Common Clams, Cockles, Scallops, Oysters Of

Total Page:16

File Type:pdf, Size:1020Kb

Common Clams, Cockles, Scallops, Oysters Of CommonHow Clams, Toxic Are Cockles, Alaska's Most Scallops, Common Shellfish Oysters ? of Alaska Concentric Pacific Littleneck Clam rings Protothaca staminea Pacific Razor Clam Distribution: Aleutian Islands to mid-California Alaska Razor Clam Siliqua patula Habitat: Midtidal to subtidal zone, mud to coarse Siliqua alta Distribution: Bristol Bay to southern gravel beaches 1 Distribution: Bering Sea to Cook Inlet California Size: Up to 2 ⁄2" Habitat: Intertidal zone, open coasts in sand Identification: External surface of shell with radiating Habitat: Intertidal zone to 30 feet on open sandy beaches Size: Up to 8" and concentric grooves Horse (Gaper) Clam Size: Up to 6" Identification: Long narrow shell, thin and Tresus capax brittle, olive green to brown color Identification: Long narrow shaped Distribution: Shumagin Islands, Alaska to shell, shell thin and brittle, brown to olive California green color Habitat: Intertidal zone, imbedded deeply Butter Clam Spiny Scallop Size: Up to 8" Saxidomus giganteus Chlamys hastata Identification: Shell large and thick, wide gape Radiating Distribution: Aleutian Islands to mid- Distribution: Gulf of Alaska between shells at posterior end when held grooves California to California together, dark covering on shell surface often or rib Habitat: Intertidal zone to 120 feet depth, on Habitat: Low intertidal area to partially worn off protected gravel, sandy beaches 400 feet depth Blue Mussel 1 Size: Up to 5" Size: Up to 3 ⁄2" Mytilus edulis Identification: Dense shell, external surface Identification: Shell thin and flattened, Distribution: Northern Hemisphere with concentric rings, prominent growth rings auricles uneven size, 20-30 ribs on each shell, Habitat: Rocky intertidal areas of exposed and ribs spiny textured protected coastline Size: Up to 4" Identification: Blue-black to brownish shell, shell pointed at one end and round at the other, has a thread-like structure to attach to substrate Cockle Clinocardium nuttalli Distribution: Bering Sea to southern California Pacific Oyster Habitat: Intertidal zone to 90 feet, mud to Crassostrea gigas sand beaches Purple Hinge Pink Scallop Distribution: Kachemak Bay to California Size: Up to 6" Chlamys rubida Rock Scallop Habitat: Intertidal in mud to rocky beaches. Identification: Thick cupped shells, up to Geoduck Distribution: Bering Sea to Crassadoma gigantea In Alaska only on aquatic farms, but may be 35 strong ribs spreading from the hinge to Softshell Clam Panopea abrupta mid-California Distribution: Aleutian Islands to southern a few small populations in southern shell margin Mya arenaria Distribution: Sitka, Alaska to Gulf of California Habitat: Low tidal area to 900 feet California southeastern Alaska. Does not reproduce in Distribution: Worldwide north of mid-California Habitat: Intertidal to deep water, buried deeply in sand depth, rocky shoreline Habitat: Low tidal area to 200 feet depth, Alaska waters Habitat: Upper tidal level mud flats and mud bottom 1 attached to rocks and in crevices Size: Up to 2 ⁄2" Size: Up to 8" Size: Up to 6" Size: Shell up to 8" Identification: Shell thin and Size: Up to 10" Identification: Shell irregular shape, rough Shellfish drawings from Intertidal Bivalves: A Guide to Identification: Shell soft, easily broken, one end of Identification: Shells heavy, one end of shell rounded flattened, 20-30 ribs on each shell, Identification: Very heavy rough shell, purple surface, upper shell cupped while lower shell Common Marine Bivalves of Alaska, Nora R. Foster. shell rounded, other end pointed, concentric rings the other end flat, rough concentric grooves on shell color hinge area when shell open 1991. University of Alaska Press. auricles uneven size, red-pink on flat only surface one shell, opposite shell color pale Truths and Myths about PSP Outbreaks of paralytic shellfish poisoning A Little Bit Goes a Are months with an “r” safe for eating shellfish? emphasize this point, none of the five PSP outbreaks in Alaska, 1973-97 (total=83) Long Way! No. Months without an “r” occur during the summer when Kodiak in 1993 were preceded by a red tide. However, if a red tide is in progress, do not eat the shellfish! You