Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae

Total Page:16

File Type:pdf, Size:1020Kb

Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends. The beaks are subcentral Misidentifications) (Oldroyd 1924). and toward anterior end, and the posterior end is round. Description Hinge: The hinge ligament is Size: Individuals up to 190 mm (Haderlie and completely external, and not seated on a Abbott 1980; Coan and Valentich-Scott 2007), nymph (Fig. 2). The left valve is with four with average size adults over 40 mm (Coan cardinal teeth, while the right valve is with two and Carlton 1975). (Fig. 2). A vertical or radial rib projects Color: Periostracum is smooth, brown, shiny, downward and anteriorly from hinge in both and lacquer-like (Ricketts and Calvin 1952). valves (Siliqua, Keen and Coan 1974) (Fig. The shell exterior is white, obscurely rayed, 2). with faint violet coloration and the interior is Eyes: also white, but tinged with violet and pink Foot: The foot in S. patula projects to a (Haderlie and Abbott 1980). length that is one half the total shell length General Morphology: Bivalve mollusks are and has a muscular flap (Haderlie and Abbott bilaterally symmetrical with two lateral valves 1980). It aids in digging by anchoring within or shells that are hinged dorsally and the sediment and contracting such that the surround a mantle, head, foot and viscera body is pulled downward (Ricketts and Calvin (see Plate 393B, Coan and Valentich-Scott 1952) (see Burrow and Behavior). 2007). Solenid and pharid bivalves are Siphons: Siphons are short and fused at the burrowers and some species are quite fast tips, except at the very end (Haderlie and (e.g., Siliqua patula, see description in this Abbott 1980) (Fig. 4). The exhalant and guide). They have shells that are longer than inhalant openings are ringed by tentacles. wide and often razor-like at the opening edge Hiebert, T.C. 2015. Siliqua patula. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12920 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Burrow: A fast burrower, S. patula uses its S. patula (< 55 mm in length) and has an foot to anchor and muscular contractions to internal rib that is vertical and narrow and a pull body downward. Individuals can posterior end that is truncate. It has been completely bury itself within seven seconds suggested that S. lucida are simply young S. (Ricketts and Calvin 1952) and the burrowing patula individuals (Hertlein 1961), but this is speed allows them to avoid the reach of many not yet known. Siliqua lucida lives in clam diggers. Burrowing behavior leaves a protected bay sands and has concentric slight dimple in the sand at the surface (not brown bands on its exterior. Although unlike a thumb imprint). There is no variations in S. patula have been permanent burrow, unlike the similar species synonymized, occasionally readers will find Solen sicarius (see description in this guide) references to S. patula var. nuttallii, which is (Haderlie and Abbott 1980). Individuals orient more oval shape, with purple beaks and four vertically within the sediment (see Fig 3, hinge teeth in the left valve, not two (Oldroyd Pohlo 1963; Haderlie and Abbott 1980). 1924). Ensis myrae and Siliqua altra are offshore species and E. myrae is has a shell Possible Misidentifications that is long and thin. Solenidae and Pharidae are two razor clam Only two species, in the genus Solen, families represented locally and pharid are reported locally in the Solenidae, they genera were recently placed in the former have an almost straight dorsal margin, a family (see previous editions of this guide). terminal beak, and one cardinal tooth in each They are both characterized by cylindrical valve (Keen 1971). Solen rostiformis (= S. shells that are about 2.5 times as long as high rosaceus, but see Pohlo 1963; von Cosel and gape at both ends. They have no dorsal 1992) has a thin shell that tapers and a margin ears (compare to Pectinidae, see periostracum that is lighter than S. sicarius; it Plate 394E, Coan and Valentich-Scott 2007), is light olive green to brown in color. Solen a hinge with ligament that is entirely external rostiformis is a pink shelled clam and its and dorsal, equally shaped adductor muscle siphons are annulated (and it can regenerate scars (compare to Mytilus trossulus, this them when disturbed, Pohlo 1963). It lives in guide), and shells that do not have prominent sandier situations than does S. sicarius radial sculpturing (Coan and Valentich-Scott (Coan and Carlton 1975). Solen sicarius, on 2007). The difference between the two the other hand, has a thick shell, a blunt families is that members of the Pharidae have posterior (‘the blunt razor shell’) and a dark one shell valve with two cardinal teeth and the brown periostracum. Solen sicarius is found other with four, while the Solenidae have a occasionally in permanent burrows in mud or