The Mode of Life in the Genus Pholadomya As Inferred from the Fossil Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
The Bivalve Pholadomya Gigantea in the Early Cretaceous of Argentina: Taxonomy, Taphonomy and Paleogeographic Implications
The bivalve Pholadomya gigantea in the Early Cretaceous of Argentina: Taxonomy, taphonomy and paleogeographic implications Darío G. Lazo Acta Palaeontologica Polonica 52 (2), 2007: 375-390 Pholadomya gigantea is a widely distributed Early Cretaceous bivalve mollusc. It has been recorded in the North Temperate, Tethyan, and South Temperate Realms. Based on recent field work and newly collected material from the Neuquén Basin, the taxonomy, mode of occurrence and palaeobiogeography of this species is reviewed. In the Agrio Formation (Valanginian-Barremian) P. gigantea is neither abundant nor dominant, but occurs throughout the unit. It was facies-dependent being restricted to well-oxygenated waters and soft to firm, sandy and bioclastic substrates of shoreface to inner shelf environments. The life habit of P. gigantea was similar to that of Recent Pholadomya candida , deep burrowing and sedentary, but it has not a pedal gape and accessory muscle scars related to valve closure. Thus a suspension-feeding habit, not a pedal-feeding system, may be inferred as is commonly suggested in other Jurassic and Cretaceous Pholadomya species. Pholadomya agrioensis is a valid taxon that is recorded in the Berriasian-Valanginian of Neuquén. It is similar in outline to P. gigantea and had probably the same basic palaeoecology, even though it has a blunt anterior margin, deep umbonal-ventral sulcus and distinct anterior ornamentation. Once in life position this species was capable of further digging in the sediment. This species probably burrowed in muddy substrates in the offshore zone. Pholadomya sanctaecrucis from the Valanginian of Europe and also recorded in Argentina is ornamented only with commarginal lines and should be removed to the genus Homomya. -
Abelisaurus Comahuensis 321 Acanthodiscus Sp. 60, 64
Index Page numbers in italic denote figure. Page numbers in bold denote tables. Abelisaurus comahuensis 321 structure 45-50 Acanthodiscus sp. 60, 64 Andean Fold and Thrust Belt 37-53 Acantholissonia gerthi 61 tectonic evolution 50-53 aeolian facies tectonic framework 39 Huitrin Formation 145, 151-152, 157 Andes, Neuqu6n 2, 3, 5, 6 Troncoso Member 163-164, 167, 168 morphostructural units 38 aeolian systems, flooded 168, 169, 170, 172, stratigraphy 40 174-182 tectonic evolution, 15-32, 37-39, 51 Aeolosaurus 318 interaction with Neuqu6n Basin 29-30 Aetostreon 200, 305 Andes, topography 37 Afropollis 76 Andesaurus delgadoi 318, 320 Agrio Fold and Thrust Belt 3, 16, 18, 29, 30 andesite 21, 23, 26, 42, 44 development 41 anoxia see dysoxia-anoxia stratigraphy 39-40, 40, 42 Aphrodina 199 structure 39, 42-44, 47 Aphrodina quintucoensis 302 uplift Late Cretaceous 43-44 Aptea notialis 75 Agrio Formation Araucariacites australis 74, 75, 76 ammonite biostratigraphy 58, 61, 63, 65, 66, Araucarioxylon 95,273-276 67 arc morphostructural units 38 bedding cycles 232, 234-247 Arenicolites 193, 196 calcareous nannofossil biostratigraphy 68, 71, Argentiniceras noduliferum 62 72 biozone 58, 61 highstand systems tract 154 Asteriacites 90, 91,270 lithofacies 295,296, 297, 298-302 Asterosoma 86 92 marine facies 142-143, 144, 153 Auca Mahuida volcano 25, 30 organic facies 251-263 Aucasaurus garridoi 321 palaeoecology 310, 311,312 Auquilco evaporites 42 palaeoenvironment 309- 310, 311, Avil6 Member 141,253, 298 312-313 ammonites 66 palynomorph biostratigraphy 74, -
Scacchi, Species Solecurtidae
