Category Popular Name of the Group Phylum Class Invertebrate

Total Page:16

File Type:pdf, Size:1020Kb

Category Popular Name of the Group Phylum Class Invertebrate Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Mammal Chordata Mammalia Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Mammal Chordata Mammalia Invertebrate Arthropod Arthropoda Insecta Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Amphibian Chordata Amphibia Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Arachnida Invertebrate Arthropod Arthropoda Arachnida Invertebrate Arthropod Arthropoda Arachnida Invertebrate Arthropod Arthropoda Arachnida Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Mammal Chordata Mammalia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Mammal Chordata Mammalia Vertebrate Reptile Chordata Reptilia Vertebrate Amphibian Chordata Amphibia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Invertebrate Mollusk Mollusca Bivalvia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Invertebrate Arthropod Arthropoda Insecta Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Invertebrate Flatworm Platyhelminthes Trematoda Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Malacostraca Invertebrate Arthropod Arthropoda Malacostraca Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Bird Chordata Aves Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Malacostraca Invertebrate Arthropod Arthropoda Malacostraca Invertebrate Arthropod Arthropoda Arachnida Vertebrate Mammal Chordata Mammalia Vertebrate Fish Chordata Actinopterygii Vertebrate Mammal Chordata Mammalia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Invertebrate Mollusk Mollusca Bivalvia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Invertebrate Mollusk Mollusca Bivalvia Invertebrate Mollusk Mollusca Bivalvia Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Mammal Chordata Mammalia Vertebrate Mammal Chordata Mammalia Invertebrate Arthropod Arthropoda Insecta Vertebrate Bird Chordata Aves Vertebrate Bird Chordata Aves Vertebrate Amphibian Chordata Amphibia Vertebrate Amphibian Chordata Amphibia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii
Recommended publications
  • DNA Barcode of Parodontidae Species from the La Plata River Basin - Applying New Data to Clarify Taxonomic Problems
    Neotropical Ichthyology, 11(3):497-506, 2013 Copyright © 2013 Sociedade Brasileira de Ictiologia DNA barcode of Parodontidae species from the La Plata river basin - applying new data to clarify taxonomic problems Elisangela Bellafronte1, Tatiane Casagrande Mariguela2, Luiz Henrique Garcia Pereira2, Claudio Oliveira2 and Orlando Moreira-Filho1 In the past years, DNA barcoding has emerged as a quick, accurate and efficient tool to identify species. Considering the difficulty in identifying some Parodontidae species from the La Plata basin and the absence of molecular data for the group, we aimed to test the effectiveness of DNA barcoding and discuss the importance of using different approaches to solve taxonomic problems. Eight species were analyzed with partial sequences of Cytochrome c oxidase I. The mean intraspecific K2P genetic distance was 0.04% compared to 4.2% for mean interspecific K2P genetic distance. The analyses of distance showed two pairs of species with K2P genetic divergence lower than 2%, but enough to separate these species. Apareiodon sp. and A. ibitiensis, considered as the same species by some authors, showed 4.2% genetic divergence, reinforcing their are different species. Samples of A. affinis from the Uruguay and Paraguay rivers presented 0.3% genetic divergence, indicating a close relationship between them. However, these samples diverged 6.1% from the samples of the upper Paraná River, indicating that the latter represents a potentially new species. The results showed the effectiveness of the DNA barcoding method in identifying the analyzed species, which, together with the morphological and cytogenetic available data, help species identification. Nos últimos anos o DNA barcoding surgiu como uma ferramenta rápida, precisa e eficiente para identificar espécies.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • Zootaxa, Apareiodon Agmatos, a New Species from The
    Zootaxa 1925: 31–38 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Apareiodon agmatos, a new species from the upper Mazaruni river, Guyana (Teleostei: Characiformes: Parodontidae) DONALD C. TAPHORN B.1, HERNÁN LÓPEZ-FERNÁNDEZ 2 & CALVIN R. BERNARD3 1Museo de Ciencias Naturales de Guanare, BioCentro, UNELLEZ, Mesa de Cavacas, Guanare 3310, Estado Portuguesa, Venezuela. E-mail: [email protected] 2Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada. E-mail: [email protected] 3Center for the Study of Biodiversity, University of Guyana, Georgetown, Guyana. E-mail: [email protected] Abstract Apareiodon agmatos, new species, is described from the upper Mazaruni River and its tributaries, Essequibo Basin, in western Guyana. The new species is distinguishable from all other species of Parodontidae by having an incomplete lat- eral line. The scales of A. agmatos are more numerous than in any previously described parodontid. It has five incisor- like pedunculate teeth on the premaxilla aligned in a straight row, each with a large central spatulate cusp bordered on each side by a minute lateral cusp. The maxilla has two or infrequently three incisors. It shares an unusual pigmentation pattern of one dorsomedial and four lateral black stripes with A. gransabana, which was described from the neighboring upper Río Caroní drainage, Orinoco Basin. Apareiodon agmatos also shares with A. gransabana and Parodon guyanen- sis a higher number (5 versus 4) of teeth than other members of the genus in the premaxillary. Apareiodon agmatos and A.
