Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italics refer to Figures and page numbers in bold refer to Tables. acanthodians 74, 75, 77, 78 ostracode case study 106,107, 108-111 accuracy and database management 172, 173 Astraspis 77 acrotetides 26 athyridides 27 Actinodonta 41 Atlantic, Caribbean and East Pacific (ACEP) realm Actinostereon gregareum 133 153, 160, 163, 164 age of fossils, reliability assessment 173,174 atrypides 27 Allonychia 43 Australia 63,183 Aloconconcha 38 Australia/New Guinea block collision 160-162 alpha diversity 2, 99 Autolamellibranchia 39-45 Amadeus Basin 72 Avalonia 19 Ambonychia 43 biodiversity 86, 92, 95 Ambonychiopsis 43 brachiopod diversity profiles 31 Amorphognathus Biofacies 90 conodonts 88, 89, 91 amphibian diversity 183-187,188, 188,189, 191,192, Ordovician bivalves 36 193 Ordovician palaeogeography 28 analytical time averaging 174 palaeolatitudes 95 Ananterodonta 41 anaspids 74, 75, 78 Anatolepis 70, 72, 76, 79 Babinka 4142 Andean Basin Jurassic bivalve populations Baltica diversity 128, 134-136 biodiversity 92, 95 effect of Hispanic Corridor 131-134 conodont provinces 90 extinction rates 129, 130 Ordovician 18-19, 19-20, 28 immigration rates 131 rynchonelliformean brachiopods 15, 18 Angarella 19 Baltoscandian conodont provinces 86 angiosperms 1, 5, 5-6 Bambachian megaguilds 25 Cenozoic biodiversity 158 Bavarilla hofensis 56, 58 Cretaceous radiation 141,143-144 Belodella 90 Antarctic Peninsula 145, 146-147 Belodina 90 Anomalocoelia 43 Bennettitales 144,145 Anomalodesmata 44-45 beta (between habitat) diversity 2, 99, 157 Anomalodonta 43 Billingsella Association 15, 16,17, 20 anoxic events and planktonic foraminifera 122 biodiversity in Cenozoic 154, 158-164 Antarctic Peninsula biofacies Cretaceous flora 144-147 architecture 88-91, 93-95 plate setting 141-142 biogeographic cladogram, trilobites 61, 62 role in floristic radiation 147-149 biogeography, Palaeozoic 53-54, 76-78 Antarctica, geographic isolation 154-156 biotic provincialism 1 Anti-Atlas (Morocco) bivalves 35, 36 birds radiation 1 Apatobolus micula 101,102 bivalve molluscs 35-36 Apedolepis 72 Andean Basin - NW Europe study Aphelognathus-Oulodus Biofacies 90 database and analytical methods 128-130 Appalachignathus 90 results 128, 130, 131-134 Arabia, species diversity 183 heteroconch evolution 5 aragonitic foraminifera 121 Mesozoic-Cenozoic diversity 154 Arandospis 69 Ordovician 4,105 Arca spp. 37, 40 Autolamellibranchia 39-45 Arcomytilus pectinatus 133 Protobranchia 36-39 Arctic Ocean isolation 156 Black Mountain eustatic event 20 Arctochedra spp. 16, 17 Bohemia, rynchonelliformean brachiopods 15 Arenigomya 44 Bornholm 90-91 Armorica and rynchonelliformean brachiopods 15 Brachilyrodesma 40 Asaphopsis province 53 brachiopods Asaphopsis- Taihungshania-Neseuretus Fauna 55 Ordovician ash deposition effects 4, 101-104 diversity 105 202 INDEX mid Wales range chart 110 Coninae 5 