BASTERIA, 58: 35-40, 1994 Solecurtus multistriatus (Scacchi, 1835), a good marine bivalve species from the Mediterranean Sea (Bivalvia, Heterodonta: Solecurtidae) Paolo Mariottini 1 Istituto di Scienze Biochimiche, Universita di Parma, 1-43100 Parma, Italy Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Cesare Ciommei Via Montebruno 12, 1-00168 Rome, Italy Solecurtus multistriatus (Scacchi, 1835) from the Mediterranean Sea is here reported as a bona fide species; the authors give additional data about its morphology, ecology and distribution. Key words: Bivalvia, Solecurtidae, Solecurtus, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Solecurtus Blainville, 1824, is represented by three species: S. scopula (Turton, 1822), S. strigilatus (Linne, 1758) and S. multistriatus (Scacchi, 1835). The last taxon was based by Scacchi (1835) (and not Scacchi, 1834, according to Cretella et ah, 1992) on a fossil specimen collected near Gravina, Puglia (Italy). Here the original description is given: "Testa ovali-oblonga, subaequilatera, antice oblique striata, striis approximatis angulo acuto in/lexis. Lata lin. 8, alta lin. 3". In the description 'lin.' (which stands for linea) is a standard size unit. The one adopted by the authors of that time corresponded to 2.25 mm; but, in this case, it is also possible that 'linea' represents a local Sicilian size unit (1.8 mm) as reported by Giannuzzi-Savelli et al. (1986). The author clearly stated that this species differs from the fossil and Recent specimens of "Solene bianco del Renieri" candidus of S. and of [S. (Renier, 1804), synonym scopula] "Solene strigilato" (S. strigilatus) . Nowadays the status of S. -
Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends. -
A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian. -
Back Matter (PDF)
Index Page numbers in italics refer to Figures and page numbers in bold refer to Tables. acanthodians 74, 75, 77, 78 ostracode case study 106,107, 108-111 accuracy and database management 172, 173 Astraspis 77 acrotetides 26 athyridides 27 Actinodonta 41 Atlantic, Caribbean and East Pacific (ACEP) realm Actinostereon gregareum 133 153, 160, 163, 164 age of fossils, reliability assessment 173,174 atrypides 27 Allonychia 43 Australia 63,183 Aloconconcha 38 Australia/New Guinea block collision 160-162 alpha diversity 2, 99 Autolamellibranchia 39-45 Amadeus Basin 72 Avalonia 19 Ambonychia 43 biodiversity 86, 92, 95 Ambonychiopsis 43 brachiopod diversity profiles 31 Amorphognathus Biofacies 90 conodonts 88, 89, 91 amphibian diversity 183-187,188, 188,189, 191,192, Ordovician bivalves 36 193 Ordovician palaeogeography 28 analytical time averaging 174 palaeolatitudes 95 Ananterodonta 41 anaspids 74, 75, 78 Anatolepis 70, 72, 76, 79 Babinka 4142 Andean Basin Jurassic bivalve populations Baltica diversity 128, 134-136 biodiversity 92, 95 effect of Hispanic Corridor 131-134 conodont provinces 90 extinction rates 129, 130 Ordovician 18-19, 19-20, 28 immigration rates 131 rynchonelliformean brachiopods 15, 18 Angarella 19 Baltoscandian conodont provinces 86 angiosperms 1, 5, 5-6 Bambachian megaguilds 25 Cenozoic biodiversity 158 Bavarilla hofensis 56, 58 Cretaceous radiation 141,143-144 Belodella 90 Antarctic Peninsula 145, 146-147 Belodina 90 Anomalocoelia 43 Bennettitales 144,145 Anomalodesmata 44-45 beta (between habitat) diversity 2, 99, 157 -
Physiological Adaptations and Feeding Mechanisms of the Invasive Purple Varnish Clam, Nuttallia Obscurata
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2013 Physiological adaptations and feeding mechanisms of the invasive purple varnish clam, Nuttallia obscurata Leesa E. Sorber Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Biology Commons Recommended Citation Sorber, Leesa E., "Physiological adaptations and feeding mechanisms of the invasive purple varnish clam, Nuttallia obscurata" (2013). WWU Graduate School Collection. 281. https://cedar.wwu.edu/wwuet/281 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. PHYSIOLOGICAL ADAPTATIONS AND FEEDING MECHANISMS OF THE INVASIVE PURPLE VARNISH CLAM, NUTTALLIA OBSCURATA by Leesa E. Sorber Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Deborah Donovan Dr. Benjamin Miner Dr. Jose Serrano-Moreno MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission for the owner of any third party copyrighted material included in these files. -
