<<

The University of Maine DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2007 Photocatalytic Oxidation of Monoxide Using Sputter Deposited Thin Films on a Dioxide Substrate Donald Bragg

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Mechanical Engineering Commons

Recommended Citation Bragg, Donald, "Photocatalytic Oxidation of Using Sputter Deposited Molybdenum Oxide Thin iF lms on a Substrate" (2007). Electronic Theses and Dissertations. 273. http://digitalcommons.library.umaine.edu/etd/273

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. PHOTOCATALYTIC OXIDATION OF CARBON MONOXIDE USING

SPUTTER DEPOSITED MOLYBDENUM OXIDE THIN FILMS ON A SILICON

DIOXIDE SUBSTRATE

By Donald Bragg

Thesis Advisor: Dr. Howard Patterson

An Abstract of the Thesis Presented in Partial Fulfillment of the Requirement of the Degree of Master of Science (In Mechanical Engineering) December, 2007

CO contamination is common in extraction processes. Proton exchange membrane fuel cells need a source of hydrogen containing less than 10ppm of CO to avoid the irreversible poisoning of the fuel cell’s platinum anode. Platinum metal is commonly used as a catalyst for the purification of hydrogen gas. An effort has been put forth to replace the expensive platinum catalyst with a less expensive alternative.

Photocatalytically active metal oxide have shown promise as less expensive alternatives to platinum for reactions such as the oxidation of CO. This research studies a MoO 3 sputter deposited on a SiO 2 substrate (MoO 3/SiO 2) for use as a photocatalyst for the oxidation of CO. The MoO 3/SiO 2 catalyst was run under atmospheric pressure at a temperature of 293K. The atmosphere used for all experiments was 900 ppm CO, 1800 ppm O 2 with an Ar balance.

The oxidation of CO occurs on the surface of the metal oxide catalyst and proceeds as follows:

CO + O → CO 2

The proposed mechanism for the oxidation of CO using photocatalytically activated

MoO 3/SiO 2 catalysts is shown below.

Mo 6+ O →hν Mo 5+ O * 3 3

Mo 5+O * + CO → Mo 4+ O + CO 3 2 2

Mo 4+ O + O SiO → Mo 6+ O 2 ( 2 ) 3

Preliminary experiments utilized a chemically impregnated MoO 3/SiO 2 powder sample which demonstrated poor catalytic performance in the oxidation of CO. The impregnated catalyst turned a deep after illumination, indicative of the formation of

MoO 2, showing that the catalyst’s transport pathway was blocked, thus demonstrating the importance of the interface between the metal oxide and substrate material.

Three thin film MoO 3/SiO 2 catalyst samples were prepared using sputter deposition to study the effects of varying the area of the MoO 3/SiO 2 interface. The samples consisted of: a monolayer sample, having the largest MoO 3/SiO 2 interface area; a bi-layer sample having one half the MoO 3/SiO 2 interface area of the monolayer sample, and a 60 Å thick sample which had the MoO 3/SiO 2 interface completely blocked. XPS was used to characterize the catalyst samples. The monolayer MoO 3/SiO 2 thin film catalyst had a catalytic efficiency resulting in 55% CO oxidation. The reduction in area of the MoO 3/SiO 2 interface has detrimental effects on the CO conversion of the catalyst.

The bi-layer sample and 60 Å sample had CO conversions of 29.3% and 22.3% respectively. The proposed catalytic reaction mechanism for this system was supported by the experimental results showing that the MoO 3/SiO 2 interface was crucial for catalytic activity.

The catalytic efficiency of the monolayer sample degraded with repeated use.

Additional catalysts using a Si 3N4 barrier coating placed between the SiO 2 substrate and MoO 3 thin film were prepared in order to explore this phenomenon. XPS analysis of the Si 3N4 catalyst after experimentation revealed that the MoO 3 thin film was still present; therefore, the MoO 3 thin film on the original catalyst had migrated into the substrate as a result of pretreatment heating.

A gas mixing system, catalyst pre-treatment system and photocatalytic reactor were designed and built. The detection method was GC/MS, to monitor O 2 and CO 2. The

EntryRAE™ multi-gas detector was used to monitor CO and to prepare the CO, O 2 and

Ar gas mixtures.

PHOTOCATALYTIC OXIDATION OF CARBON MONOXIDE USING

SPUTTER DEPOSITED MOLYBDENUM OXIDE THIN FILMS ON A SILICON

DIOXIDE SUBSTRATE

By

DonaldP.Bragg

B.S.UniversityofMaine,2004

ATHESIS

SubmittedinPartialFulfillmentofthe

RequirementsfortheDegreeof

MasterofScience

(inMechanicalEngineering)

TheGraduateSchool

TheUniversityofMaine

December,2007

AdvisoryCommittee:

Dr.HowardH.Patterson,Professorof

Dr.MichaelT.Boyle,Associate ProfessorofMechanicalEngineering

Dr.JustinPoland,AssociateProfessorofMechanicalEngineering

©2007DonaldBragg

AllRightsReserved

ii

ACKNOWLEGEMENTS

Iwouldliketotakethisopportunitytothankthepeoplewhohelpedmakethis projectasuccess.IwouldfirstliketothankmyadvisorDr.HowardPattersonforhis valuableadviceandguidancethroughoutthisendeavor.Iwouldalsoliketothankmy graduatecommittee,DrMichaelBoyleandDr.JustinPoland.

IwouldalsoliketothankDr.ScottCollins,GeorgeBernhardtandthestaffatthe

LaboratoryofSurfaceScienceandTechnology(LASST)foralloftheirhelpinthe preparationofthethinfilmcatalystsandXPSanalysisexpertise.

FurthermoreIwouldliketothankthemembersofthePattersonresearchgroup,

Dr.HayianLu,Dr.RenanteYson,RobertGomezandDavidLaBrecquefortheir assistanceandlaboratoryexpertise.Tomymanager,Dr.SusanMackay,thankyoufor providingmetheflexibilityinmyworkscheduleandassistingmewhereandwhenever possible.

InadditionIwouldliketothankWenjinLuoandAndrewGoupee,myfellow graduatestudents.Youlistenedandencouragedmeonwhenthingsdidn’tgowelland cheeredmeonwhenthingsdid;itwasagreathelpingettingthrough.

Andfinally,tothankmywife,LisaBragg;Icouldn’thavedoneanyofthis withoutyou.

iii

TABLE OF CONTENTS

ACKNOWLEGEMENTS...... iii

LISTOFTABLES...... vii

LISTOFFIGURES...... viii

Chapter 1.INTRODUCTION...... 1

1.1RationaleforThisResearch...... 1

1.2OverviewofResearch...... 4

1.2.1IntroductiontoPhotocatalysis...... 7

1.3PreviousWork...... 9

1.4ObjectiveofThisResearch...... 16

2.EXPERIMENTAL...... 19

2.1SputterDepositionOverview...... 19

2.2CatalystPreparation...... 20

2.3Apparatus...... 25

2.3.1GasMixingSystem...... 25

2.3.2ThePhotocatalyticReactionChamber...... 26

2.3.3TheLightSource...... 31

2.3.4PhotoreactionCellCharacterization...... 33

2.4TheDetectionMethods...... 36

2.4.1IntroductiontoGC/MS...... 36

2.4.2InterpretationofGC/MSData...... 39

iv

2.4.3GC/MSDataAcquisitionMethod...... 40

2.4.4GC/MSSolventSelection...... 41

2.4.5TheEntryRAE™...... 44

2.5CatalystPreparationApparatus...... 44

2.6ExperimentalMethods...... 45

2.6.1GasSamplePreparation...... 45

2.6.2ThePhotocatalyticReaction...... 46

3.EXPERIMENTALRESULTS...... 48

3.1The5%byWeightMo;ChemicallyImpregnatedMoO3/SiO 2Sample...... 50

3.2TheSputterDepositedMonolayerSample...... 53

3.3TheSputterDepositedBilayerSample...... 63

3.4TheSputterDeposited60ÅSample...... 65

3.5TheResultsoftheNewMonolayerCatalystwithaSi 3N4Coated

Substrate...... 68

4.DISCUSSION...... 72

4.1ConsiderationsfortheReactionMechanism...... 72

4.2TheMolybdenumOxideCatalyst...... 74

4.2.1CalculatingtheLightEnergyfortheMoBondActivation...... 75

4.3TheExperimentalResults...... 76

4.4TheReactionMechanism...... 79

5.SUMMARY,CONCLUSIONSANDFUTUREWORK...... 83

5.1Summary...... 83

5.2Conclusions...... 86

v

5.3FutureWork...... 89

REFERENCES………………………………………………………………………..…94

APPENDICES………………………………………………………………………….101 APPENDIXA:TheCalculationWorksheetDeterminingthePressureDrop

intheReactionChamber.[Part1of2]...... 102

APPENDIXA:TheCalculationWorksheetDeterminingthePressureDrop

intheReactionChamber.[Part2of2]....... 103

APPENDIXB:TheProcessFlowDiagramforCatalystPreTreatment:

ChemicallyImpregnatedPowderSamples....... 104

APPENDIXC:PhotocatalyticOxidationReactionProcessFlowDiagram...... 105

BIOGRAPHYOFTHEAUTHOR...... 106

vi

LIST OF TABLES

Table2.1:TheUVOutputofthexenonarclamp...... 33

Table2.2:TheGC/MSmethodprogramusedfortheMoO 3/SiO 2experiments....... 40

Table3.1:Theconcentrationofcarbonmonoxideatthestartandendofeach

photocatalyticrunforthechemicallyimpregnatedpowdersamples....... 50

Table3.2:Theconcentrationofcarbonmonoxideatthestartandendofeach

photocatalyticrunforthesputteredmonolayersamples....... 53

Table3.3:Theconcentrationofcarbonmonoxideatthestartandendofeach

photocatalyticrunforthesputteredbilayersamples....... 63

Table3.4:Theconcentrationofcarbonmonoxideatthestartandendofeach

photocatalyticrunforthesputterdeposited60Åsamples....... 65

Table3.5:TheelementalXPSsurfaceanalysisbeforecleaningthecatalyst

samplesurfaces....... 68

Table4.1:Acomparisonofperformanceforrecentlyreportedcatalysts

usedfortheoxidationofCOat293K....... 72

vii

LIST OF FIGURES

Figure1.1:TheschematicdiagramofaPEMfuelcell....... 3

Figure1.2:Thephotoexcitationofaphotocatalyst....... 9

Figure2.1:Illustrationofabasicargonionsputteringapparatus....... 20

Figure2.2:TheXPSwidespectrumoftheMoO 3catalystasgrown...... 23

Figure2.3:ThenarrowXPSscanoftheMoO 3catalystasgrown....... 24

Figure2.4:Gasflowcapacitiesofthegasproportioningvalve...... 26

Figure2.5:Theopticalpropertiesoffusedversusborosilicate........ 27

Figure2.6:Theoriginalreactionchamberconfiguration....... 28

Figure2.7:Themodifiedphotocatalyticreactorwithavariableinternal

volume....... 29

Figure2.8:Theresultsoftherepeatabilitytestsperformedontheunmodified

(2.8a)andmodified(2.8b)reactionchambers....... 30

Figure2.9:The spectraloutputsoftheUVxenonlampcomparedtoa

typicalHglamp....... 32

Figure2.10:Adiagramshowingthebasicconfigurationofthequadrupolemass

spectrometerusedinthisresearch....... 39

Figure2.11:Themassspectrumformethanol(CH 3OH)....... 42

Figure2.12:Themassspectrumforchloroform(CHCl 3)....... 43

Figure2.13:Themassspctrumofchloroformd...... 43

Figure3.1:ThecatalyticactivityoftheMoO 3catalystwithnoillumination....... 48

Figure3.2:Thecatalyticactivityofthegassamplewhileilluminatedwith

thexenonlamp;oxygenandcarbondioxidelevelsmonitored....... 49

viii

Figure3.3:Thecarbondioxideconversionresultsforthe5%MoO 3powder

sample....... 51

Figure3.4:Theoxygenconsumptionofthe5%MoO3powdersample....... 52

Figure3.5:Thecarbondioxideconversionresultsforthesputteredmonolayer

sample....... 54

Figure3.6:Theoxygenconsumptionofthesputteredmonolayersample....... 55

Figure3.7:Thefirstcatalyticrunofthesputteredmonolayersampleshowing

thecarbondioxidecontentinsidethesealedreactionchamber

asafunctionoftime....... 56

Figure3.8:Thesecondcatalyticrunofthesputteredmonolayersample

showingthecarbondioxidecontentinsidethesealedreaction

chamberasafunctionoftime....... 57

Figure3.9:Thethirdcatalyticrunofthesputteredmonolayersample

showingthecarbondioxidecontentinsidethesealedreaction

chamberasafunctionoftime....... 58

Figure3.10:Thedegradingperformanceofthemonolayersample

oversuccessiveruns....... 59

Figure3.11:TheXPSwidescanoftheMoO 3sampleafterthecatalyticreaction....... 60

Figure3.12:TheXPSnarrowscanoftheMoO 3sampleafterthecatalytic

reactionshowingadegradationoftheMoO 3layer....... 61

Figure3.13:Thecarbondioxideconversionresultsforthesputteredbilayer

sample....... 63

Figure3.14:Theoxygenconsumptionofthesputteredbilayersample....... 64

ix

Figure3.15:Thecarbondioxideconversionresultsforthesputtered60Å

sample………………………………………………...……………...……66

Figure3.16:Theoxygenconsumptionofthesputtered60Åsample...... 67

Figure3.17:TheXPSanalysisoftheasgrownsiliconnitridecoated