radiation 19-20 conodonts 4, 70, 72, 73, 74, 75, 76 rhynchonelliformean 4, 13, 15, 16, 26 see also euconodonts Cambrian 14-16 Conoglobigerina 118, 121 distribution 14, 15 continental breakup and radiation 1, 6 migration potential 19 Copidens 41 Ordovician 16-18, 25, 26-27, 29-31 Corallidomus 44 radiation and palaeogeography 19-20 corals, Cenozoic diversity 160-163 Breviorthodonta 45 Cosmogoniophorina tenuicostata 44 Bryantodina 89 Coxiconcha 42 bryophytes 145 craniformeans 26 bryozoans 5, 19, 26,101,105 Cretaceous Burgess Shale Lagerst/itte 72 floristic radiation 143-144,145, 146-149 Burj Formation 16 Gondwana breakup 141-143 ocean circulation 159 planktonic foraminifera 115,116, 117, 120, 121, Cadomia 39 122-123 Calymenacean-Dalmanitacean Province 53 Cretaceous-Recent biodiversity 1, 5-6, 7 Calymenella 56, 58, 62, 63 Creux de l'ours 118 Calymenesun spp. 56, 57, 58, 63 crocodilians 176, 179 Cambrian Crozonaspis 54 bivalves 35, 45 crustacean evolution 5 diversity decline 26 Cryptolichenaria 19 mid-late period sea level 19 Ctenodonta 38 palaeogeography 70 Ctenostreon rugosum 133 rynchonelliformean brachiopods 14-16 Cuneamya 44, 45 skeletonized fauna 13 Curtognathus 90 vertebrates 69, 72, 74, 76, 78-79 Cycloconcha 41, 42 Cambrian Evolutionary Fauna 13, 14, 26 Cymatonota 45 cameralloideans 18. 19 Cymbithyris 16 Camnantia 42 Cyrtodonta 43 Camptonectes laminatus 133 Cyrtodontula 43 carbonate deposition in Ordovician 20 cyrtomatodonts 26-27 Cardiolaria 39 Cardoilarioidea 39-40 Caribbean Cenozoic coral diversity 160, 163 Dacryornya lacryma 133 Carminodonta 41 Dactiloceras 118 Carotidens 43 Dalmanellidina 26 Catamarcaia 42 databases 6, 180-182 Celtic faunas 27, 28, 29 application 175-177 Celtoconcha 42 use in diversity analysis 182-190 Cenozoic biodiversity and climate 154-164, 160-163 use in palaeoclimate analysis 190-197 Central American Isthmus (CAI) uplift 156, 163-164 scale 172-175 Central Asia, rynchonelliformean brachiopods 15, 18 structure 169-172 Cephalochordata 74, 75 taxonomy 175 Ceratomya concentrica 133 decapod evolution 5 cheilostome bryozoan, evolution 5 Deceptrix 37 Chengyiang Lagerst~tte 72 delta diversity 2 Chile, Jurassic bivalves 132 deltidoidonts 26-27 China fauna 63.75, 77, 86 Denticelox 43 chondrichthyans 74, 75, 78 Derenjal Formation 16, 17 Cimmeria 61 Devonian fauna 2, 25, 78, 79 cladograms, Reedocalymeninae 60, 61, 62, 64 Diaphelasma 18 Clarkella Fauna 15, 17, 18, 20 differentiation diversity 2 Classopolis 148 Diraphora Association 15, 16 Claueonychia 43 discinoideans 26 Clavatipollenites hughesii 148 dispersal potental 19 Cleionychia 43 Distomodus 92, 93 climate and biodiversity 4, 154-157, 162-165, 179,184 diversification and Ordovician volcanism 99-100, clitambonitidines 18, 19 103 Colpantyx 44 case study 106, 107, 108-111 Colpocoryphe 55 ecology 101-103 Compactogerina stellapolaris 122 gene pool 103-104 Coniferales 145 Dob's Lin 86 INDEX 203 Drake Passage