Ammonites from Bathonian and Callovian (Middle Jurassic)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 253 Zitteliana 89 Ammonites from Bathonian and Callovian (Middle Jurassic) North of Damghan, Paläontologie Bayerische EasternGeoBio- Alborz, North Iran & Geobiologie Staatssammlung Center LMU München LMU München für Paläontologie und Geologie Kazem Seyed-Emami1* & Ahmad Raoufian2 München, 01.07.2017 1School of Mining Engineering, University College of Engineering, University of Tehran, Manuscript received P.O. Box 11365-4563, Tehran, Iran 2 26.09.2016; revision Daneshvar Center, Farhangian University, Neyshapour, Iran accepted 30.10.2016 *Corresponding author; E-mail: [email protected] ISSN 0373-9627 ISBN 978-3-946705-00-0 Zitteliana 89, 253–270. Abstract The following Middle Jurassic ammonite families (subfamilies) are described from the Dalichai Formation north of Damghan (eastern Alborz), some of them for the first time: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Stephanoceratidae (Cadomitinae), Tulitidae and Reineckeiidae. The fauna is typically Northwest-Tethyan and closely related to Central Europe (Subboreal – Submediterra- nean Provinces). Key words: Ammonites, Dalichai Formation, Middle Jurassic, Alborz, Iran Zusammenfassung Aus der Dalichai Formation nördlich von Damghan (Ostalborz) werden einige mitteljurassische Ammoniten, teils zum ersten Mal, beschrieben. Folgende Familien und Unterfamilien sind vertreten: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Steph- anoceratidae (Cadomitinae), Tulitidae und Reineckeiidae. Die Fauna ist typisch für die Nordwest-Tethys und zeigt enge Beziehungen zu Zentraleuropa (Subboreale und Submediterrane Faunenprovinz). Schlüsselwörter: Ammoniten, Dalichai Formation, Mittlerer Jura, Alborz, Iran Introduction the frame of a MSc. thesis. For the present study, a new section nearby was chosen and collections The present study is a continuation of a larger re- were made by A. -
A Record of Solecurtus Scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover
A record of Solecurtus scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover Frank Nolf Pr. Stefanieplein, 43/8 – B-8400 Oostende [email protected] Keywords: BIVALVIA, SOLECURTIDAE, Recently, in November 2007, a live specimen Solecurtus scopula, Strait of Dover. was caught by a fishing boat from Zeebrugge (Belgium) at a depth of 40-42 m at 8 miles west Abstract: The presence of Solecurtus scopula of Boulogne-sur-Mer, NE France. This species is (Turton, 1822) in waters near the North Sea is rarely reported from this area. The specimen confirmed by the record of a single live-caught measures: H. 17.95 mm. and L. 42.36 mm. specimen trawled off Boulogne-sur-Mer, NE France. Since Forbes & Hanley (1853), it has been assumed that the genus Solecurtus is Abbreviations: represented by a species initially named as S. FN: Private collection of Frank Nolf candidus (Renier, 1804) in the British and Irish H: height waters. The synonymy of Forbes & Hanley L: length (1853) also contained Psammobia scopula Turton, 1822. Jeffreys (1865) considered S. Material examined: One specimen of Solecurtus candidus, S. scopula and the fossil species S. scopula (Turton, 1822), trawled by fishermen multistriatus (Scacchi, 1835) synonymous. After from Zeebrugge (Belgium) at a depth of 40-42 m, the rejection of Renier’s work by the ICZN 8 miles west of Boulogne-sur-Mer. November (1954), the British shells were named S. scopula 2007. (Plate I, Figs 1-4). (Turton, 1822). This is the name used by McMillan (1968) and Tebble (1969) who thought that only one Solecurtus-species occurred in British waters. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
Category Popular Name of the Group Phylum Class Invertebrate
Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate