Bulletins of American Paleontology

Total Page:16

File Type:pdf, Size:1020Kb

Bulletins of American Paleontology BUI,I,ETINS OF AMERICAN PAI,EONTOI,OGY Vol. ao No. 70C Some Cretaceous and Tertiary Echinoids from Cuba By Norman E, Weisbord July 7, 1934 Paleontological Research Institution, Ithaca, NewYork U. S'. A. INTRODUCTION The echinoids described herewith were collected by the writer in the years 1931 to 1933 while engaged in a study of the geology of Cuba for The Atlantic Refining Company of Philadelphia. Permission to pu'blish this paper has been generously granted by this company through the intercession of Dr. Roy E. Dickerson, its chief geologist, to whom the writer is indebted for this and for his many helpful suggestions. The writer also wishes to express his appreciation to Professor G. D. Harris for the use of the facilities of the paleontological labratory of Cornell University and of the new-^born Paleonto- logical Research Institution, of which he is founder. The types of the new species described in this article are deposited in the Paleontological Research Institution at Ithaca, New York, in a fire-proof building recentlty constructed by Professor Harris. In this connection it might be well to state that most of the types of new species collected by the students of Professor Harris are to be deposited here where they can be properly cared for and safe from the hazards of fire. By express provision of the char- ter of the Institution, all collections contained therein may be studied by any bona-fide student of paleontology. Whenever any doubt exists in the identity of the Cuban spe- cies with those in other parts of the world, the writer has pre- ferred to call the Cuban species new, calling attention, however, to its similarity to the form with which it has been compared. Even slight differences, if specific and not individual, may be of stratigraphic importance, and until such time as the stratigraphy and paleontology of the West Indies are more thoroughly known, it seems advisable to separate species if reasonable doubt exists concerning their similarity. This atti1*ude may seem inconsistent when it is observed that the writer has lumped many differently shaped forms into one species, as for example in Lanieria lanieri (d'Oi'ibigny), Oligopygus sanchezi Lambert and Jacksonaster acunai Roig. In these species the differences of various speci- mens are individual rather than specific and actually intergradc I1PR27 1M9 BXJLLETIN 70C 168 as can be seen by studying the large number of examples in our collection. On the other hand, when there are not many speci- mens available for comparison, as in the various species of Peronella, it is necessary to split species on the evidence adduced from the forms available. The justification of such a procedure will be determined when large collections are obtained in the future. LOCALITIES The Cuban echinoids discussed in this report come from five different localities. These localities, in ascending stratigraphic sequence, are the following: 1. On the property of Central San Antonio, 150 meters northwest of the sugar cane loading rack at Esperanza switch. This switch lies on the private railroad of Central San Antonio, about 10 kilometers east of the mill and town of Madruga, near the eastern boundary of Habana Province. 2. In road cut at Loma Calisto, approximately 800 meters southwest of the south end of the town of Nuevitas, on the road leading toward Belen, Province of Camaguey. Nuevitas lies on the north coast of Cuba, on Nuevitas Bay. 3. From cut along the railroad between Neuvitas and Pas- telillo, about two kilometers southeast of Neuvitas railroad sta- tion, Province of Camagiiey. This railroad is a branch line of the Ferrocarril Central de Cuba, extending to Camaguey City. It should not be confused with the Ferrocarril del Norte which lies a short distance north of and parallel to it, but which termi- nates at Puerto Tarafa, not Pastelillo. 4. On road between Entronque Paso Real and Son Diego de Los Banos, 3 kilometers northwest of Entronque Paso Real, Pinar del Rio Province. Entronque Paso Real is a road junction on the Carretera Central (Central Highway), 49 kilometers east of Pinar del Rio City. 5. From the Central Flighway of Cuba, 150 meters east of kilometer post 440, between the towns of Jatibonico and Ciego de Avila, Province of Camaguey. : 169 Cuban Echinoids: Weisbord GEOLOGIC HORIZONS Antonio, 150 Locality No. i.-^On property of Central San San An- meters northwest of Esperanza switch on the Central of Madruga, tonio railroad, about 10 kilometers east of the town near the eastern boundary of Habana Province. the A'ge.