may not It doesn’t take much PSP toxin to kill you—just 738 toxic dinoflagellate blooms that cause PSP most often micrograms can kill a 180-pound person. That’s equal in occur. With the unlikely possibility that shellfish will know what is causing the red coloration. volume to about 10 grains of table salt. And even that is become toxic outside the summer season, consumers assume 20 invisible because it’s dissolved throughout the shellfish body shellfish are safe to eat. This answer is wrong in three ways. Is shellfish purchased at a seafood retailer safe to eat? tissue. So BEWARE! No matter what you may hear, there’s no way to tell without a laboratory test whether or not 1. In some locations in Alaska shellfish remain highly toxic 15 Yes. Shellfish sold for human consumption must meet the shellfish you gather are contaminated. in the spring and fall. PSP outbreaks have occurred in all Food and Drug Administration standard of less than 80 µg seasons. of PSP toxin per 100 grams of shellfish tissue. Alaska 10 Blue Mussel regulations require regular monitoring of commercially 2. Toxic dinoflagellate algae can form cysts that reside in harvested shellfish or batch certification that requires each Toxicity: 20,000 µg toxin the sediment during the non-bloom seasons. These cysts are commercially harvested or farm grown batch of shellfish to 5 as toxic as the suspended vegetative form that are present pass the PSP test prior to market. Spiny Scallop during a toxic bloom. Shellfish, being bottom dwelling filter Toxicity: 11,945 µg toxin feeders, can continue to consume cysts during non-bloom Are some clam beaches in Alaska certified to be periods and accumulate PSP toxin. free from PSP toxin? January February March April May June July August September October November December Pink Scallop 3. Some shellfish can retain the PSP toxin for a long period. No. Unlike other West Coast states, Alaska does not certify Department of Environmental Conservation then fills in Toxicity: 11,945 µg toxin Blue mussels in the Skagway area took 28 days before they recreational beaches for evidence of PSP toxin. The term Symptoms of 143 people with paralytic “certified beach” is used in Alaska, but a certified beach is the remainder of the sampling schedule. This massive most deadly were safe to eat. Such a long retention time could extend shellfish poisoning, Alaska, 1973-94 into the fall season. Other shellfish like the butter clams one that has passed a fecal coliform test. This test certifies a testing program has not found PSP levels that exceed the Butter Clam beach free from sewage-caused pollution and indicates the FDA standard. The same is true for the littleneck clam can chemically bind PSP toxin and retain it for as long as µ two years. shellfish are free of human pathogens like cholera or fishery in Kachemak Bay. However, reliance on commer- Symptom Number Toxicity: 7,750 g toxin hepatitis. cial fishery sampling has a major drawback since you do Paresthesia (tingling on skin) 113 Is there an antidote for PSP? not have immediate knowledge of the commercial fishery Perioral (lip) numbness 64 Pacific Razor Clam Can I test for PSP in shellfish by chewing a small PSP test results. Perioral (lip) tingling 61 No. PSP is a neurotoxin that blocks movement of sodium Toxicity: 3,294 µg toxin piece of shellfish tissue and see if I feel tingling in Nausea 45 through membranes of nerve cells. Without sodium Shellfish from other locations around the state—southeast Extremity numbness 43 transmission, nerve cells cannot function. This leads my lips? If no tingling or numbness occurs, is the Alaska, Prince William Sound, Kodiak, and the Aleu- Extremity tingling 39 Alaska Razor Clam ultimately to the symptoms of PSP: numbness, paralysis, shellfish OK to eat? tians—have PSP toxin problems. Commercial harvest of Vomiting 34 µ respiratory failure, and coma. There is no specific antidote Toxicity: 3,294 g toxin No. Only a mouse bioassay is approved by the U.S. Food shellfish in these areas requires certification of the Weakness 33 to stop the effect of PSP toxicity. and Drug Administration for detection of PSP toxins. The harvested batch before marketing. Again, as a personal use Ataxia (immobility) 32 test procedure first extracts PSP toxins from 150 grams of harvester, you do