opening 156 glaciation 4, 86 Dulcineia 41 glacioeustasy and diversity 163 global warming and floristic radiation 149 Globigerinina 122 East Uralian microcontinent 19 Globuligerina spp. 122 echinoderms and Ordovician diversity 18, 26,105 Glyptarca 39, 40, 42 Ectillaenus 55 Glyptonichia 43 Ekaterodonta 38 Glyptoria spp. 16,17 energy flux and diversity 180, 195 Glyptotrophia 18 Entolium corneolum 133 Gondwana Eocene area cladogram data 61, 63 Messel Shale 190-191,195 brachiopods 15, 16, 18, 20, 31 ocean circulation 155,159 breakup 141-143 Eocene-Oligocene ocean cooling 154, 156 Cambro-Ordovician faunal replacement 20 Eohomalonotus 54 floristic provincialism 146, 148 Eopecten spondyloides 133 Ordovician bivalves 36 epsilon diversity 2 Ordovician palaeogeography 28 Eridodychia 43 trilobites 53-54 Erismodus 90 vertebrates 74, 77 Eritropis 39-40 Goniophorina tenuicosta 44 escalation, Cenozoic 158 grain 172, 173-175 euconodonts 72, 73, 76 graptolite blooms 101,102 presence-absence matrices analysis 86-95 graptoloids, Ordovician diversity 105 Euramerican vertebrate phylogeny 75 Great Basin of Laurentia, brachiopod radiation 25, 26 Europe 183 Gresslya peregrina 133 Jurassic bivalve population gymnosperms 145 diversity 128, 136-138 effect of Hispanic Corridor 131-134 extinction rates 129,130 habitat islands 179-180 immigration rates 131 Haeuslerina helvetojurassica 122 extent defined 172 Haikouella 72 extinction events Haikouichthys 72 late Ordovician 78 Hamarodus-Dapsilodus-Sabbardella (HDS) Pliensbachian-Toarcian 127 Biofacies 90 methods of analysis 128-130 Hanchungolithus 55 results 130-131 Harding Sandstone 69, 70, 72 testing hypothesis 131-134 Harpoceras 118 extinction rates in bivalves 128-129,130, 131-133 Hemiprionodonta 40, 42 Hepatophytes 145 Heteroconchia 40-42 Falcatodonta 43 Heterodonta 40 Favusella 120, 122 heterostracans 77, 78 Fidera 36 Heterostraci 74, 75 fish, teleost 5 Hirnantian glaciation 4 flat file format 169,170 Hispanic Corridor 5, 128 floristic development in Cretaceous 1, 5, 5~6, effect on immigration of bivalves 129, 131-133, 134 143-144,145, 146-147 Homilodonta 37 role of Antarctic Peninsula 147-149 Huenella spp. 17, 18 role of global warming 149 Huenella-Palaeostrophia Association 15 foraminifera (planktonic) 5 evolution 121-123 Jurassic-Cretaceous distribution 118,120, 121 Iapetus Ocean 27-28, 28-29, 71, 86 Mesozoic development 115,116,117 Iberocoryphe 54 origins 118-121 Icriodella 92, 93 Fordilla 35 immigration of bivalves 129, 131 role of Hispanic Corridor 131-133 Inaequidens 40 galeaspids 74, 75, 77, 78 Indo-Pacific gateway 160,161 gamma diversity 2, 99 Indo-West Pacific (IWP) realm 153, 160, 164, 165 genetic diversity and ash falls 103-104 glacioeustasy and diversity 163 geographical range, role of 3 Miocene coral diversity 160-162 geograpic information systems (GIS) 169-170 Inoperna sowerbyana 133 Gervillaria daeformis 133 inventory diversity 2 ghost