—L.owev part of the Upper Cretaceous, between Cenomanian and Coniacian. L. Palmer and This locality was discovered by Dr. Robert The fossils col- shown to the writer by William D. Chawner. ploughed field, lected here by the writer were found in a newly The rock adhering to in earth derived from underlying marls. rather porous some of the specimens is a tan, marly limestone, indurated limestone is com- in texture when weathered. The forammifera, posed primarily of calcareous sand grains and some the calcareous tests the sand grains having been derived from of various invertebrate organisms. The echinoids from this locality are the following Goniopygus supremus Hawkins Codiopsis ciae Lambert Coenholectypus cubae Hawkins Lanieria lanieri (d'Orbigny) Echinobrissus cubensis Weisbord, n. sp. Cassidulus cubensis Weisbord, n. sp. Catopygus jeanneti Lambert Clypeopygus habanensis Weisbord, n. sp. Hemiaster cf. antillensis Cotteau Hemiaster madrugensis Weisbord, n. sp. Hemiaster siboneyensis Weisbord, n. sp. with Goniopygus supremus Hawkins from Cuba is identical Jamaica by Hawkins. In the species originally described from Rudistid Limestone which is believed Jamaica it occurs in the Turnonian age by Woolacott^ and Hawkins^ to be of possible Goniopygus menardi Agassiz, The species is nearly identical with ranges from the Ceno- particularly the variety glohosa, which 1922. lAnnals and Mag. Nat. Hist., vol. 10, 9th ser., p. 535, 1924. 2Geol. Mag., vol. 61, No. 721, p. 315, Bulletin 70C - 170 manian to the lower Senonian in Europe. It also may be com- pared with Goniopygus major Agassiz from the Cenomanian of France, although this species has three, instead of four excava- tions in the genitals at the periproct. Codiopsis ciae Lambert is so close to Codiopsis arnaudi Cot- teau from the lower Senonian of France that Cotteau, who originally named arnaudi, mistakenly identified the Cuban spe- cies as the same. Lambert^, in reviewing the work of Cotteau and Egozcue^a, noted that the Cuban Codiopsis "arnaudi" is quite different from the type species described from France and renamed it Codiopsis ciae. The Cuban form may also be com- pared to Codiopsis texana from the Buda Limestone (Cenoman- ian) of Texas, \J. S. A. Coenholectypus cithae Hawkins and Lanieria lanieri (d'Orbig- ny), two very interesting species which occur together and strongly resemble one another, have no close affinities, except perhaps for Metholectypus trechmanni from the Barretia beds of Jamaica. The Barretia beds are older than the Rudistid Lime- stone horizon of Jamaica, hence possibly Cenomanian in age. The genus Echinobrissus is well developed in the Neocomian, Cenomanian and Senonian of France. The Cuban species Echinobrissus cubens's Weisbord, n. sp. is more closely allied to the Cenomanian and Senonian forms of that country than to the Neocomian. It resembles Echinobrissus similis d'Orbigny from Etage 20 of the Cenomanian, and is even more closely al- lied to Echinobrissus min'nius d'Orbigny from Etage 22 of the Senonian. The Senonian aspect is somewhat further heightened by the distant relationship of our form to Echinobrissus texanus Clark from the Austin Chalk of Texas, U. S. A. The Austin Chalk may be equivalent to a portion of the Coniacian of lower Senonian age. Cassidulus cubensis Weisibord, n. sp. is quite distinct from hitherto described species so that a comparison cannot be made between it and other forms. Cafopygus jeanneti Lambert is also without near relationship, although it may be compared with 3Revue Critique de Paleozoologie, vol. 2, p. 30, 1898. 3a Bol. Comision Mapa Geol. de Espaiia, vol. 22, pp. 14, 15, pi. 1, fig^s. 10- 15, 1897. 171 Cuban Echinoids: Weisboed 7 Botriopygus ntuistarum Hawkins from the Rudistid Limestone from the age in Jamaica, and Catopygus oviformis Conrad Vincentown Sand of Maestrichtian age in New Jersey, U. S. A. Cen- Roig' reports a Caiopygiis roariguezi from the Senonian at but Catopy- tral Stewart, Ciego de Avila, Province of Camaghey, species. gus jeanneti is decidedly different from that io Clypeopygus habanensis Weisbord, n. sp., the Brazihan Echiuobrissus fretas. White, from the lower part of the Upper super- Cretaceous, invites comparison, though the resemblance is habanensis has been ficial only. Yet of all the forms with which compared, the Brazilian one oddly enough is the closest. The three species of Hcmiaster show a greater resemblance to forms found elsewhere in the lower part of the Upper Cretace- Weisbord re- ous, although one species, Henuaster siboneyensis (Morton) and calls in a general way Hemiasier parastatus (Maes- Hemiaster stella (Morton) both of the Vincetown Sand antillensis trichtian) of New Jersey. However Hemiaster cf. Cotteau far more closely resembles Hemiaster fourneli Desor from the Turonian of Europe and northern Africa, and Hemi- (Coniacian aster nucleus Disor from the base of the Senonian Hemiaster, or Emscherian) in France. The third species of Hemiaster madrugensis Weisbord, n. sp. finds its nearest ana- Group logue m Hemiaster vicinus Stoliczka from the Ootatoor (Cenomanian) of southern India. them Of the eleven species described from this locality, nine of resemble forms found outside of Cuba in the lower or middle part of the Upper Cretaceous, or to use the European terminol- Senon- ogy, in horizons between the Cenomanian and the Lower ian (Coniacian).