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • Someone Like Me: Size-Assortative Pairing and Mating in an Amazonian Fish, Sailfin Tetra Crenuchus Spilurus
    RESEARCH ARTICLE Someone like me: Size-assortative pairing and mating in an Amazonian fish, sailfin tetra Crenuchus spilurus 1,2 1 1 Elio de Almeida BorghezanID *, Kalebe da Silva Pinto , Jansen Zuanon , Tiago Henrique da Silva Pires1 1 LaboratoÂrio de Ecologia Comportamental e EvolucËão, Instituto Nacional de Pesquisas da AmazoÃnia, Av. Andre ArauÂjo, Manaus, AM, Brazil, 2 Wildlife Research Center of Kyoto University, Sakyo-ku, Kyoto, Japan a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract In the absence of constraints, preference for larger mates is expected to evolve, as larger individuals are typical of higher potential fitness. Large females are often more fecund and OPEN ACCESS carry larger eggs (which result in higher number and better quality of offspring), whereas Citation: Borghezan EdA, Pinto KdS, Zuanon J, large males usually have more conspicuous ornaments and are better at defending Pires THdS (2019) Someone like me: Size- resources. However, intrasexual competition can constrain the access to larger partners, assortative pairing and mating in an Amazonian especially when opportunities for mate takeover abound. Here we investigate the relation- fish, sailfin tetra Crenuchus spilurus. PLoS ONE 14 ship between individual's size and mate choice in relation to one's own size and their (9): e0222880. https://doi.org/10.1371/journal. pone.0222880 respective mate's size using the sailfin tetra, a sexually dimorphic Amazonian fish species. We show that ornaments of larger males are exponentially more conspicuous, and larger Editor: John A. B. Claydon, Institute of Marine Research, NORWAY females are more fecund and carry larger eggs. Contrary to expectation, neither males nor females associated for longer with the larger of two offered potential mates.
    [Show full text]
  • A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae)
    Copeia 2009, No. 1, 50–56 A New Black Baryancistrus with Blue Sheen from the Upper Orinoco (Siluriformes: Loricariidae) Nathan K. Lujan1, Mariangeles Arce2, and Jonathan W. Armbruster1 Baryancistrus beggini, new species, is described from the upper Rı´o Orinoco and lower portions of its tributaries, the Rı´o Guaviare in Colombia and Rı´o Ventuari in Venezuela. Baryancistrus beggini is unique within Hypostominae in having a uniformly dark black to brown base color with a blue sheen in life, and the first three to five plates of the midventral series strongly bent, forming a distinctive keel above the pectoral fins along each side of the body. It is further distinguished by having a naked abdomen, two to three symmetrical and ordered predorsal plate rows including the nuchal plate, and the last dorsal-fin ray adnate with adipose fin via a posterior membrane that extends beyond the preadipose plate up to half the length of the adipose-fin spine. Se describe una nueva especie, Baryancistrus beggini, del alto Rı´o Orinoco y las partes bajas de sus afluentes: el rı´o Guaviare en Colombia, y el rı´o Ventuari en Venezuela. Baryancistrus beggini es la u´ nica especie entre los Hypostominae que presenta fondo negro oscuro a marro´ n sin marcas, con brillo azuloso en ejemplares vivos. Las primeras tres a cinco placas de la serie medioventral esta´n fuertemente dobladas, formando una quilla notable por encima de las aletas pectorales en cada lado del cuerpo. Baryancistrus beggini se distingue tambie´n por tener el abdomen desnudo, dos o tres hileras de placas predorsales sime´tricas y ordenadas (incluyendo la placa nucal) y el u´ ltimo radio de la aleta dorsal adherido a la adiposa a trave´s de una membrana que se extiende posteriormente, sobrepasando la placa preadiposa y llegando hasta la mitad de la espina adiposa.
