A Review of the Biology and Fisheries of Horse Clams (Tresus Capax and Tresus Nuttallii)

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Biology and Fisheries of Horse Clams (Tresus Capax and Tresus Nuttallii) Fisheries and Oceans Pêches at Océans Canada Canad a Canadian Stock Assessment Secretariat Secrétariat canadien pour l'évaluation des stocks Research Document 98/8 8 Document de recherche 98/8 8 Not to be cited without Ne pas citer sans permission of the authors ' autorisation des auteurs ' A Review of the Biology and Fisheries of Horse Clams (Tresus capax and Tresus nuttallii) R. B . Lauzier, C . M. Hand, A. Campbell and S .Heizerz Fisheries and Oceans Canada Pacific Biological Station, Stock Assessment Division, Nanaimo, B.C. V9R 5K6 2 Fisheries and Oceans Canada South Coast Division, N anaimo, B.C. V9T 1K3 ' This series documents the scientific basis for the ' La présente série documente les bases scientifiques evaluation of fisheries resources in Canada . As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu'elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations . des rapports d'étape sur les études en cours . Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat . ISSN 1480-4883 Ottawa, 199 8 Canada* Abstract A review of the biology and distribution of horse clams (Tresus capax and Tresus nuttallii)and a review of the fisheries of horse clams from British Columbia, Washington and Oregon is presented, based on previous surveys, scientific literature, and technical reports . Stock assessment strategies and management strategies are presented . Recommendations for additional information requirements for stock assessments and management plans are given . Résumé Un examen de la biologie et de la distribution de la fausse-mactre (Tresus capax et Tresus nuttalli) et un examen de la pêche de la fausse-mactre en Colombie- Britannique, à Washington et en Orégon, fondés sur des relevés antérieurs, des publications scientifiques et des rapports techniques, sont présentés. On y traite aussi des stratégies d'évaluation et de gestion . Des recommandations sont formulées relativement à l'obtention de renseignements supplémentaires pour les plans d'évaluation et de gestion des stocks . 1 Table of Contents 1 . INTRODUCTION........... ...... .... .. .. .... .. .. .. .. .. .. .... .. .... .. .... ...... .. .. .. .. .. .. .. ............................... .... 1 1 .1 . PLAN FOR THE DEVELOPMENT OF A DIRECTED FISHERY ON HORSE CLAMS . .1 1 .2 . BIOLOGICAL OBJECTIVES . .2 2. REVIEW OF CURRENT INFORMATION ON TRESUS CAPAX AND TRESUS NUTTALLII ........................... ...... .. .. .. .. ... .. .. .. .. .. .. .. .... .. .... ............ .. .. .. .. .. .. .. ............ ...... .. ..... .. ......2 2 .1 . DESCRIPTION . .2 2 .2. GEOGRAPHIC DISTRIBUTION . .3 2 .3 . HABITAT, ECOLOGICAL RELATIONSHIPS, CO-OCCURING SPECIES . .3 2 .4. PREDATORS, PARASITES AND DISEASE . .. .4 2 .5 . PHYSIOLOGY, FOOD AND FEEDING . .. .. .. .. .5 2 .(). REPRODUCTION . .. .. .. .. .. .. .. .. .. .. :. .. .5 2 .7. GROWTH AND AGE .. .. .. .. .. .. .. .7 2 . 8 . RECRUIT ME NT AND MORTALITY . .. .. .. .. .. .ô 2 .9. DENSITY AND BIOMASS . .. .. .. .. .. .9 3. FISHERIES ....................................... .... .. .. .. .. .. .. .... .. .. .. .. .. .................................. ..10 3.1 . REVIEW OF TRESUS FISHERIES IN BRITISH COLUMBIA . .. .. .. .. .. .. .. .. .. .. .. .1 0 3 .2. REVIEW OF TRESUS FISHERIES IN WASHINGTON AND OREGON . .. .. .. .. .. .. .I 1 4. DISCUSSION .................................. .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .... ........................ .......12 4.1 . BIOLOGICAL CONSIDERATIONS . .. .. .. .13 4.2. STOCK ASSESSMENT CONSIDERATIONS . .. .. .. .. .. .14 4.3 . MANAGEMENT STRATEGIES .. .. .. .. .. .. .. .. .1 4 5. CONCLUSIONS ............................. .. .. .. .... .. .. .. .. .... .. .... .. .... .. .... .. .. .. ... .. .... .. ................ .. .. ... ....15 6. ACKNOWLEDGEMENTS ........... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .............................. ... ..15 7. REFERENCES.................................... .... .. .. .. .. .. .. .. ... .. .. .. .. .................................... .. ...16 2 List of Tables Page Table 1 . Von Bertanlanffy growth parameters for T. capax and T. nuttallü form British Columbia . 