Recommended publications
  • The Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy and Paleogeographic Implications
    The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy and paleogeographic implications Darío G. Lazo Acta Palaeontologica Polonica 52 (2), 2007: 375-390 Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Temperate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio Formation (Valanginian-Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was facies-dependent being restricted to well-oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida , deep burrowing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension-feeding habit, not a pedal-feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian-Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal-ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone. Pholadomya sanctaecrucis from the Valanginian of Europe and also recorded in Argentina is ornamented only with commarginal lines and should be removed to the genus Homomya.
    [Show full text]
  • Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
    Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74,
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Figures and page numbers in bold refer to Tables. acanthodians 74, 75, 77, 78 ostracode case study 106,107, 108-111 accuracy and database management 172, 173 Astraspis 77 acrotetides 26 athyridides 27 Actinodonta 41 Atlantic, Caribbean and East Pacific (ACEP) realm Actinostereon gregareum 133 153, 160, 163, 164 age of fossils, reliability assessment 173,174 atrypides 27 Allonychia 43 Australia 63,183 Aloconconcha 38 Australia/New Guinea block collision 160-162 alpha diversity 2, 99 Autolamellibranchia 39-45 Amadeus Basin 72 Avalonia 19 Ambonychia 43 biodiversity 86, 92, 95 Ambonychiopsis 43 brachiopod diversity profiles 31 Amorphognathus Biofacies 90 conodonts 88, 89, 91 amphibian diversity 183-187,188, 188,189, 191,192, Ordovician bivalves 36 193 Ordovician palaeogeography 28 analytical time averaging 174 palaeolatitudes 95 Ananterodonta 41 anaspids 74, 75, 78 Anatolepis 70, 72, 76, 79 Babinka 4142 Andean Basin Jurassic bivalve populations Baltica diversity 128, 134-136 biodiversity 92, 95 effect of Hispanic Corridor 131-134 conodont provinces 90 extinction rates 129, 130 Ordovician 18-19, 19-20, 28 immigration rates 131 rynchonelliformean brachiopods 15, 18 Angarella 19 Baltoscandian conodont provinces 86 angiosperms 1, 5, 5-6 Bambachian megaguilds 25 Cenozoic biodiversity 158 Bavarilla hofensis 56, 58 Cretaceous radiation 141,143-144 Belodella 90 Antarctic Peninsula 145, 146-147 Belodina 90 Anomalocoelia 43 Bennettitales 144,145 Anomalodesmata 44-45 beta (between habitat) diversity 2, 99, 157
    [Show full text]
  • An Early Cretaceous Astropectinid (Echinodermata, Asteroidea)
    Andean Geology 41 (1): 210-223. January, 2014 Andean Geology doi: 10.5027/andgeoV41n1-a0810.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl An Early Cretaceous astropectinid (Echinodermata, Asteroidea) from Patagonia (Argentina): A new species and the oldest record of the family for the Southern Hemisphere Diana E. Fernández1, Damián E. Pérez2, Leticia Luci1, Martín A. Carrizo2 1 Instituto de Estudios Andinos Don Pablo Groeber (IDEAN-CONICET), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] 2 Museo de Ciencias Naturales Bernardino Rivadavia, Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, Argentina. [email protected]; [email protected] ABSTRACT. Asterozoans are free living, star-shaped echinoderms which are important components of benthic marine faunas worldwide. Their fossil record is, however, poor and fragmentary, probably due to dissarticulation of ossicles. In particular, fossil asteroids are infrequent in South America. A new species of starfish is reported from the early Valanginian of the Mulichinco Formation, Neuquén Basin, in the context of a shallow-water, storm-dominated shoreface environment. The specimen belongs to the Astropectinidae, and was assigned to a new species within the genus Tethyaster Sladen, T. antares sp. nov., characterized by a R:r ratio of 2.43:1, rectangular marginals wider in the interbrachial angles, infero- marginals (28 pairs along a median arc) with slightly convex profile and flat spines (one per ossicle in the interbrachials and two per ossicle in the arms).