ranges, vertebrates 76, 78 island biogeography theory 179 204 INDEX Jamesella 16 Modiolopsis 44 Johnmartinia 39 Modiolus imbricatus 133 Jurassic Modiomorpha 44 bivalve study in Andean Basin-NW Europe molluscs 163 database and methods of analysis 128-130 see also bivalve molluscs results 128, 130, 131-134 mongolepids 72, 76, 77 planktonic foraminifera 115,116,117 Montagne Noire bivalves 35, 36 distribution 118,120 Moridunia 41 evolution 121-122 Moyeronia 19 origins 118-121 Myllokunmingia 72 Pliensbachian-Toarcian extinctions 127, 128 Myodakryotus 43 Myoplusia 39 Myxinoidea 74, 75, 76 Kerfornella 54 Kerguelen Plateau 143 Koagash Formation 17 Na Mo Formation 63 Kockelella 92 Natasia 38 Kutorginata 14-16 negative difference vegetation index 185, 186, 187, Kutorginide Fauna 15, 16 188, 190 Kutorina 16 neogastropod evolution 5 Kyjandy Formation
Recommended publications
  • Diversité Des Dinosaures Théropodes Dans Le Jurassique Des Falaises Des Vaches Noires (Calvados, Normandie)
    Parcours SYSTÉMATIQUE, ÉVOLUTION, PALÉONTOLOGIE Master Master Sciences de l’Univers, environnement, écologie Evolution, Patrimoine naturel et Sociétés Année 2018-2019 Mémoire de M2 SEP MONVOISIN Evariste Diversité des dinosaures théropodes dans le Jurassique des Falaises des Vaches Noires (Calvados, Normandie). Représentation artistique de Streptospondylus altdorfensis Meyer, 1832 devant les Falaises des Vaches Noires (Calvados, Normandie). Sous la direction de : Laurent Picot, Eric Buffetaut et Ronan Allain UMR 7207 - Centre de recherche sur la Paléospace l’Odyssée – Musée Paléobiodiversité et les scientifique de Villers-sur-Mer, Paléoenvironnements (CR2P), MNHN, Calvados, Normandie CNRS, Sorbonne Science Université Je tiens à remercier les personnes qui ont permis la réalisation de ce stage. Tout d’abord je remercie mes maîtres de stage : Laurent Picot (Paléospace), Eric Buffetaut (CNRS/UMR 8538) et Ronan Allain (MNHN/CR2P) pour leur encadrement, le temps qu’ils m’ont consacré et leurs conseils avisés. Je veux aussi remercier tous les propriétaires de fossiles qui ont accepté de prêter leurs précieux spécimens afin de réaliser cette étude : Gisèle et Bernard Anicolas, Héléna Bülow et Jocelyne Fouquet-Bülow, Elisabeth et Gérard Pennetier, Jean-Philippe Pezy, Nathalie Poussy pour ses dons au Muséum National d’Histoire Naturelle, l’Association Paléontologique de Villers-sur-Mer pour les collections Enos et Drijard, la Mairie d’Houlgate pour la collection Nicolet et bien sûr les collections du Paléospace. Je remercie le Muséum National d’Histoire Naturelle pour m’avoir accueilli pendant le premier mois de stage et pour m’avoir permis d’étudier les spécimens provenant des Vaches Noires qui y sont conservés. Je tiens à remercier l’équipe de dégagement du Museum notamment Colas Bouillet pour sa préparation du fémur étudié pendant le premier mois de stage et Lilian Cazes pour les photos des spécimens du MNHN.