not have access to the PSP test results. Cockle Is there a treatment for PSP? Shortness of breath 29 shellfish tissues. The extract is injected into 3 Swiss Dizziness 28 Toxicity: 2,252 µg toxin Yes. Induce vomiting by sticking a finger down the throat, Webster strain white mice 18-23 grams in weight. The Does cleaning the intestinal contents of the Floating sensation 24 drinking warm saltwater, or taking Syrup of Ipecac to expel amount of time required for the mice to die is recorded then shellfish make them safer to eat? Dry mouth 23 µ shellfish from the victim’s stomach. Treat the victim for converted to micrograms ( g) of toxin by substitution into a Diplopia (double vision) 19 Purple Hinge Rock Scallop prescribed mathematical formula. Sometimes. The digestive tract of the shellfish is the first µ shock and transport to a medical facility. Application of life tissue to accumulate PSP toxin from the food they Dysarthria (difficulity speaking) 16 Toxicity: 2,000 g toxin support services at the medical care facility may be Diarrhea 10 Chewing on a small piece of shellfish gives you no clue as to consume, and cleaning the intestinal contents can reduce necessary to sustain the life of the victim. Reduction of your risk if done during the early part of the toxic bloom.
Recommended publications
  • WHELKS Scientific Names: Busycon Canaliculatum Busycon Carica
    Colloquial Nicknames: Channeled Whelk Knobbed Whelk WHELKS Scientific names: Busycon canaliculatum Busycon carica Field Markings: The shell of open with their strong muscular foot. As both species is yellow-red or soon as the valves open, even the tiniest orange inside and pale gray amount, the whelk wedges in the sharp edge outside. of its shell, inserts the proboscis and Size: Channeled whelk grows up devours the soft body of the clam. to 8 inches long; knobbed whelk Mating occurs by way of internal grows up to 9 inches long and 4.5 inches wide fertilization; sexes are separate. The egg casing of the whelk is a Habitat: Sandy or muddy bottoms long strand of yellowish, parchment-like disks, resembling a Seasonal Appearance: Year-round necklace - its unique shape is sculpted by the whelk’s foot. Egg cases can be two to three feet long and have 70 to 100 capsules, DISTINGUISHING FEATURES AND each of which can hold 20 to 100 eggs. Newly hatched channeled BEHAVIORS whelks escape from small holes at the top of each egg case with Whelks are large snails with massive shells. The two most their shells already on. Egg cases are sometimes found along common species in Narragansett Bay are the knobbed whelk the Bay shoreline, washed up with the high tide debris. and the channeled whelk. The knobbed whelk is the largest marine snail in the Bay. It Relationship to People is pear-shaped with a flared outer lip and knobs on the shoulder Both channeled and knobbed whelks scavenge and hunt for of its shell.
    [Show full text]
  • A Review of the Biology and Fisheries of Horse Clams (Tresus Capax and Tresus Nuttallii)
    Fisheries and Oceans Pêches at Océans Canada Canad a Canadian Stock Assessment Secretariat Secrétariat canadien pour l'évaluation des stocks Research Document 98/8 8 Document de recherche 98/8 8 Not to be cited without Ne pas citer sans permission of the authors ' autorisation des auteurs ' A Review of the Biology and Fisheries of Horse Clams (Tresus capax and Tresus nuttallii) R. B . Lauzier, C . M. Hand, A. Campbell and S .Heizerz Fisheries and Oceans Canada Pacific Biological Station, Stock Assessment Division, Nanaimo, B.C. V9R 5K6 2 Fisheries and Oceans Canada South Coast Division, N anaimo, B.C. V9T 1K3 ' This series documents the scientific basis for the ' La présente série documente les bases scientifiques evaluation of fisheries resources in Canada . As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu'elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations . des rapports d'étape sur les études en cours . Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat . ISSN 1480-4883 Ottawa, 199 8 Canada* Abstract A review of the biology and distribution of horse clams (Tresus capax and Tresus nuttallii)and a review of the fisheries of horse clams from British Columbia, Washington and Oregon is presented, based on previous surveys, scientific literature, and technical reports .