    [Show full text]
  • Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae)
    C 2000 The Japan Mendel Society Cytologia 65: 397-402,2000 Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae) Celia Maria de Jesus* and Orlando Moreira-Filho Departamento de Genetica e Evolucbo, Universidade Federal de Sdo Carlos Rodovia Washington Luis, km 235, Caixa Postal 676, CEP 13565-905, Sdo Carlos, SP, Brasil Accepted September 8, 2000 Summary Cytogenetic studies in 6 species of Apareiodon (Pisces, Parodontidae) from different Brazilian hydrographic basins showed a diploid number equal to 2n=54 chromosomes and the ab- sence of morphologically differentiated sex chromosomes. Although the diploid and the fundamental numbers had been constant, some differences were observed concerning the karyotypic structure of the species. A. ibitiensis, Apareiodon sp. A and Apareiodon sp. B presented 50M/SM+4ST chromo- somes, while A. piracicabae, A. vittatus and Apareiodon sp. C presented 52M/SM+2ST ones. Apareiodon piracicabae showed a polymorphism in relation to the number and position of the nucle- olar organizer regions (NORs), while A. vittatus showed a variation in the NORs size. The available data indicate that the Parodontidae family have been submitted to a chromosomal diversification dur- ing their species differentiation process, despite the maintenance of the same diploid number. Key words Apareiodon, Karyotypic evolution, NOR, C-band. The Characiformes fish are widely distributed in the neotropical region, showing a wide varia- tion in the diploid number. Two general trends in the chromosomal evolution can be observed in this order. In fact, some groups show a heterogeneous evolutionary with a diversity in the chromo- some number and the karyotypic structure. In contrast, a more homogenous pattern can be observed in other groups, leading to a relatively stable karyotypes.
    [Show full text]
  • A Catalogue of the Type Specimens of Heteroptera (Insecta) Housed at the Instituto Fundación Miguel Lillo (Tucumán, Argentina)
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 ISSN: 1851-7471 [email protected] Sociedad Entomológica Argentina Argentina A catalogue of the type specimens of Heteroptera (Insecta) housed at the Instituto Fundación Miguel Lillo (Tucumán, Argentina) MELO, María C.; ZAMUDIO, María P.; DELLAPÉ, Pablo M. A catalogue of the type specimens of Heteroptera (Insecta) housed at the Instituto Fundación Miguel Lillo (Tucumán, Argentina) Revista de la Sociedad Entomológica Argentina, vol. 77, no. 2, 2018 Sociedad Entomológica Argentina, Argentina Available in: https://www.redalyc.org/articulo.oa?id=322054935004 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Artículos A catalogue of the type specimens of Heteroptera (Insecta) housed at the Instituto Fundación Miguel Lillo (Tucumán, Argentina) Catálogo de los tipos de Heteroptera (Insecta) depositados en el Instituto Fundación Miguel Lillo (Tucumán, Argentina) María C. MELO [email protected] Universidad Nacional de La Plata, CONICET, Argentina María P. ZAMUDIO Fundación Miguel Lillo, Argentina Pablo M. DELLAPÉ Universidad Nacional de La Plata, CONICET, Argentina Revista de la Sociedad Entomológica Argentina, vol. 77, no. 2, 2018 Abstract: is catalogue contains information about the type material of the suborder Sociedad Entomológica Argentina, Heteroptera housed at the Entomological Collection of the Instituto Fundación Argentina Miguel Lillo (IFML-Tucumán, Argentina). We listed 60 holotypes and 453 paratypes Received: 11 October 2017 belonging to 20 families, and three species and one subspecies that were not found in the Accepted: 04 May 2018 collection but, according the original description, should be deposited in IFML. Finally, Published: 28 May 2018 we listed 15 species that are labeled and coded as types but that are no part of the original type series.
    [Show full text]
  • Siluriformes, Heptapteridae) from Chapada Dos Parecis, Western Brazil, with an Assessment of the Morphological Characters Bearing on Their Phylogenetic Relationships
    ARTICLE Two new, remarkably colored species of the Neotropical catfish genus Cetopsorhamdia Eigenmann & Fisher, 1916 (Siluriformes, Heptapteridae) from Chapada dos Parecis, western Brazil, with an assessment of the morphological characters bearing on their phylogenetic relationships Flávio A. Bockmann¹ & Roberto E. Reis² ¹ Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia (DB), Laboratório de Ictiologia de Ribeirão Preto, Programa de Pós-Graduação em Biologia Comparada. Ribeirão Preto, SP, Brasil. ORCID: http://orcid.org/0000-0002-1200-1487. E-mail: [email protected] ² Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados. Porto Alegre, RS, Brasil. ORCID: http://orcid.org/0000-0003-3746-6894. E-mail: [email protected] Abstract. Two new species of heptapterid catfish genus Cetopsorhamdia are described from close localities in western Brazil, at Chapada dos Parecis, an area with extremely high level of endemism. One species is from the upper Rio Madeira system, Rondônia State, and the other from the upper Rio Tapajós system, Mato Grosso State. The two species are diagnosed, among several other features, by their markedly distinctive color patterns, with the former having well-defined quadrangular marks in trunk flanks while the latter bearing irregular, vertical bars along the trunk. The monophyly of Cetopsorhamdia is discussed, with two putative synapomorphies being proposed to support the genus. Potentially informative morphological characters to resolve the internal relationships of the genus are presented and discussed. Despite the striking external differences between the two species herein described, they are found to likely form a clade.