MoO 3thinfilmsample....... 69

Figure3.18:TheXPSanalysisoftheafterprocessingsiliconnitridecoated

MoO 3thinfilmsample....... 70

Figure3.19:TheXPSanalysisoftheoxygenplasmacleanedafterprocessing

siliconnitridecoatedMoO 3thinfilmsample....... 71

Figure4.1:Thephotocatalyticreactionmechanismfortheoxidationof

COusingamolybdenumoxidecatalyst....... 82

x

Chapter 1

INTRODUCTION

1.1 Rationale for This Research

In2006theUnitedStatesGovernmentreportedthattheU.S.consumes25% oftheworld’stotaloilproduction,yetpossessesonly2%ofprovenoilreserves.Oil importssupplyroughly55%oftheUnitedStates’energyneedsandareprojectedto increaseto68%by2025ifourcurrentpetroleumusecontinues(Researchand

InnovativeTechnologyAdministration2006).Tocurbthisincreasingneedfor petroleum,bothforeignanddomestic,wemustdevelopnewenvironmentallyfriendly renewableenergyreserves.Wecanachievethisbyshiftingourenergyneedstoward alternativefuelsourcessuchashydrogen.

Hydrogenitselfisnotanenergysource,itisanenergycarrier.Eventhough hydrogenisoneofthemostcommonelementsintheuniverse,itdoesnotexistin asausablefuelsource.Energyisneededtoextracthydrogengasfroma substanceandthentheextractedhydrogencaneitherbeusedtopowerafuelcellor storedforlateruse.Therefore,hydrogenisanalogoustoelectricity,anenergycarrier thatmustbegeneratedfromanotherfuelsource.

Withmanyalternativesourcesofenergybecomingavailable,suchasethanol, methanolandbiomasstonameafew,whyshouldwefocusoureffortsondeveloping hydrogenasasourceofenergy?Theanswerisbecausehydrogencanbederived frommanydifferentdomesticsourcesofenergybyusingavarietyoftechnologies.

Hydrogencanbeefficientlyextractedfromthereformationorgasificationoffossil fuels,biofuelsandcoal(Dahletal2002).Thediversityofhydrogensourcescoupled

1 withtheefficientuseofhydrogenfuelcellsforbothstationarypowergenerationand transportationcanplayanimportantroleincurbingthedependenceoftheUnited

States’onforeignsourcesofenergy.

ProtonExchangeMembrane(PEM)fuelcells,alsoknownaspolyelectrolyte membranefuelcells(PEMFC),havebeenearmarkedbythetransportationindustry todrivethefirstgenerationofhydrogenfueledvehicles.Theywerechosenforthis applicationoverotherfuelcelldesignsbecauseoftheirrelativelylowoperating temperature,quickstartup,shorttransienttimesandtheabilitytorespondquicklyto varyingloads,i.e.stopandgodriving.

ThePEMfuelcell,showninfigure1.1 , isadevicethat worksbypassing storedhydrogengasacrossaplatinumcontainingelectrodecalledtheanode.The hydrogengasisthendirectedthroughanelectrolyticmembranewhereitisstrippedof itselectrons.Thestrippedelectronsareusedtodoworkintheformofelectrical currentbeforebeingrecombinedwithboththehydrogenandoxygenfromthe outsideatmosphere,producingwatervaporandasmallamountofresidualheat.

Thechemicalreactionthattakesplaceinthefuelcellisshownbelow.

+ − Anode: 2H 2 (g) ↔ 4H + 4e (1)

+ − Cathode: 4H + 4e + O2 (g) ↔ 2H 2O(l) + heat (2)

2

Figure 1.1 : Theschematic diagramofaPEMfuelcell. NotonlywillPEMfuelcellspowerthecarswedrivebuttheywillalso power othervehiclescurrently usinginternalcombustionenginessuchas bus es,fleet vehi clesandindustrialequipment .Afuelcelloperatesfarmoreefficientlythan its internalcombustionenginecounterpart .Thegasolineinternalcombustionengines thatpowervehiclestodayoperateatanefficiencyofapproximately25%ascompared toaPEMfuelcellwhichcanoperateataround55%.Theadvantagesofoperating fuelcellpoweredvehicles includeareductioninsmogalongwith lowerenergy consumptionbasedonthefuelcell’sincreasedoperatingefficiency(BairdandCann

2005).AllPEMfuelcellshaveonethingincommon, theyneedtob efueled withan extremelypure sourceofhydrogen containinglessthan1 0partspermillion(ppm)of carbonmonoxide(Koro tkikhandFarrauto,2000; Koetal,2006; Hongetal ,2006).