21 Table 2. Density Estimates of horse clams, Tresus sp. derived from geoduck (Panopea abrupta) dive surveys. 2 1 Table 3. Mean density of horse clams derived from transect surveys conducted in the Yellow Bank/Elbo w Bank area of the west coast on Vancouver Island, Sept .-Oct. 1995 . 22 Table 4. Results of census data for horse clams (T. capax) at Seal Island from surveys performed 1952-1992 . 23 Table 5. History of management actions for the horse clam fishery in the Pacific Region . 23 Table 6. Summary of horse clam landings (tonnes) by management area from South Coast to North Coast areas, 1979 to 1996, as reported by sales slips or harvest logs . 2 4 Table 7. Horse clam landings (tonnes) and effort for Bristish Columbia, 1979to 1996, as reported on sales slips and harvest logs . 2 5 Table 8. Horse clam landings (kg) from Area 24 rotational harvest areas, from harvest log reports, 1988 to 1994 . 26 Table 9 . Catch per unit effort (CPUE kg/diver hr) for horse clam directed fisheries and geoduck fishe ries 26 List of Figures Page Figure 1 . Wet weight-length relationship for Tresus spp. dug intertidally from Seal Island in 1995 . • 27 Figure 2 . Annual horse clam landings (all Tresus spp.) in British Columbia and whole landed value ($/t) in British Columbia . 2 7 Figure 3 . Total annual reported landings (all Tresus spp.) from major producing beds in Statistical Area 14 . 28 3 1 . Introduction Two species of horse clams (Tresus nuttallii an d T. capax) have been harvested incidentally in the geoduck (Panopea abrupta) fishery since 1979 . Harvest is restricted to G licence holders and to subtidal areas deeper than 10 feet below chart datum . There has never been an assessment of horse clam stocks in British Columbia, or a specific recommended or allocated quota. Current management includes time/area openings co-incident with the geoduck fishery and, in recent years, arbitrary catch caps . There is a building desire on the part of G licence holders to develop the markets for this potentially high value product and to expand the fishery from an incidental one to a targetted or directed fishery . Fisheries and Oceans Canada (DFO) placed a moratorium on new invertebrate fisheries in the Pacific Region in 1992, as the department lacked the resources to collect and analyze the biological information necessary to develop a sound management strategy . Since then, DFO and the Ministry of Agriculture, Fisheries and Food (MAFF) proposed several new invertebrate stocks for potential exploitation, including the neon flying squid (Ommastrephes bartrami), Pacific milky venus clam (Compsomyax subdiaphana), and the deepwater or grooved Tanner crab (Chionoecetes tanneri). In addition, octopus (Octopus dofleini) and horse clams (Tresus capax and Tresus nuttallii) were identified as high priorities for expansion from incidental fisheries to targetted fisheries . There are ongoing discussions between DFO and MAFF to develop policy and guidelines for the development of new fisheries, with a phased precautionary approach, to ensure an orderly development of a sustainable, viable fishery . 1.1 . Plan for the Development of a Directed Fishery on Horse Clams Within the Stock Assessment Division of DFO, a framework was developed for the provision of scientific advice for the management of new and developing invertebrate fisheries, including established fisheries whose expansion is limited due to a lack of information of the species distribution or abundance (Perry et.al. in prep). This framework included three phases for the precautionary development of a fishery : Phase 0 : Collection of all available information on the target species, and from similar species elsewhere, to provide a baseline with which to advise on the alternative management options and to identify areas where information is lacking ; Phase 1 : Involves surveys and experimental fishing where the objective is the collection of data required to fill in the information gaps identified in the first phase and to explore the fishery potential. Phase 2 : Fishing for Commerce . A fishery is developed at the commercial level, while stocks are monitored and management strategies are evaluated. This paper presents the Phase 0 review of known and derived information on the two species of horse clams found in British Columbia, Tresus capax and T. nuttalii. It includes a 1 review of horse clam distribution, life history and biology, population dynamics, abundance and a summary of horse clam fisheries in B .C and elsewhere . 1.2. Biological Objectives The biological objective for a fishery on horse clams is to maintain a viable, healthy, and productive stock throughout their natural range in British Columbia . Three basic biological objectives were provided for the management of Pacific Region fish and invertebrate stocks by Rice et.al. (1995) . These provided the framework for the specific biological
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • Monda Y , March 22, 2021
    NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 113th Annual Meeting March 22 − 25, 2021 Global Edition @ http://shellfish21.com Follow on Social Media: #shellfish21 NSA 113th ANNUAL MEETING (virtual) National Shellfisheries Association March 22—March 25, 2021 MONDAY, MARCH 22, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound Chesapeake Bay Monterey Bay SHELLFISH ONE HEALTH: SHELLFISH AQUACULTURE EPIGENOMES & 8:30-10:30 AM CEPHALOPODS OYSTER I RESTORATION & BUSINESS & MICROBIOMES: FROM SOIL CONSERVATION ECONOMICS TO PEOPLE WORKSHOP 10:30-10:45 AM MORNING BREAK THE SEA GRANT SHELLFISH ONE HEALTH: EPIGENOMES COVID-19 RESPONSE GENERAL 10:45-1:00 PM OYSTER I RESTORATION & & MICROBIOMES: FROM SOIL TO THE NEEDS OF THE CONTRIBUTED I CONSERVATION TO PEOPLE WORKSHOP SHELLFISH INDUSTRY 1:00-1:30 PM LUNCH BREAK WITH SPONSOR & TRADESHOW PRESENTATIONS PLENARY LECTURE: Roger Mann (Virginia Institute of Marine Science, USA) (LIVE) 1:30-2:30 PM Chesapeake Bay EASTERN OYSTER SHELLFISH ONE HEALTH: EPIGENOMES 2:30-3:45 PM GENOME CONSORTIUM BLUE CRABS VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP CONSERVATION TO PEOPLE WORKSHOP BLUE CRAB GENOMICS EASTERN OYSTER & TRANSCRIPTOMICS: SHELLFISH ONE HEALTH: EPIGENOMES 3:45–5:45 PM GENOME CONSORTIUM THE PROGRAM OF THE VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP BLUE CRAB GENOME CONSERVATION TO PEOPLE WORKSHOP PROJECT TUESDAY, MARCH 23, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • List of Bivalve Molluscs from British Columbia, Canada
    List of Bivalve Molluscs from British Columbia, Canada Compiled by Robert G. Forsyth Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria, BC V8W 9W2; [email protected] Rick M. Harbo Research Associate, Invertebrate Zoology, Royal BC Museum, 675 Belleville Street, Victoria BC V8W 9W2; [email protected] Last revised: 11 October 2013 INTRODUCTION Classification rankings are constantly under debate and review. The higher classification utilized here follows Bieler et al. (2010). Another useful resource is the online World Register of Marine Species (WoRMS; Gofas 2013) where the traditional ranking of Pteriomorphia, Palaeoheterodonta and Heterodonta as subclasses is used. This list includes 237 bivalve species from marine and freshwater habitats of British Columbia, Canada. Marine species (206) are mostly derived from Coan et al. (2000) and Carlton (2007). Freshwater species (31) are from Clarke (1981). Common names of marine bivalves are from Coan et al. (2000), who adopted most names from Turgeon et al. (1998); common names of freshwater species are from Turgeon et al. (1998). Changes to names or additions to the fauna since these two publications are marked with footnotes. Marine groups are in black type, freshwater taxa are in blue. Introduced (non-indigenous) species are marked with an asterisk (*). Marine intertidal species (n=84) are noted with a dagger (†). Quayle (1960) published a BC Provincial Museum handbook, The Intertidal Bivalves of British Columbia. Harbo (1997; 2011) provided illustrations and descriptions of many of the bivalves found in British Columbia, including an identification guide for bivalve siphons and “shows”. Lamb & Hanby (2005) also illustrated many species.