    [Show full text]
  • Phylogenetic Relationships of the South American Doradoidea (Ostariophysi: Siluriformes)
    Neotropical Ichthyology, 12(3): 451-564, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20120027 Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes) José L. O. Birindelli A phylogenetic analysis based on 311 morphological characters is presented for most species of the Doradidae, all genera of the Auchenipteridae, and representatives of 16 other catfish families. The hypothesis that was derived from the six most parsimonious trees support the monophyly of the South American Doradoidea (Doradidae plus Auchenipteridae), as well as the monophyly of the clade Doradoidea plus the African Mochokidae. In addition, the clade with Sisoroidea plus Aspredinidae was considered sister to Doradoidea plus Mochokidae. Within the Auchenipteridae, the results support the monophyly of the Centromochlinae and Auchenipterinae. The latter is composed of Tocantinsia, and four monophyletic units, two small with Asterophysus and Liosomadoras, and Pseudotatia and Pseudauchenipterus, respectively, and two large ones with the remaining genera. Within the Doradidae, parsimony analysis recovered Wertheimeria as sister to Kalyptodoras, composing a clade sister to all remaining doradids, which include Franciscodoras and two monophyletic groups: Astrodoradinae (plus Acanthodoras and Agamyxis) and Doradinae (new arrangement). Wertheimerinae, new subfamily, is described for Kalyptodoras and Wertheimeria. Doradinae is corroborated as monophyletic and composed of four groups, one including Centrochir and Platydoras, the other with the large-size species of doradids (except Oxydoras), another with Orinocodoras, Rhinodoras, and Rhynchodoras, and another with Oxydoras plus all the fimbriate-barbel doradids. Based on the results, the species of Opsodoras are included in Hemidoras; and Tenellus, new genus, is described to include Nemadoras trimaculatus, N.
    [Show full text]
  • First Evidence of a Spawning Site of the Endangered Fish Brycon
    Short Research Note Acta Limnologica Brasiliensia, 2020, vol. 32, e23 https://doi.org/10.1590/S2179-975X2220 ISSN 2179-975X on-line version First evidence of a spawning site of the endangered fish Brycon orbignyanus (Valenciennes, 1850) (Characiformes, Bryconidae) in the Middle Uruguay River, Brazil Primeira evidência de um local de desova do peixe ameaçado de extinção Brycon orbignyanus (Valenciennes, 1850) (Characiformes, Bryconidae) no Médio rio Uruguai, Brasil David Augusto Reynalte-Tataje1* , Marlon da Luz Soares1 , Marthoni Vinicius Massaro1 , Rodrigo Bastian1 , Fernando Mayer Pelicice2 1 Universidade Federal da Fronteira Sul – UFFS. Rua Jacob Reinaldo Haupenthal, 1580, CEP 97900-000, Cerro Largo, RS, Brasil 2 Núcleo de Estudos Ambientais, Universidade Federal do Tocantins – UFT, Rua 3, Quadra 11 17, Jardim dos Ipês, CEP 77500-000, Porto Nacional, TO, Brasil *e-mail: [email protected] Cite as: Reynalte-Tataje, D.A. et al. First evidence of a spawning site of the endangered fish Brycon orbignyanus (Valenciennes, 1850) (Characiformes, Bryconidae) in the Middle Uruguay River, Brazil. Acta Limnologica Brasiliensia, 2020, vol. 32, e23. Abstract: Aim: This study provides the first direct evidence about the location of a spawning site of Brycon orbignyanus (Valenciennes, 1850) in the Middle Uruguay River. Methods: Sampling was carried out with a plankton net (500 µm) in November 2017 in the Uruguay River near the confluence with the Piratinim River, southern Brazil. Eggs were sorted in the field, and to confirm species identity we used the live ichthyoplankton technique. Results: We captured 47 eggs of B. orbignyanus in the channel of the Uruguay River, characterized by fast flow, shallow depth (approximately 3 m) and rocky bottom, located a few kilometers upstream from its confluence with the Piratinim River.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]