single cardinal tooth on each shell valve muddy sand (Kozloff 1974) and is the (Coan and Valentich-Scott 2007). Other local species most likely to be confused with razor-shaped clams besides the Solenidae Siliqua patula. It lacks an interior vertical rib such as the Mytiiidae include some genera and multiple hinge teeth, and is four times as (e.g. Adula) which are also long and long as wide, not 2.5 times, as in S. patula cylindrical. Adula (see A. californiensis, this (Keen and Coan 1974). Furthermore, the guide) are usually a boring species, however, profile in S. patula is much more oval, and having hairy posterodorsal slopes, a very not as cylindrical as in Solen sicarius. small anterior adductor scar, and no hinge One long, cylindrical bivalve of the teeth (Coan and Valentich-Scott 2007). family Solecurtidae, Tagelus californianus, Hiatellidae, including the geoduck, Panopea the jackknife clam, could be confused with generosa have large, quadrate, gaping Siliqua patula. It too has nearly central bivalves, without hinge teeth, and with nearly beaks, is about 2.5 times as long as wide, equal adductor muscle scars (Keen and Coan and gapes at both ends. It never has the 1974). internal strengthening rib of S. patula, Four species are reported locally in however, and its ligament is seated on a the Pharidae. Siliqua patula has an internal nymph or projection (as in Protothaca rib that slopes anteriorly, a wide and tapering staminea, see plate). Tagelus californianus posterior end. Siliqua lucida is smaller than is gray, has no lateral teeth, and has short Hiebert, T.C. 2015. Siliqua patula. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. siphons (Coan and Carlton 1975). It is found Life-History Information below Humboldt Bay, California, in mudflats. Reproduction: Separate sexes with broadcast spawning and external fertilization. Ecological Information Females produce 6–10 million eggs. In Range: Siliqua patula was described from Washington, all individuals spawn suddenly individuals collected near Coal Harbor, Cook and simultaneously near the end of May or Inlet, Alaska (Weymouth et al. 1926). Known early June, when water temperatures rise range includes Aleutian Islands to Pismo (e.g., 13˚C, Fraser 1936; Ricketts and Calvin Beach, California, but individuals are 1952; Haderlie and Abbott 1980). However, uncommon in California (Weymouth et al. spawning is not sudden or simultaneous in 1931). Alaska or British Columbia, Canada, where Local Distribution: Coos Bay distribution at spawning occurs from July to August (Ricketts Pt. Adams spit near the mouth of the bay and and Calvin 1952; Bourne and Quayle 1970; usually on open coast. This species is more Breese and Robinson 1981, Lassuy and common in coastal regions with long stretches Simons 1989. Sperm morphology appears to of wide sandy beaches (e.g., Seaside, OR, characterize many veneroid taxa (see Fig.
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • INFORMATION to USERS the Most Advanced Technology Has Been
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Geoduck Aquaculture Research Program (GARP)
    FINAL REPORT Publication and Contact Information This report is available on the Washington Sea Grant website at wsg.washington.edu/geoduck For more information contact: Washington Sea Grant University of Washington 3716 Brooklyn Ave. N.E. Box 355060 Seattle, WA 98105-6716 206.543.6600 wsg.washington.edu [email protected] November 2013 • WSG-TR 13-03 Acknowledgements ashington Sea Grant expresses its appreciation to the many individuals who provided information and support Wfor this report. In particular, we gratefully acknowledge research program funding provided by the Washington State Legislature, Washington State Department of Natural Resources, Washington State Department of Ecology, National Oceanic and Atmospheric Administration, and University of Washington. We also would like to thank shellfish growers who cooperated with program investigators to make this research possible. Finally, we would like to recognize the guidance provided by the Department of Ecology and the Shellfish Aquaculture Regulatory Committee. Primary Investigators/ Contributing Scientists Washington Sea Grant Staff Recommended Citation Report Authors Jeffrey C. Cornwell David Armstrong Penelope Dalton Washington Sea Grant Carolyn S. Friedman Lisa M. Crosson Marcus Duke (2013) Final Report: P. Sean McDonald Jonathan Davis David G. Gordon Geoduck aquaculture Jennifer Ruesink Elene M. Dorfmeier Teri King research program. Report Brent Vadopalas Tim Essington Meg Matthews to the Washington State Glenn R. VanBlaricom Paul Frelier Robyn Ricks Legislature. Washington Aaron W. E. Galloway Eric Scigliano Sea Grant Technical Report Micah J. Horwith Raechel Waters WSG-TR 13-03, 122 pp. Perry Lund Dan Williams Kate McPeek Roger I. E. Newell Julian D. Olden Michael S. Owens Jennifer L. Price Kristina M.