    [Show full text]
  • The Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy and Paleogeographic Implications
    The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy and paleogeographic implications Darío G. Lazo Acta Palaeontologica Polonica 52 (2), 2007: 375-390 Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Temperate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio Formation (Valanginian-Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was facies-dependent being restricted to well-oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida , deep burrowing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension-feeding habit, not a pedal-feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian-Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal-ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone. Pholadomya sanctaecrucis from the Valanginian of Europe and also recorded in Argentina is ornamented only with commarginal lines and should be removed to the genus Homomya.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Pectinidae, Bival- Biological Lines. Peamussium, Une Espèce Est
    Bull. Inst. r. Sci. nat. Belg. 47 32 Brux. Bull. K. Belg. Inst. Nat. Wet. 30.11.1971 SYSTEMATIC REVISION OF ENTOLIUM, PROPEAMUSSIUM (AMUSIIDAE) AND SYNCYCLONEMA (PECTINIDAE, BIVALVIA, MOLLUSCA) OF THE EUROPEAN BOREAL CRETACEOUS by Annie Dhondt (Brussels) (With 4 plates) SUMMARY The present paper contains a systematic revision of the genera Entolium and Propeamussium (Amusiidae) and Syncyclonema (Pectinidae, Bival- via, Mollusca) in European Cretaceous boréal seas. In Entolium two species are described, in Propeamussium one, and in Syncyclonema eight of which one (S. hagenowi) is new to science, two (S. gamsensis and 5. haggi) are renamed and a former variety is given spécifie status (S. haldonensis). Stress is laid on redefining the species, mostly along biological lines. Material has been studied from as many localities as possible; a nomen- clatorial critical revision is undertaken; type-specimens have been located; type-strata and type-localities are indicated. RESUME La présente étude contient la révision systématique des genres Entolium et Propeamussium (Amusiidae) et Syncyclonema (Pectinidae, Bivalvia, Mollusca) qui ont vécu dans les mers boréales du Crétacé d'Europe. Pour le genre Entolium, deux espèces sont décrites; pour le genre Pro¬ peamussium, une espèce est décrite; pour le genre Syncyclonema huit espèces sont décrites : de celles-ci une est nouvelle (S. hagenowi), deux autres ont reçu un nouveau nom (S. gamsensis & S. haggi) et une der- 2 A. DHONDT 47, 32 nière considérée jusqu'ici comme variété est élevée au rang d'espèce (S. haldonensis). Les espèces sont redéfinies d'après des critères biologiques; les spéci¬ mens étudiés viennent d'autant de localités que possible; une révision cri¬ tique de la nomenclature a été faite; les types ont été recherchés; les localités-types avec leur niveau stratigraphique sont indiquées.
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • An Early Cretaceous Astropectinid (Echinodermata, Asteroidea)
    Andean Geology 41 (1): 210-223. January, 2014 Andean Geology doi: 10.5027/andgeoV41n1-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl An Early Cretaceous astropectinid (Echinodermata, Asteroidea) from Patagonia (Argentina): A new species and the oldest record of the family for the Southern Hemisphere Diana E. Fernández1, Damián E. Pérez2, Leticia Luci1, Martín A. Carrizo2 1 Instituto de Estudios Andinos Don Pablo Groeber (IDEAN-CONICET), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] 2 Museo de Ciencias Naturales Bernardino Rivadavia, Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] ABSTRACT. Asterozoans are free living, star-shaped echinoderms which are important components of benthic marine faunas worldwide. Their fossil record is, however, poor and fragmentary, probably due to dissarticulation of ossicles. In particular, fossil asteroids are infrequent in South America. A new species of starfish is reported from the early Valanginian of the Mulichinco Formation, Neuquén Basin, in the context of a shallow-water, storm-dominated shoreface environment. The specimen belongs to the Astropectinidae, and was assigned to a new species within the genus Tethyaster Sladen, T. antares sp. nov., characterized by a R:r ratio of 2.43:1, rectangular marginals wider in the interbrachial angles, infero- marginals (28 pairs along a median arc) with slightly convex profile and flat spines (one per ossicle in the interbrachials and two per ossicle in the arms).
