in nature in both the free and combined states. Arsenic was ex- tensively used as an agent for secret poisoning during the latter part of the 17th century, one Italian woman being credited with the death of 600 people. The danger of arsenic poisoning from wall paper was pointed out by Gmelin in 1839, It has since been shown that arsine and its derivatives may be produced by the action of certain molds on wall papers colored with arsenic bearing pigments. Poisoning may also occur from the consumption of beverages such as beer and wine from which spray residues have not been removed. Certain important industrial metals, particularly zinc, often contain significant traces of arsenic. In the presence of acids such metals give off hydrogen which converts the arsenic present into arsine. Such incidents, all too common in industry, frequently result in death of the workers ex- posed to the arsine gas. Accidental poisoning by arsine gas undoubtedly constitutes the most serious industrial hazard so far as arsenic and its compounds are concerned.
    [Show full text]