    [Show full text]
  • Shellfish Hatchery
    EAST HAMPTON TOWN SHELLFISH HATCHERY The 2015 Crew, left to right: Kate, Pete, Carissa, Shelby, and Barley 2015 ANNUAL REPORT AND 2016 OPERATING PLAN Prepared by Kate Rossi-Snook Edited by Barley Dunne East Hampton Town Shellfish Hatchery The skiff loaded for seeding in Lake Montauk Annual Report of Operations Mission Statement With a hatchery on Fort Pond Bay, a nursery on Three Mile Harbor, and a floating raft field growout system in Napeague Harbor, the East Hampton Town Shellfish Hatchery produces large quantities of oyster (Crassostrea virginica), clam (Mercenaria mercenaria), and bay scallop (Argopecten irradians) seed to enhance valuable shellfish stocks in local waterways. Shellfish are available for harvest by all permitted town residents. Cooperative research and experimentation concerning shellfish culture, the subsequent success of seed in the wild, and the status of the resource is undertaken and reported upon regularly, often funded and validated by scientific research grants. Educational opportunities afforded by the work include school group and open house tours and educational displays at community functions. Annual reporting includes production statistics and values, seed dissemination information, results of research initiatives, a summary of outreach efforts, the status of current and developing infrastructure, and a plan for the following year’s operations. 2015 Full-time Staff Part-time and Contractual Volunteers John “Barley” Dunne – Director Carissa Maurin – Environmental Aide Romy Macari Kate Rossi-Snook – Hatchery Manager Shelby Joyce – Environmental Aide (summer) Christopher Fox-Strauss Pete Topping – Algae Culturist Adam Younes – Environmental Aide (fall) Jeremy Gould – Maintenance Mechanic Carissa and Pete unloading OysterGros Special Thanks to: Barnaby Friedman for producing our annual seeding maps.
    [Show full text]
  • Shellfish Regulations
    Town of Nantucket Shellfishing Policy and Regulations As Adopted on March 4, 2015 by Nantucket Board of Selectmen Amended March 23, 2016; Amended April 20, 2016 Under Authority of Massachusetts General Law, Chapter 130 Under Authority of Chapter 122 of the Code of the Town of Nantucket TABLE OF CONTENTS Section 1 – Shellfishing Policy for the Town of Nantucket/Purpose of Regulations Section 2 – General Regulations (Applying to Recreational, Commercial and Aquaculture Licenses) 2.1 - License or Permit Required 2.2 - Areas Where Recreational or Commercial Shellfishing May Occur 2.3 - Daily Limit 2.4 - Landing Shellfish 2.5 - Daily Time Limit 2.6 - Closures and Red Flag 2.7 - Temperature Restrictions 2.8 - Habitat Sensitive Areas 2.9 - Bay Scallop Strandings 2.10 - Poaching 2.11 - Disturbance of Licensed or Closed Areas 2.12 - Inspection on Demand 2.13 - Possession of Seed 2.14 - Methods of Taking 2.15 – SCUBA Diving and Snorkeling 2.16 - Transplanting, Shipping, and Storing of Live Shellfish 2.16a - Transplanting Shellfish Outside Town Waters 2.16b - Shipping of Live Shellfish for Broodstock Purposes 2.16c - Transplanting Shellfish into Town Waters 2.16d - Harvesting Seed from the Wild Not Allowed 2.16e - Wet Storage of Recreational Shellfish Prohibited. 2.17 - By-Catch 2.18 - Catch Reports Provided to the Town 2.18a - Commercial Catch Reports 2.18b - Recreational Catch Reports Section 3 – Recreational (Non-commercial) Shellfishing 3.1 - Permits 3.1a - No Transfers or Refunds 3.1b - Recreational License Fees 3.2 - Cannot Harvest for Commerce
    [Show full text]
  • Eight Arms, with Attitude