    [Show full text]
  • Diverse Berichte 1137-1182
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie Jahr/Year: 1899 Band/Volume: 1899_2 Autor(en)/Author(s): Artikel/Article: Diverse Berichte 1137-1182 Diverse Berichte Palaeontologie. Faunen. -137- Palaeontologie, Faunen. F. Nötling : Fauna ofthe Upper Cretaceous (Maestrich- tie n) Beds of the Mari Hills. (Mem. of the Geol. Survey of India. Palaeontol. Indica. (16.) Fauna of Bäluchistan. 1. Part 3. 1897. 1—79. Taf. 1—23.) Von 77 Formen, welche Verf. vorlagen, werden 66 specifisch, 11 nur generisch beschrieben. Von jenen konnten 24 mit folgenden, anderweitig- schön bekannt gewordenen Arten identificirt werden: Orbitolites macro- pora Defr., Orbitoides socialis Leym., Cyclolites regularis Leym., Pyrina ataxensis Cott. Hemipneustes pyrenaicus Heb., H. Leymeriei Heb., , Ostrea acutirostris Nilss. 0. pectinata Lam. 0. ungulata Schloth., , , Gryphaea vesicularis Lam., Exogyra pyrenaica Leym., Spondylus santo- niensis d'Orb., Vola quadricostata Sow., Pecten Dujardini Rom., * Cardita * Beaumonti d'Arch. et Haime var. baluchistanensis Nötl. , C. subcom- * planata d'Abch. et Haime, * RadioUtes subdilatata Muschk. , Corbula harpa d'Arch. et Haime, Trochus Lartetianus Leym., Nerita pontica d'Arch., * Ovula expansa d'Arch. et Haime, * Volutüithes latisepta Stol., Nautilus sublaevigatus d'Orb. und * N. subfleuriausianus d'Arch. et Haime. Sieht man von den mit einem Stern bezeichneten und auf Indien oder Centraiasien beschränkten Arten ab, so weisen die restlichen 17 und in Europa bekannten Species darauf hin, dass die Kreideschichten von Belutschistan dem oberen Obersenon, dem Maestrichtien, entsprechen. Ihre Fauna zeigt kaum Beziehungen zu denjenigen gleichalteriger Schichten Südindiens oder Nordafrikas, sehr enge dagegen zu der Südfrankreichs, so dass sie als zur europäischen Provinz gehörig angesehen werden kann.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    The lower bathyal and abyssal seafloor fauna of eastern Australia T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, D. Bray, I. Burghardt, N. Budaeva, F. Criscione, A. Crowther, et al. To cite this version: T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, et al.. The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records, Cambridge University Press, 2020, 13 (1), 10.1186/s41200-020-00194-1. hal-03090213 HAL Id: hal-03090213 https://hal.archives-ouvertes.fr/hal-03090213 Submitted on 29 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • JURASSIC, CRETACEOUS, and TERTIARY MEGAFOSSILS from the RIYADH REGION of EAST-CENTRAL SAUDI ARABIA SENIOR THESIS Presented in Pa
    JURASSIC, CRETACEOUS, AND TERTIARY MEGAFOSSILS FROM THE RIYADH REGION OF EAST-CENTRAL SAUDI ARABIA SENIOR THESIS Presented in Partial Fulfillment • of the Requirements for the Degree, Bachelor of Science By Richard E. Mccutchen The Ohio State University Department of Geology and Mineralogy 1985 • TABLE OF CONTENTS • PAGE ABSTRACT-------------------------------------------- 1 INTRODUCTION----------------------------------------- 1 GEOLOGY OF THE AREA---------------------------------- 2 LOCALITY INFORMATION--------------------------------- 7 PRESERVATION OF THE MACROFOSSILS--------------------- 8 BIOSTRATIGRAPHY-------------------------------------- 8 FOSSIL DESCRIPTIONS---------------------------------- 12 PHYLUM MOLLUSCA CLASS GASTROPODA GENUS PLANORBIS PLANORBIS sp.----------------------------- 12 GENUS MITRA MITRA sp.------------------------------------- 13 GENUS ARCHITECTONICA • ARCHITECTONICA sp.---------------------------- 14 GENUS CYPRAEA CYPRAEA sp.----------------------------------- 15 GENUS BOLIS BOLIS LISBOA---------------------------------- 16 GENUS AMAUROPSIS AMAUROPSIS BULBIFORMIS------------------------ 17 GENUS TURRITELLA TURRITELLA sp.-------------------------------- 18 GENUS EPITONIUM EPITONIUM sp.--------------------------------- 19 GENUS GYRODES GYRODES CONRADI------------------------------- 19 GENUS NERITOMA NERITOMA (NERIDOMUS)sp.----------------------- 20 GENUS OLIVA OLIVA sp.------------------------------------- 21 • i PAGE • GENUS NATICA "NATICA" WILLIAMSI----------------------------- 21 GENUS POLINICES POLINICES
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]