    [Show full text]
  • Spatial Comparison of Bay Clam Morphometrics and Age Structure in Three Oregon Estuaries
    Spatial comparison of bay clam morphometrics and age structure in three Oregon estuaries Cinamon Moffett, Anthony D’Andrea, and Justin Ainsworth Age-Length Keys Introduction Oregon Department of Fish and Wildlife, Marine Resources Program, Newport, OR • Age-length keys were created using the Historical Creel data. Management of Oregon’s bay clam resources and habitats are the [email protected] • Keys were then applied to the Recent Creel and SEACOR data. responsibility of the Oregon Department of Fish and Wildlife (ODFW) Data Set Years Sampled Data Type Methods Parameters • The differences in mean age between data sets were evaluated using Shellfish Program. Bay clams, which are referred to and managed Data Sets Historical Creel 1983-1991 fisheries dependent recreational length, age from a KS-test (α=0.05). Each estuary with a blue arrow has collectively, include: butter clams (Saxidomus gigantea), cockles harvester growth checks This analysis utilized four interviews significant differences in their estimated age from the known age (Clinocardium nuttallii), gaper clams (Tresus capax), and native existing data sets, each with Recent Creel 2008-2014 fisheries dependent recreational length Do bay clam structure. littleneck clams (Leukoma staminea). This analysis examined bay clam unique characteristics. harvester morphometrics or Most estimated age morphometrics and age structures in three recreationally important interviews age structures Example Age- structures are Oregon estuaries: Netarts, Tillamook and Yaquina bays. Presented here SEACOR-full Netarts-2013-2014 fisheries independent stratified random length, weight, vary on a spatial Length Key significantly different (subtidal and intertidal) Tillamook-2010-2012 sampling width, density between estuaries and are the results from gapers and cockles, which differ in several key life Yaquina-2012 scale? between data sets history traits.
    [Show full text]
  • Review of the Literature on Bivalve Cytogenetics in the Last Ten Years
    Cah. Biol. Mar. (2002) 43 : 17-26 Review of the literature on bivalve cytogenetics in the last ten years Catherine THIRIOT-QUIEVREUX Observatoire Océanologique, Université P. et M. Curie – CNRS - INSU, BP 28, 06230 Villefranche-sur-Mer, France Fax: (33) 4 93 76 38 48; E-mail: [email protected] Abstract: This paper provides a review of the studies on bivalve chromosomes since 1992, in order to gather available data and to highlight the recent progress in different fields of cytogenetics: karyotype and chromosome markers, genome size, aneuploidy, natural and induced polyploidy, and hybridization. Résumé: Revue des travaux des dix dernières années sur l’étude cytogénétique des bivalves. Cet article présente une revue sur l’étude des chromosomes des bivalves depuis 1992 afin de rassembler les données disponibles et de souligner les pro- grès récents dans les différents domaines de la cytogénétique : caryotype et marqueurs chromosomiques, taille du génome, aneuploïdie, polyploïdie naturelle et induite, et hydridisation. Keywords: Bivalvia, Chromosomes, Cytogenetics Introduction review, 1985). Later, the development of banding techniques which allowed chromosome identification in Cytogenetic studies encompass different levels of biological karyotypes began to be applied in bivalves (see Thiriot- organization ranging from the morphological to the Quiévreux review, 1994). Since these reviews, the study of molecular, depending on the applicable technology. bivalve chromosomes has greatly progressed in Chromosomes can be studied as a morphological karyological as well as molecular information, as a result of manifestation of the genome in terms of their routine application of several banding techniques and the microscopically visible size, shape, number and behaviour development of techniques for in situ hybridization.