    [Show full text]
  • Diverse Berichte 1137-1182
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie Jahr/Year: 1899 Band/Volume: 1899_2 Autor(en)/Author(s): Artikel/Article: Diverse Berichte 1137-1182 Diverse Berichte Palaeontologie. Faunen. -137- Palaeontologie, Faunen. F. Nötling : Fauna ofthe Upper Cretaceous (Maestrich- tie n) Beds of the Mari Hills. (Mem. of the Geol. Survey of India. Palaeontol. Indica. (16.) Fauna of Bäluchistan. 1. Part 3. 1897. 1—79. Taf. 1—23.) Von 77 Formen, welche Verf. vorlagen, werden 66 specifisch, 11 nur generisch beschrieben. Von jenen konnten 24 mit folgenden, anderweitig- schön bekannt gewordenen Arten identificirt werden: Orbitolites macro- pora Defr., Orbitoides socialis Leym., Cyclolites regularis Leym., Pyrina ataxensis Cott. Hemipneustes pyrenaicus Heb., H. Leymeriei Heb., , Ostrea acutirostris Nilss. 0. pectinata Lam. 0. ungulata Schloth., , , Gryphaea vesicularis Lam., Exogyra pyrenaica Leym., Spondylus santo- niensis d'Orb., Vola quadricostata Sow., Pecten Dujardini Rom., * Cardita * Beaumonti d'Arch. et Haime var. baluchistanensis Nötl. , C. subcom- * planata d'Abch. et Haime, * RadioUtes subdilatata Muschk. , Corbula harpa d'Arch. et Haime, Trochus Lartetianus Leym., Nerita pontica d'Arch., * Ovula expansa d'Arch. et Haime, * Volutüithes latisepta Stol., Nautilus sublaevigatus d'Orb. und * N. subfleuriausianus d'Arch. et Haime. Sieht man von den mit einem Stern bezeichneten und auf Indien oder Centraiasien beschränkten Arten ab, so weisen die restlichen 17 und in Europa bekannten Species darauf hin, dass die Kreideschichten von Belutschistan dem oberen Obersenon, dem Maestrichtien, entsprechen. Ihre Fauna zeigt kaum Beziehungen zu denjenigen gleichalteriger Schichten Südindiens oder Nordafrikas, sehr enge dagegen zu der Südfrankreichs, so dass sie als zur europäischen Provinz gehörig angesehen werden kann.
    [Show full text]
  • JURASSIC, CRETACEOUS, and TERTIARY MEGAFOSSILS from the RIYADH REGION of EAST-CENTRAL SAUDI ARABIA SENIOR THESIS Presented in Pa
    JURASSIC, CRETACEOUS, AND TERTIARY MEGAFOSSILS FROM THE RIYADH REGION OF EAST-CENTRAL SAUDI ARABIA SENIOR THESIS Presented in Partial Fulfillment • of the Requirements for the Degree, Bachelor of Science By Richard E. Mccutchen The Ohio State University Department of Geology and Mineralogy 1985 • TABLE OF CONTENTS • PAGE ABSTRACT-------------------------------------------- 1 INTRODUCTION----------------------------------------- 1 GEOLOGY OF THE AREA---------------------------------- 2 LOCALITY INFORMATION--------------------------------- 7 PRESERVATION OF THE MACROFOSSILS--------------------- 8 BIOSTRATIGRAPHY-------------------------------------- 8 FOSSIL DESCRIPTIONS---------------------------------- 12 PHYLUM MOLLUSCA CLASS GASTROPODA GENUS PLANORBIS PLANORBIS sp.----------------------------- 12 GENUS MITRA MITRA sp.------------------------------------- 13 GENUS ARCHITECTONICA • ARCHITECTONICA sp.---------------------------- 14 GENUS CYPRAEA CYPRAEA sp.----------------------------------- 15 GENUS BOLIS BOLIS LISBOA---------------------------------- 16 GENUS AMAUROPSIS AMAUROPSIS BULBIFORMIS------------------------ 17 GENUS TURRITELLA TURRITELLA sp.-------------------------------- 18 GENUS EPITONIUM EPITONIUM sp.--------------------------------- 19 GENUS GYRODES GYRODES CONRADI------------------------------- 19 GENUS NERITOMA NERITOMA (NERIDOMUS)sp.----------------------- 20 GENUS OLIVA OLIVA sp.------------------------------------- 21 • i PAGE • GENUS NATICA "NATICA" WILLIAMSI----------------------------- 21 GENUS POLINICES POLINICES
    [Show full text]
  • The Mode of Life in the Genus Pholadomya As Inferred from the Fossil Record