    [Show full text]
  • The Effects of Environment on Arctica Islandica Shell Formation and Architecture
    Biogeosciences, 14, 1577–1591, 2017 www.biogeosciences.net/14/1577/2017/ doi:10.5194/bg-14-1577-2017 © Author(s) 2017. CC Attribution 3.0 License. The effects of environment on Arctica islandica shell formation and architecture Stefania Milano1, Gernot Nehrke2, Alan D. Wanamaker Jr.3, Irene Ballesta-Artero4,5, Thomas Brey2, and Bernd R. Schöne1 1Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany 2Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 3Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA 4Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 5Department of Animal Ecology, VU University Amsterdam, Amsterdam, the Netherlands Correspondence to: Stefania Milano ([email protected]) Received: 27 October 2016 – Discussion started: 7 December 2016 Revised: 1 March 2017 – Accepted: 4 March 2017 – Published: 27 March 2017 Abstract. Mollusks record valuable information in their hard tribution, and (2) scanning electron microscopy (SEM) was parts that reflect ambient environmental conditions. For this used to detect changes in microstructural organization. Our reason, shells can serve as excellent archives to reconstruct results indicate that A. islandica microstructure is not sen- past climate and environmental variability. However, animal sitive to changes in the food source and, likely, shell pig- physiology and biomineralization, which are often poorly un- ment are not altered by diet. However, seawater temperature derstood, can make the decoding of environmental signals had a statistically significant effect on the orientation of the a challenging task.
    [Show full text]
  • Scacchi, Species Solecurtidae
    BASTERIA, 58: 35-40, 1994 Solecurtus multistriatus (Scacchi, 1835), a good marine bivalve species from the Mediterranean Sea (Bivalvia, Heterodonta: Solecurtidae) Paolo Mariottini 1 Istituto di Scienze Biochimiche, Universita di Parma, 1-43100 Parma, Italy Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Cesare Ciommei Via Montebruno 12, 1-00168 Rome, Italy Solecurtus multistriatus (Scacchi, 1835) from the Mediterranean Sea is here reported as a bona fide species; the authors give additional data about its morphology, ecology and distribution. Key words: Bivalvia, Solecurtidae, Solecurtus, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Solecurtus Blainville, 1824, is represented by three species: S. scopula (Turton, 1822), S. strigilatus (Linne, 1758) and S. multistriatus (Scacchi, 1835). The last taxon was based by Scacchi (1835) (and not Scacchi, 1834, according to Cretella et ah, 1992) on a fossil specimen collected near Gravina, Puglia (Italy). Here the original description is given: "Testa ovali-oblonga, subaequilatera, antice oblique striata, striis approximatis angulo acuto in/lexis. Lata lin. 8, alta lin. 3". In the description 'lin.' (which stands for linea) is a standard size unit. The one adopted by the authors of that time corresponded to 2.25 mm; but, in this case, it is also possible that 'linea' represents a local Sicilian size unit (1.8 mm) as reported by Giannuzzi-Savelli et al. (1986). The author clearly stated that this species differs from the fossil and Recent specimens of "Solene bianco del Renieri" candidus of S. and of [S. (Renier, 1804), synonym scopula] "Solene strigilato" (S. strigilatus) . Nowadays the status of S.
    [Show full text]
  • Restoration Monitoring Final
    SCIENCE FOR SOLUTIONS NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 23, Volume 1 SCIENCE-BASED RESTORATION MONITORING OF COASTAL HABITATS Volume One: A Framework for Monitoring Plans Under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457) Gordon W. Thayer Amy D. Nickens Teresa A. McTigue Stephen J. Lozano Russell J. Bellmer Perry F. Gayaldo Felicity M. Burrows Pamela J. Polmateer David H. Merkey P. Thomas Pinit OCTOBER 2003 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE CENTER FOR SPONSORED COASTAL OCEAN RESEARCH DECISION ANALYSIS SERIES The Decision Analysis Series has been established by NOAA’s Coastal Ocean Program (COP) to present documents that contain analytical treatments of major issues or topics for coastal resource decision makers. The issues, topics, and principal investigators have been selected through an extensive peer review process. To learn more about the COP or the Decision Analysis Series, please write: NOAA Coastal Ocean Program (N/SCI2) Center for Sponsored Coastal Ocean Research 1305 East West Highway, Room 8243 Silver Spring, MD 20910-3282 phone: 301-713-3338 fax: 301-713-4044 web: www.cop.noaa.gov Cover photo. A coastal wetland complex on the Lake Ontario shoreline. Photo courtesy of Doug Wilcox, United States Geological Survey. Science for Solutions NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 23, Volume 1 SCIENCE-BASED RESTORATION MONITORING OF COASTAL HABITATS Volume One: A Framework for Monitoring Plans Under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457) Gordon W. Thayer Teresa A.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
    EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain.
    [Show full text]