3

1.2 Overview of Research

PEMFC’sareparticularlysensitivetocarbonmonoxide(CO)poisoning.The

H2richgasstreamthatisfedtotheanodeofaPEMFCmusthaveaverylow concentrationofCO,ontheorderoflessthantenpartspermillion(10ppm)toavoid poisoningtheplatinumcatalystembeddedintheanodeofthefuelcell(Robertsetal,

2003).Recently,advancesinelectrodedesignhavedriventheanode’sCOtolerance levelto100ppm(Lovins2005),buttheseadvanceshaveonlybeenaccomplishedon anexperimentalscale.WhenCOpoisoningoccurs,theoperatingefficiencyofthe fuelcellwilldecreasetoapointwherethefuelcelleventuallyshutsdown.CO poisoningoftheanodeisanirreversibleprocess.

TosolvetheproblemofCOpoisoning,carbonmonoxidecanundergoan oxidationreactioncreatingcarbondioxide(CO 2)asshowninequation(3).

CO + O → CO2 (3)

UnlikeCO,CO 2doesnotadsorbontheplatinumsurfaceoftheanodeand thusnopoisoningoftheelectrodewilloccur.CO 2hastheabilitytopassdirectly throughaPEMFCwithoutdegradingitsefficiency.

Therearefourprimaryreactionmethodsforproducinghydrogen.Theyare reformation,partialoxidation,gasificationandelectrolysis.Thescopeofthis researchwillconcentrateonthereformation,partialoxidationandgasification processes.

AccordingtotheUnitedState’sDepartmentofEnergy(DOE),approximately

95%ofthehydrogenusedtodayisproducedbysteamreformationofnaturalgas.

Naturalgascontainsmethane(CH 4)fromwhichH2maybeextractedbyathermal

4

process.ThemostwidelyusedmethodforH 2extractionfromCH 4issteammethane reformation(SMR).Steamreformationconsistsofreactingmethanewithsuper heatedsteaminthepresenceofacatalystattemperaturesbetween700˚Cto

1100˚C(Crabtreeetal,2004).TheSMRalsocanbeusedtoreformpropaneand ethanol.Thesteamreformationreactionsareshowninequations(4),(5)and(6).

SteamReformingReactions:

Methane: CH 4 + H 2O(+heat) → CO + 3H 2 (4)

Propane: C3 H 8 + 3H 2O(+heat) → 3CO + 7H 2 (5)

Ethanol: C2 H 5OH + H 2O(+heat) → 2CO + 4H 2 (6)

PartialoxidationreactionscanalsobeusedtoextractH 2fromnaturalgas, propaneandethanol.Thepartialoxidationreactionprocesswillflowroom temperatureoxygengasorairalongwiththefeedgasoverahightemperature platinum/catalyst(HickmanandSchmidt,1992).Theresultisasynthetic gas(syngas)consistingofamixtureofH2andCO.Thepartialoxidationreactions areshowninequations(7),(8)and(9).

PartialOxidationReactions:

Methane: 2CH 4 + O2 → 2CO + 4H 2 (+heat) (7)

Propane:2C3 H 8 + 3O2 → 6CO + 8H 2 (+heat ) (8)

Ethanol:2C2 H 5OH + O2 → 4CO + 6H 2 (+heat ) (9)

TheDOEhasprojectinitiativesinplacetoproduceH 2fromzeroemission coalgasificationaswellasbiomassgasification.Theadvantagesofutilizing coalgasificationandbiomassgasificationarethattheycanbeaccomplishedwith

5

littleornogreenhousegas(CO 2)emissionswhereastheCO 2resultingfromthe gasificationprocesswillbesequesteredorusedforotherindustrialprocesses.