    The link information below provides a persistent link to the article you've requested. Persistent link to this record: Following the link below will bring you to the start of the article or citation. Cut and Paste: To place article links in an external web document, simply copy and paste the HTML below, starting with "<a href" To continue, in Internet Explorer, select FILE then SAVE AS from your browser's toolbar above. Be sure to save as a plain text file (.txt) or a 'Web Page, HTML only' file (.html). In Netscape, select FILE then SAVE AS from your browser's toolbar above. Record: 1 Title: Eight Arms, With Attitude. Authors: Mather, Jennifer A. Source: Natural History; Feb2007, Vol. 116 Issue 1, p30-36, 7p, 5 Color Photographs Document Type: Article Subject Terms: *OCTOPUSES *ANIMAL behavior *ANIMAL intelligence *PLAY *PROBLEM solving *PERSONALITY *CONSCIOUSNESS in animals Abstract: The article offers information on the behavior of octopuses. The intelligence of octopuses has long been noted, and to some extent studied. But in recent years, play, and problem-solving skills has both added to and elaborated the list of their remarkable attributes. Personality is hard to define, but one can begin to describe it as a unique pattern of individual behavior that remains consistent over time and in a variety of circumstances. It will be hard to say for sure whether octopuses possess consciousness in some simple form. Full Text Word Count: 3643 ISSN: 00280712 Accession Number: 23711589 Persistent link to this http://0-search.ebscohost.com.library.bennington.edu/login.aspx?direct=true&db=aph&AN=23711589&site=ehost-live
    [Show full text]
  • Spisula Solidissima) Using a Spatially Northeastern Continental Shelf of the United States
    300 Abstract—The commercially valu- able Atlantic surfclam (Spisula so- Management strategy evaluation for the Atlantic lidissima) is harvested along the surfclam (Spisula solidissima) using a spatially northeastern continental shelf of the United States. Its range has con- explicit, vessel-based fisheries model tracted and shifted north, driven by warmer bottom water temperatures. 1 Declining landings per unit of effort Kelsey M. Kuykendall (contact author) (LPUE) in the Mid-Atlantic Bight Eric N. Powell1 (MAB) is one result. Declining stock John M. Klinck2 abundance and LPUE suggest that 1 overfishing may be occurring off Paula T. Moreno New Jersey. A management strategy Robert T. Leaf1 evaluation (MSE) for the Atlantic surfclam is implemented to evalu- Email address for contact author: [email protected] ate rotating closures to enhance At- lantic surfclam productivity and in- 1 Gulf Coast Research Laboratory crease fishery viability in the MAB. The University of Southern Mississippi Active agents of the MSE model 703 East Beach Drive are individual fishing vessels with Ocean Springs, Mississippi 39564 performance and quota constraints 2 Center for Coastal Physical Oceanography influenced by captains’ behavior Department of Ocean, Earth, and Atmospheric Sciences over a spatially varying population. 4111 Monarch Way, 3rd Floor Management alternatives include Old Dominion University 2 rules regarding closure locations Norfolk, Virginia 23529 and 3 rules regarding closure du- rations. Simulations showed that stock biomass increased, up to 17%, under most alternative strategies in relation to estimated stock biomass under present-day management, and The Atlantic surfclam (Spisula solid- ally not found where average bottom LPUE increased under most alterna- issima) is an economically valuable temperatures exceed 25°C (Cargnelli tive strategies, by up to 21%.