    [Show full text]
  • Common Clams, Cockles, Scallops, Oysters Of
    CommonHow Clams, Toxic Are Cockles, Alaska's Most Scallops, Common Shellfish Oysters ? of Alaska Concentric Pacific Littleneck Clam rings Protothaca staminea Pacific Razor Clam Distribution: Aleutian Islands to mid-California Alaska Razor Clam Siliqua patula Habitat: Midtidal to subtidal zone, mud to coarse Siliqua alta Distribution: Bristol Bay to southern gravel beaches 1 Distribution: Bering Sea to Cook Inlet California Size: Up to 2 ⁄2" Habitat: Intertidal zone, open coasts in sand Identification: External surface of shell with radiating Habitat: Intertidal zone to 30 feet on open sandy beaches Size: Up to 8" and concentric grooves Horse (Gaper) Clam Size: Up to 6" Identification: Long narrow shell, thin and Tresus capax brittle, olive green to brown color Identification: Long narrow shaped Distribution: Shumagin Islands, Alaska to shell, shell thin and brittle, brown to olive California green color Habitat: Intertidal zone, imbedded deeply Butter Clam Spiny Scallop Size: Up to 8" Saxidomus giganteus Chlamys hastata Identification: Shell large and thick, wide gape Radiating Distribution: Aleutian Islands to mid- Distribution: Gulf of Alaska between shells at posterior end when held grooves California to California together, dark covering on shell surface often or rib Habitat: Intertidal zone to 120 feet depth, on Habitat: Low intertidal area to partially worn off protected gravel, sandy beaches 400 feet depth Blue Mussel 1 Size: Up to 5" Size: Up to 3 ⁄2" Mytilus edulis Identification: Dense shell, external surface Identification:
    [Show full text]
  • Juvenile Mortality in Benthic Marine Invertebrates
    MARINE ECOLOGY PROGRESS SERIES Vol. 146: 265-282, 1997 Published January 30 Mar Ecol Prog Ser REVIEW Juvenile mortality in benthic marine invertebrates Louis A. Gosselin*,Pei-Yuan Qian Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ABSTRACT Th~rtyyears ago Thorson (1966 Neth J Sea Res 3 267-293) calculated that juvenile mor- tallty in manne bivalves could exceed 98 6% Subsequently juvenile mortality rates have been assumed to be high and to influence the evolution of life history traits However there have been no attempts to establish whether high luvenile mortality IS common or to determine if lnterspecific trends in luven~lemortality exist To address th~sIssue we revlewed 30 studies of age-specif~cmortality among bivalves, gastropods, barnacles ascid~ans,bryozoans and echinoderms High juvenile mortality is widespread among benthic marlne Invertebrates with 20 of the 30 stud~esreporting levels of luve- n~lemortal~ty >90% Mortal~tyis part~cularlyh~gh during the first moments of luvenile life and can exceed 30% during the f~rstday Pool~ngsurv~vorship data from all species revealed a general trend with survivorsh~pdecreasing exponentially during the first days or weeks of juvenile life until by the age of 4 mo, virtually all cohorts were reduced to <20% of their ~nitialnumbers ~nortalityremained low thereafter We suggest that extreme vulnerability at the onset of luvenile life is a shared tra~tthat is largely responsible for the surv~vorshiptrend Natural variation within this trend
    [Show full text]
  • Molluscs: Bivalvia Laura A
    I Molluscs: Bivalvia Laura A. Brink The bivalves (also known as lamellibranchs or pelecypods) include such groups as the clams, mussels, scallops, and oysters. The class Bivalvia is one of the largest groups of invertebrates on the Pacific Northwest coast, with well over 150 species encompassing nine orders and 42 families (Table 1).Despite the fact that this class of mollusc is well represented in the Pacific Northwest, the larvae of only a few species have been identified and described in the scientific literature. The larvae of only 15 of the more common bivalves are described in this chapter. Six of these are introductions from the East Coast. There has been quite a bit of work aimed at rearing West Coast bivalve larvae in the lab, but this has lead to few larval descriptions. Reproduction and Development Most marine bivalves, like many marine invertebrates, are broadcast spawners (e.g., Crassostrea gigas, Macoma balthica, and Mya arenaria,); the males expel sperm into the seawater while females expel their eggs (Fig. 1).Fertilization of an egg by a sperm occurs within the water column. In some species, fertilization occurs within the female, with the zygotes then text continues on page 134 Fig. I. Generalized life cycle of marine bivalves (not to scale). 130 Identification Guide to Larval Marine Invertebrates ofthe Pacific Northwest Table 1. Species in the class Bivalvia from the Pacific Northwest (local species list from Kozloff, 1996). Species in bold indicate larvae described in this chapter. Order, Family Species Life References for Larval Descriptions History1 Nuculoida Nuculidae Nucula tenuis Acila castrensis FSP Strathmann, 1987; Zardus and Morse, 1998 Nuculanidae Nuculana harnata Nuculana rninuta Nuculana cellutita Yoldiidae Yoldia arnygdalea Yoldia scissurata Yoldia thraciaeforrnis Hutchings and Haedrich, 1984 Yoldia rnyalis Solemyoida Solemyidae Solemya reidi FSP Gustafson and Reid.
