Mollusca of the Buda Limestone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Colonial Geology and Mineral Resources
COLONIAL GEOLOGY AND MINERAL RESOURCES VOLUME 4, NUMBER 3 LONDON: HER MAJESTY'S STATIONERY OFFIC 1954 P R I r. E 7.r fitl N F. T SOME NEW UPPER CRETACEOUS AMMONITES FROM NIGERIA1 By R. A. REYMENT, B.Sc. Geological Survey Department, Nigeria Abstract THREE NEW AMMONITE GENERA AND A NUMBER OF AMMONITE SPECIES ARE DESCRIBED from the Turonian and Coniacian of Nigeria. The new genera are Onitshoce,.as of Desmoceratidae, Kamerunoceras of Collignoniceratidae and Ezilloella of Vasco ceratidae. Some new species of Pseudaspidoceras Hyatt, Gombeoceras Reyment, Pachyvascoce,.as Furon and Solgerites Reeside are recorded. A discussion of the family Vascoceratidae appears. · Introduction IN A RECENT PAPER (Reyment, 1954) some new genera of Lower Turonian ammonites from Nigeria were established and their types and a few other species briefly described. The present paper contains descriptions of two further species of one of these new genera and of species of associated genera that have a wide distribution in both southern and northern Nigeria. Three new genera from the Turonian and Coniacian of southern Nigeria and the Cameroons are treated. This paper also includes a brief discussion of the family Vascoceratidae which provides an important element of the Lower Turonian faunas of many areas in Africa, Europe, Asia and North and South America. Both this and the previous work are preliminary to a larger review of the Upper Cretaceous-ammonites of southern Nigeria that is in active preparation;· but whose publication will in,evitably be delayed. Mean while, it is hoped that the new gehera described below and the informa tion on taxonomy and phylogeny becoming a\7ailable from studies of the Nigerian faunas will be of value both to palaeontologists and strati graphers. -
Evaluation of the Depositional Environment of the Eagle Ford
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU. -
Mollusks from the Pepper Shale Member of the Woodbine Formation Mclennan County, Texas
Mollusks From the Pepper Shale Member of the Woodbine Formation McLennan County, Texas GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-E Mollusks From the Pepper Shale Member of the Woodbine Formation McLennan County, Texas By LLOYD WILLIAM STEPHENSON SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1952, PAGES 57-68 GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-E Descriptions and illustrations of new species offossils of Cenomanian age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1953 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page Abstract________________________________________________________________ 57 Historical sketch__-___-_-__--__--_l________________-__-_-__---__--_-______ 57 Type section of the Pepper shale member.____________________________________ 58 Section of Pepper shale at Haunted Hill._______________-____-__-___---_------- 58 Systematic descriptions._______.._______________-_-__-_-_-____---__-_-_-_----_ 59 Pelecypoda_ ________________________________________________________ 59 Gastropoda.______-____-_-_____________--_____-___--__-___--__-______ 64 Cephalopoda-_______-_______________________-___--__---_---_-__-— 65 References......___________________________________________________________ 65 Index.__________________________________________________ 67 ILLUSTRATIONS Plate 13. Molluscan fossils, mainly from the Pepper shale__________ -
The Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy and Paleogeographic Implications
The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy and paleogeographic implications Darío G. Lazo Acta Palaeontologica Polonica 52 (2), 2007: 375-390 Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Temperate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio Formation (Valanginian-Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was facies-dependent being restricted to well-oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida , deep burrowing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension-feeding habit, not a pedal-feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian-Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal-ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone. Pholadomya sanctaecrucis from the Valanginian of Europe and also recorded in Argentina is ornamented only with commarginal lines and should be removed to the genus Homomya. -
Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74, -
Pterosaur Distribution in Time and Space: an Atlas 61
Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W. -
The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation
The Geology, Paleontology and Paleoecology of the Cerro Fortaleza Formation, Patagonia (Argentina) A Thesis Submitted to the Faculty of Drexel University by Victoria Margaret Egerton in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2011 © Copyright 2011 Victoria M. Egerton. All Rights Reserved. ii Dedications To my mother and father iii Acknowledgments The knowledge, guidance and commitment of a great number of people have led to my success while at Drexel University. I would first like to thank Drexel University and the College of Arts and Sciences for providing world-class facilities while I pursued my PhD. I would also like to thank the Department of Biology for its support and dedication. I would like to thank my advisor, Dr. Kenneth Lacovara, for his guidance and patience. Additionally, I would like to thank him for including me in his pursuit of knowledge of Argentine dinosaurs and their environments. I am also indebted to my committee members, Dr. Gail Hearn, Dr. Jake Russell, Dr. Mike O‘Connor, Dr. Matthew Lamanna, Dr. Christopher Williams and Professor Hermann Pfefferkorn for their valuable comments and time. The support of Argentine scientists has been essential for allowing me to pursue my research. I am thankful that I had the opportunity to work with such kind and knowledgeable people. I would like to thank Dr. Fernando Novas (Museo Argentino de Ciencias Naturales) for helping me obtain specimens that allowed this research to happen. I would also like to thank Dr. Viviana Barreda (Museo Argentino de Ciencias Naturales) for her allowing me use of her lab space while I was visiting Museo Argentino de Ciencias Naturales. -
(Bivalvia) in the Transition Between the Vaca Muerta and Mulichinco Formations, Early Valanginian, Neuquén Basin, Argentina
AMEGHINIANA - 2012 - Tomo 49 (1): 96 – 117 ISSN 0002-7014 THE GENUS STEINMANELLA CRICKMAY (BIVALVIA) IN THE TRANSITION BETWEEN THE VACA MUERTA AND MULICHINCO FORMATIONS, EARLY VALANGINIAN, NEUQUÉN BASIN, ARGENTINA LETICIA LUCI and DARÍO GUSTAVO LAZO Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). [email protected]; [email protected] Abstract. The genus Steinmanella Crickmay is recorded in several Lower Cretaceous marine units of the Neuquén Basin. It is particularly abundant at the transition between the Vaca Muerta and Mulichinco formations. This paper presents a taxonomic revision of this fauna, discusses the stratigraphic range of each species, and describes and interprets the associated lithofacies based on detailed field sections, newly collected specimens and revision of previous fossil collections. Four sections were measured in northern Neuquén comprising the upper beds of the Vaca Muerta Formation and the lower ones of the Mulichinco Formation. The Steinmanella fauna was dated accurately on the basis of a precise ammonoid zonation. The species were found in the Neocomites wichmanni and Lissonia riveroi zones of early Valanginian age. Specimens were collected in situ from dark grey shales, alternating siltstones, wackestones and mudstones, and rudstones. Three species were identified: Steinmanella curacoensis (Weaver), S. quintucoensis (Weaver), and S. subquadrata sp. nov. Steinmanella curacoensis has an oval outline, poor demarcation of carinae, flank and corselet ribs partially intercalated at the median part of the valve, and oval escutcheon. -
Phylogeny, Diversity, and Ecology of the Ammonoid Superfamily Acanthoceratoidea Through the Cenomanian and Turonian
PHYLOGENY, DIVERSITY, AND ECOLOGY OF THE AMMONOID SUPERFAMILY ACANTHOCERATOIDEA THROUGH THE CENOMANIAN AND TURONIAN DAVID A.A. MERTZ A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2017 Committee: Margaret Yacobucci, Advisor Andrew Gregory Keith Mann © 2017 David Mertz All Rights Reserved iii ABSTRACT Margaret Yacobucci Both increased extinction and decreased origination, caused by rising oceanic anoxia and decreased provincialism, respectively, have been proposed as the cause of the Cenomanian Turonian (C/T) extinction event for ammonoids. Conflicting evidence exists for whether diversity actually dropped across the C/T. This study used the ammonoid superfamily Acanthoceratoidea as a proxy for ammonoids as a whole, particularly focusing on genera found in the Western Interior Seaway (WIS) of North America, including Texas. Ultimately, this study set out to determine 1) whether standing diversity decreased across the C/T boundary in the WIS, 2) whether decreased speciation or increased extinction in ammonoids led to a drop in diversity in the C/T extinction event, 3) how ecology of acanthoceratoid genera changed in relation to the C/T extinction event, and 4) whether these ecological changes indicate rising anoxia as the cause of the extinction. In answering these questions, three phylogenetic analyses were run that recovered the families Acanthoceratidae, Collignoniceratidae, and Vascoceratidae. Pseudotissotiidae was not recovered at all, while Coilopoceratidae was recovered but reclassified as a subfamily of Vascoceratidae. Seven genera were reclassified into new families and one genus into a new subfamily. After calibrating the trees with stratigraphy, I was able to determine that standing diversity dropped modestly across the C/T boundary and the Early/Middle Turonian boundary. -
Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. -
Sucesión De Amonitas Del Cretácico Superior (Cenomaniano – Coniaciano) De La Parte Más Alta De La Formación Hondita Y De L
Boletín de Geología Vol. 33, N° 1, enero-junio de 2011 SUCESIÓN DE AMONITAS DEL CRETÁCICO SUPERIOR (CENOMANIANO – CONIACIANO) DE LA PARTE MÁS ALTA DE LA FORMACIÓN HONDITA Y DE LA FORMACIÓN LOMA GORDA EN LA QUEBRADA BAMBUCÁ, AIPE - HUILA (COLOMBIA, S. A.) Pedro Patarroyo1 RESUMEN La sección de la quebrada Bambucá (Aipe - Huila) posee una buena exposición de los depósitos del Cretácico del Valle Superior del Magdalena. De la parte alta de la Formación Hondita se recolectaron Acanthoceras sp. y Rhynchostreon sp. del Cenomaniano superior. Dentro del segmento inferior de la Formación Loma Gorda se hallaron Choffaticeras (C.) cf. segne, Fagesia cf. catinus, Neoptychites cf. andinus, Mitonia gracilis, Morrowites sp., Nannovascoceras ? sp., Quitmaniceras ? sp., Benueites ? sp. junto con Mytiloides kossmati, M. goppelnensis y Anomia sp. del Turoniano inferior. Estratigráficamente arriba aparecen Paramammites ? sp., Hoplitoides sp. H. ingens, H. cf. lagiraldae, Codazziceras ospinae, Allocrioceras sp., que pueden estar representando entre el Turoniano inferior y medio. Para la parte alta de este segmento se encontraron Prionocycloceras sp. P. guayabanum, Reesidites subtuberculatum, Subprionotropis colombianus, Mytiloides scupini, Dydimotis sp., Gauthiericeras sp., Anagaudryceras ? sp., Eulophoceras jacobi, Paralenticeras sieversi, Hauericeras cf. madagascarensis, Peroniceras (P.) subtricarinatum, Forresteria (F.) sp., Barroisiceras cf. onilahyense, Ankinatsytes venezolanus que abarcan entre el Turoniano superior y el Coniaciano. Con base en la fauna colectada no es posible establecer los límites Cenomaniano/Turoniano y Turoniano/Coniaciano. Palabras clave: Amonitas, Cretácico superior, Valle Superior del Magdalena, Aipe-Huila-Colombia. UPPER CRETACEOUS AMMONITE SUCCESSION (CENOMANIAN – CONIACIAN) RELATED TO THE UPPER HONDITA AND LOMA GORDA FORMATIONS ALONG THE BAMBUCÁ CREEK, AIPE - HUILA (COLOMBIA, S.A.) ABSTRACT The Bambucá creek section (Aipe - Huila) shows a very good exposition of the Upper Magdalena Valley Cretaceous deposits. -
Mid-Cretaceous Ammonite Sequence for Western New Mexico Iv
iii Contents ABSTRACT 5 Genus Morrowites Cobban and Hook, n. gen. 9 Morrowites wingi (Morrow) 9 INTRODUCTION 5 M. depressus (Powell) 11 COMPOSITION OF MOLLUSCAN FAUNA 5 M. subdepressus Cobban and Hook, n. sp. 11 OCCURRENCE AND PRESERVATION OF FOSSILS 6 M. cf. M. dixeyi (Reyment) 12 STRATIGRAPHIC POSITION OF FOSSILS 6 Subfamily Euomphaloceratinae Cooper 13 COLLECTION LOCALITIES 7 Genus Kamerunoceras Reyment 13 Kamerunoceras turoniense (d'Orbigny) 13 FAMILY VASCOCERATIDAE H. Douvillé 14 SYSTEMATIC PALEONTOLOGY 7 Subfamily Vascoceratinae H. Douvillé 14 FAMILY BACULITIDAE GILL 7 Genus Neoptychites Kossmat 14 Genus Baculites Lamarck 7 Neoptychites cephalotus (Courtiller) 14 Baculites yokoyamai Tokunaga and Shimizu 7 Genus Fagesia Pervinquière 15 FAMILY MUNIERICERATIDAE WRIGHT 7 Fagesia superstes (Kossmat) 16 Genus Tragodesmoceras Spath 7 FAMILY C OLLIGNONICERATIDAE WRIGHT AND WRIGHT 16 Tragodesmoceras socorroense Cobban and Hook 7 Subfamily Barroisiceratinae Basse 16 FAMILY PLACENTICERATIDAE HYATT 8 Genus Cibolaites Cobban and Hook, n. gen. 16 Genus Placenticeras Spath 8 Cibolaites molenaari Cobban and Hook, n. sp. 16 Placenticeras cumminsi Cragin 8 REFERENCES 18 FAMILY ACANTHOCERATIDAE DE GROSSOUVRE 8 Subfamily Mammitinae Hyatt 8 Genus Mammites PLATES 1-14 21 Laube and Bruder 8 INDEX 50 Mammites nodosoides (Schluter) 8 TABLE 1—Mid-Cretaceous ammonite sequence for western New Mexico iv FIGURES 1—Location of study area 5 9—Histogram of size and body chambers of Neoptychites 2—External sutures of Mammites nodosoides (Schluter) 9 3— cephalotus (Courtiller) 14 Whorl sections of Morrowites wingi (Morrow) 10 4—External 10—Scatter diagram of breadth to diameter ratio of Neop- suture of Morrowites wingi (Morrow) 10 5—Whorl section and tychites 14 suture of Morrowites depressus 11—External sutures of Neoptychites cephalotus (Cour-tiller) 15 (Powell) 11 12—External suture of Fagesia superstes (Kossmat) 16 13— 6—External sutures of Morrowites subdepressus Cobban and Histogram of size of body chambers of Cibolaites molenaari Hook, n.