    [Show full text]
  • Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
    Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Predators in Action: Rapa Whelks Vs. Hard Clams
    VORTEX PREDATORS IN ACTION: RAPA WHELKS VS. HARD CLAMS INTRODUCTION Rapa whelks (Rapana venosa) are large predatory ma- rine snails (Figure 1). These large snails were discov- Figure 1: An adult rapa ered in the Chesapeake Bay in 1998. Rapa whelks are whelk from the lower native to the marine and estuarine habitats off the coast Chesapeake Bay. This of Japan and Korea. They were introduced to the Black animal’s shell is 165 Sea in the mid 1940s and have since spread from there mm long. ©2002. J. into the Mediterranean, Adriatic, and Aegean Seas. It Harding. is very likely that the Chesapeake Bay population be- gan with the introduction of baby snails from the Black Sea into the waters of the lower Chesapeake Bay in ships’ ballast water. Rapa whelks eat bivalve molluscs. They are generalist predators; that is, they do not require a particular kind of bivalve. They will eat whatever bivalves are avail- able to them. In the lower Chesapeake Bay the poten- tial menu for rapa whelks includes hard clams (Mercenaria mercenaria, Figure 2), mussels (Mytilus Figure 2: Two adult hard clams. These animals are and Geukensia sp.), and oysters (Crassostrea virginica), approximately 80 mm long. ©2003. J. Harding. as well as others. Adult rapa whelks or animals with shells bigger than 75 mm (about the size of a tennis and fishery managers are concerned about the poten- ball) seem to live in the same places that hard clams tial effects that rapa whelk predation might have on live and probably eat them as a main food item.
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Octopus Video Transcript
    Octopus Video Transcript 00:00:08 Hi everyone. I'm Jackie Grundberg with Backpack Sciences. Although I have many animals, I absolutely love and find interesting. I want to share with you one of my favorites. It's not something unique, and I'm pretty sure that all of you have heard of it and even seen one at an aquarium. I'm sure you know, some facts about them, but there are some facts or stories that might surprise you. 00:00:36 Did you know that octopuses are considered the most mysterious creature in the sea? Let's just start out with some basic facts about octopuses. The word S octopus comes from the Greek word oktopus, which means eight foot. Some call E C octopus' eight appendages, tentacles, but they're actually called arms. Each arm has N E I a mind of its own. How? First, let me tell you that a neuron is a specialized cell, C S K C 00:01:11 that processes and transmits information to other neurons and muscles. It's A like a signal, and this is how we react to our environment. When we touch P K something hot with our fingers, the neurons on the tips of our fingers sends a C A message to our brain that tells our muscles to move the finger. A neuron can send a B . signal 200 times per second, and each neuron connects to about a thousand other W W neurons. W | 00:01:40 Amazing, right? Because two thirds of the neurons are in an octopus' arms S E instead of its head, the octopus can control them separately.
    [Show full text]
  • The Pacific Razor Clam
    Temperature and Growth- The Pacific Razor Clam By Oyde C. Taylor Bureau of Commercial Fisheries Biolosical Laboratory U.S. Fish and Wildlife Service, Woods Hole, Massachusetts Introduction Quantitative relations between growth parameters of the cod (Gadus morhua l.) and mean annual sea surface temperature at various localities have been described by TAYLOR ( 1958 a). This paper shows similar relations for a more sedentary organism, the Pacific razor clam (Si/iqua patula). The theoretical "ignificance of such relations is discussed briefl.y. WEYMOUTH and McMILLIN (1931) show age-length data for the razor clam at ten localities ranging from California to Alaska. Using these data but excluding median lengths based on less than 5 clams, I have determined the parameters of the equations:- L, 1 = mL, + i ........... ........... (1) e-K(t-to>) . • . •••...•.. L, = L 00 (I - (2) 2·996 A.9~ .......... (3) I • K t quation (1) is the regression of length at time t I on length at time t, m lftl the slope and i the y-intercept (WALFORD, 1946). Equation (2) is the ""talanlfy ( 1938) growth equation, L00 is the asymptotic length, K a constant, and a correction on the time axis. L00 and K are derived from equation (I) a' follows:- L00 i/(1 m) . ..... ( 4) and K - log.m . .... (5) 1 "uation (3) defines the life span as time, A.95 , required to attain 95% of L00 1Wtt, 1958a, 1958b). 1 .~ I shows the localities and latitudes from which age-length data for the: r&Lur clam are reported by WEYMOUTH and McMILLIN (1931); also the estimated mean air temperature and the parameters K, i, L00, and A 95 • ACE 6275596 -tfs 94 CLYDE C.
    [Show full text]