    geosciences Article The Mode of Life in the Genus Pholadomya as Inferred from the Fossil Record Przemysław Sztajner Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, 70-383 Szczecin, Poland; [email protected] Received: 13 July 2020; Accepted: 21 September 2020; Published: 5 October 2020 Abstract: The paper is an attempt to reconstruct the mode of life of Pholadomya bivalves, very common in the fossil record, particularly that of the Jurassic. The only extant representative of the genus is extremely rare and very poorly known. Materials from the Polish Jurassic deposits (Bajocian–Kimmeridgian; Western Pomerania and Polish Jura) and literature data were used for the reconstruction. Specifically, observations on the anatomy, taphonomy, and diagenesis of the specimens examined as well as lithology of the deposits housing the specimens were used. Shell anatomy characteristics are known for their particular utility in mode of life reconstructions, although the extremely thin-shelled and coarsely sculpted bivalves, such as the Pholadomya examined, have not been studied so far. The reconstruction suggest a diversity of the mode of life, coincident with the morphological differences between the Pholadomya species. At least the adults of anteriorly flattened species are inferred to have lived extremely deeply buried in the sediment, and were hardly mobile. The smaller, more oval in shape, species were more mobile, and some of them are thought to have preferred life in shelters, should those be available. In addition, the function of the cruciform muscle, other than that considered so far, is suggested. Keywords: Pholadomya; Anomalodesmata; Bivalvia; life habit; deep burrowers; taphonomy; shell anatomy; cruciform muscle; Jurassic; Poland 1.
    [Show full text]
  • Comments on the Middle Jurassic Pholadomyoids of Kachchh, Western India
    Journal of the Palaeontological Society of India ISSN 0522-9630 Volume 58(1), June 2013: 51-60 COMMENTS ON THE MIDDLE JURASSIC PHOLADOMYOIDS OF KACHCHH, WESTERN INDIA ANAND K. JAITLY CENTRE OF ADVANCED STUDIES, DEPARTMENT OF GEOLOGY, BANARAS HINDU UNIVERSITY, VARANASI 221 005 E-mail. [email protected] ABSTRACT The pholadomyoids (Anomalodesmata:Bivalvia) in Kachchh is represented by the genera Pholadomya, Pholadomya (Bucardiomya), Pholadomya (Indomya), Agrawalimya, Homomya, Pachymya, Pachymya (Arcomya), Ceratomya, Ceratomyopsis, Gerardotia, Goniomya, Machomya, Osteomya, Pleuromya, Platymoidea and Thracia. All of these pholadomyoids have been earlier recorded from the Middle Jurassic (Bathonian-Callovian) sediments of the different parts of Kachchh Mainland as well “islands”. The genus Agrawalimya and the subgenus Indomya are endemic, while others are cosmopolitan in distribution and common elements of the Ethiopian Faunal Province. The pholadomyoids have been reviewed comprehensively and accordingly, the diagnostic morphological characters of some of these genera/ species have been emended. Keywords: Mollusca, Bivalvia, pholodomyoids, Middle Jurassic, Kachchh INTRODUCTION slope. According to Poddar (1959, 1964), the entire basin was The classic works of earlier investigators, since the uplifted during Middle to Late Pliocene, while Biswas (1971) beginning of the twentieth century, have already revealed the believes that the Mesozoic sedimentation was terminated by prolificacy of the Jurassic bivalves in the Kachchh Basin. The the regional uplift during the Late Cretaceous diastrophism. first detailed taxonomic account of the Jurassic bivalves of The sedimentation process in the Kachchh Basin was broadly Kachchh has been endeavoured by Kitchin (1903) on trigoniids controlled by subsidence of basement due to extensional (palaeoheterodonts), followed by comprehensive portrayal by tectonics in graben while sediments influx kept pace with it Cox (1940,1952) on palaeotaxodonts, pteriomorphs, (Fursich et al., 2001).