    [Show full text]
  • Wac Food Fish and Shellfish—Classified
    Chapter 220-12 Chapter 220-12 WAC FOOD FISH AND SHELLFISH—CLASSIFIED WAC Pacific sand dab Lepidopsetta bilineata 220-12-005 Request for classification of nonnative aquatic animal species. Sand sole Citharichthys sordidus 220-12-010 Food fish—Classification. Slender sole Psettichthys melanostictus 220-12-020 Shellfish—Classification. Speckled sand dab Lyopsetta exilis 220-12-090 Classification—Nonnative aquatic animal species. Starry flounder Citharichthys stigmaeus Turbot or Arrowtooth floun- Platichthys stellatus DISPOSITION OF SECTIONS FORMERLY der CODIFIED IN THIS CHAPTER All other species of sole and Atheresthes stomias 220-12-001 Food fish and shellfish—Promulgation. [Order 807, § flounder 220-12-001, filed 1/2/69, effective 2/1/69; Order 677, Giant wrymouth (Pleuronectiformes) Promulgation, filed 3/31/66; Order 256, Promulgation, filed 3/1/60.] Repealed by WSR 83-24-024 (Order 83- Delolepsis gigantea 200), filed 11/30/83, effective 1/1/84. Statutory Author- ity: RCW 75.08.080. Greenling 220-12-002 Food fish and shellfish—Classification and preamble. Lingcod Ophiodon elongatus [Order 807, § 220-12-002, filed 1/2/69, effective 2/1/69; Order 677, Preamble, filed 3/31/66; Order 256, Pream- Rock greenling Hexagrammos superciliosus ble, filed 3/1/60.] Repealed by WSR 83-24-024 (Order Kelp greenling Hexagrammos decagrammus 83-200), filed 11/30/83, effective 1/1/84. Statutory Authority: RCW 75.08.080. All other species of greenling (Hexagrammidae) WAC220-12-005 220-12-005 Request for classification of non- Herring and herring-like fishes native aquatic animal species. Any person requesting clas- Northern anchovy Engraulis mordax sification of a nonnative aquatic animal species as a food fish, Pacific sand lance or candle- game fish, or shellfish must follow the procedure for request fish Ammodytes hexapterus for designation prior to approval for release in WAC 232-12- Pacific herring Clupea harengus pallasi 016(1).
    [Show full text]
  • Reproductive Ecology and Dispersal Potential of Varnish Clam Nuttallia Obscurata, a Recent Invader in the Northeast Pacific Ocean
    MARINE ECOLOGY PROGRESS SERIES Vol. 320: 195–205, 2006 Published August 29 Mar Ecol Prog Ser Reproductive ecology and dispersal potential of varnish clam Nuttallia obscurata, a recent invader in the Northeast Pacific Ocean Sarah E. Dudas1, 3,*, John F. Dower1, 2 1Department of Biology, and 2School of Earth & Ocean Sciences, University of Victoria, PO Box 3020 STN CSC, Victoria, British Columbia V8W 3N5, Canada 3Present address: Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, Oregon 97331, USA ABSTRACT: The fecundity, larval development, and temperature and salinity tolerances were deter- mined for the varnish clam Nuttallia obscurata (Reeve 1857), a recently introduced species in the Northeast Pacific. Adult varnish clams from 2 populations were collected in British Columbia, Canada throughout the spawning season to determine sex, fecundity, and timing of spawning. Adult varnish clams were also spawned in the laboratory and the larvae reared at a range of temperatures and salinities. The highest larval growth rates were observed in the 20°C and 20 psu treatments. Planktonic duration ranged from 3 to potentially 8 wk, with higher temperatures and salinities result- ing in a shorter planktonic phase. Larvae reared at 9°C, and at 10 and 15 psu, grew slowly and sur- vived for a minimum of 1 mo but did not reach metamorphosis. These results indicate that varnish clam larvae have a wide range of salinity and temperature tolerances, but grow optimally at warmer temperatures and higher salinities. Varnish clams have comparable larval environmental tolerances and spawning duration to co-occurring bivalves. However, their fecundity appears to be slightly higher and they reach sexual maturity earlier, potentially providing an advantage in establishing new populations.
    [Show full text]