    [Show full text]
  • Turonian Bivalves from the Coastal Basin of Gabon, South of Libreville Les Bivalves Du Turonien Du Bassin Côtier Du Gabon, Sud De Libreville
    Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, 2013, n° 35, 1–8. Turonian bivalves from the Coastal Basin of Gabon, South of Libreville Les bivalves du Turonien du bassin côtier du Gabon, Sud de Libreville Benjamin MUSAVU MOUSSAVOU*, Simplice Marin NDONG ONDO & Makaya M’VOUBOU Université des Sciences et Techniques de Masuku et URESTE, Faculté des Sciences, Département de Géologie, B.P. 913 Franceville, Gabon *([email protected]). Abstract. The taxonomy and palaeo-ecology of the Turonian marine bivalve fauna from the geological section ‘Gabon Store’ (South of Libreville, Gabon) are here discussed. Seven species are recognized: Aphrodina angustosinuosa (Riedel), Aphrodina dutrugei (Coquand), Aphrodina sp., Granocardium productum (Sowerby), Lopha cf. lombardi (Dartevelle & Freneix), Pholadomya cf. adversa Riedel and Rastellum sp. The composition of the bivalve fauna and the sedimentary characteristics indicate a low-energy littoral paleo-environment at the ‘Gabon Store’ section. Two types of depositional environment are suggested: (1) an intertidal zone, represented by silty limestone and (2) a shallow subtidal zone, such as a bay or lagoon, represented by calcareous sandstone. Keywords: Turonian, bivalves, coastal basin, Libreville, Gabon. Résumé. La taxonomie et la paléoécologie de la faune des bivalves marins d’âge Turonien de la coupe de ‘Gabon Store’ (Sud de Libreville, Gabon) sont ici discutées. Sept espèces sont reconnues : Aphrodina angustosinuosa (Riedel), A. dutrugei (Coquand), Aphrodina sp., Granocardium productum (Sowerby), Lopha cf. lombardi (Dartevelle & Freneix), Pholadomya cf. adversa Riedel et Rastellum sp. La composition de la faune des bivalves et les caractéristiques sédimentologiques de la coupe de ‘Gabon Store’ indiquent un environnement de type littoral de basse énergie.
    [Show full text]
  • Mollusca of the Buda Limestone
    Bulletin No. 205 Series C, Systematic Geology and Paleontology, 59 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHAKLES D. WALCOTT, DIRECTOR THE MOLLUSCA OF THE BUDA LIMESTONE BY GEORGE BURBANK SHATTUCK WITH AN APPENDIX ON THE CORALS OF THE BUDA LIMESTONE THOMAS WAYLAND VAUGHAN WASHINGTON GOVERNMENT PRINTING OFFICE 1903 CONTENTS. Page. Letter of transmittal, by T. W. Stanton .................................. 7 Preparatory note .----..-................,.........:..._................... 9 Historical review . ... .................................................... 9 Bibliography.............................._..........................'.. 11 Geology of the Bnda limestone..... .....--.....'-...---...-...--.-........ 12 List of species in Buda limestone.......---.-..-...--....-................ 14 Descriptions of species.................................................... 15 Mollusca ...... ._--.-._-.-.-------...-__..-.... ..-..'.-.......-....... 15 Pelecypoda.... .................-...................-.-..-------- 15 Pectinidse .................................................. .... 15 Limidse ................:...................................... 17 Pernidae....................................................... 19' Pinnidae..................................................... 19 Spondylidffi--_---.-.......................................... 20 Ostreidae ......................... ............................ 20 Mytilidae.......... ...................'.............. ....... 23 Arcidse......................................................
    [Show full text]
  • Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy, and Paleogeographic Implications
    The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy, and paleogeographic implications DARÍO G. LAZO Lazo, D.G. 2007. The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy, and paleogeographic implications. Acta Palaeontologica Polonica 52 (2): 375–390. Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Tem− perate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio For− mation (Valanginian–Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was fa− cies−dependent being restricted to well−oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida, deep burrow− ing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension−feed− ing habit, not a pedal−feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian–Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal−ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone.
    [Show full text]