Gasificationisoneofthemostefficientprocessesforconvertingcarboncontaining organicmaterialsuchascoal,petroleumorbiomassintoasyntheticgasmixture

(syngas)consistingofamixtureofCOandH 2.Byusinggasificationasopposedto othermethods,moreoftheenergycontainedinthefeedstockcanbeextractedand used(Beychok,1974).Keepinginmindthatbothcoalandbiomassarehighly complexandvariablesubstances,thereactionsshowninequations(10)and(11)are unbalanced,simplifiedrepresentationsofthegeneralreactionsforthegasification processes(U.S.DepartmentofEnergy,2007).

Thereactionsforthegasificationofcoalandbiomassareasfollows:

Coalgasification: CH 8.0 + O2 + H 2O → CO + CO2 + H 2 +other species (10)

BiomassGasification:C6 H12O6 + O2 + H 2O → CO + CO2 + H 2 +other species (11)

Thereactionequationsof(4)through(11)showthatcarbonmonoxideis presentinallofthesteamreformation,partialoxidationandgasificationreactions usedtoextracthydrogen.Thewatergasshiftreaction(WGS)isafollowupmethod whichcanbeusedtofurtherenhanceH 2productionandlowerCOcontentinthe productsofalltheabovereactionsshowninequations(4)through(11).Thereaction isdonebymixingtheCOwithhightemperaturesteamasshowninequation(12).

Watergasshiftreaction: CO + H 2O ⇔ CO2 + H 2 (12)

Methanationreaction(1): CO + 3H 2 → CH 4 + H 2O (13)

Methanationreaction(2): CO2 + 4H 2 → CH 4 + 2H 2O (14)

6

Thewatergasshiftreactionisbeneficialonlyintheforwarddirection.However,the twoformsofmethanationreactions,showninequations(13)and(14),canalsooccur alongwiththewatergasshift.Methanationreactionsarealwaysdetrimentalbecause

H2isconsumedduringmethanation,thusdecreasingtheefficiencyofthewatergas shiftreaction.Thereforethewatergasshiftreactionshouldbeavoided(Ayastuyetal,

2007).

TheselectiveoxidationofCO,shownearlierinequation(3)hasbeen acceptedasthemosteffectivemethodofremovingCOfromahydrogenrichfeed stream(Koetal.,2006).Thisresearchwillusetheselectiveoxidationreaction processtooxidizeCO.However,insteadofusingconventionalthermalsourcesto inputenergyintothesystem,photocatalystswillbeutilized.Photocatalysisutilizes highenergy,shortwavelengthlightastheenergyinputforthesystem.Thefollowing sectiongivesabriefintroductiontothephotocatalyticreactionprocessandtheuseof lightasareactant.

1.2.1 Introduction to Photocatalysis

Acatalystisdefinedasasubstancethatchangesthespeedofachemical reactionwithoutitselfundergoingapermanentchemicalchangeintheprocess

(Brownetal2000).Inotherwords,acatalystprovidesanalternativepathwayforthe reactiontooccur,thusreducingtheactivationenergy(E a)andincreasingthereaction rate.Acatalystcannotbeconsumedduringareaction;theamountofcatalystpresent atthebeginningofareactionmustequaltheamountpresentattheconclusionofa reaction.Thecatalystmustalsoberecoveredinitsoriginalstateattheconclusionof

7 areaction.Fromthis,thetermphotocatalystimpliesthatbothlightandacatalystare necessarytobringaboutoraccelerateachemicalreaction(SerponeandPelizzetti

1989).Inaphotocatalyticreactionlightisalwaysareactant.Asstatedearlier,a catalystmustberecoveredunchangedafterachemicalreactionandcanbereused againandagain.Lightinaphotocatalyticreaction,however,isabsorbedandits energyisusedtocreateelectronicallyexcitedmolecules;itwillnotbereleasedand cannotbereusedafterthereaction,sobydefinitionlightisnotacatalyst(Suppan

1994).Theabsorbedlightdoeshoweverserveastheexcitationenergyfora photocatalyticreaction.Aphotocatalystisdefinedasamaterialthatbecomes catalyticallyactiveinthepresenceofelectromagneticradiation.

Oneofthemostcommonphotocatalyticmaterialsisdioxide(TiO 2).

TiO 2photocatalyticmaterialsareattractivebecausetheyarenontoxic,cleanandsafe aswellasabundant.UsesofTiO 2asaphotocatalystincludeantifoggingglassand antimicrobialsurfaces.TiO 2photocatalystsarealsousedinairandwaterpurification applications(Kitanoetal,2007;Hoffmanetal,1995).

Toachievethesehigherenergystates,aphotocatalystisexposedtolight(the processofphotoexcitation)possessinganenergygreaterthanthebandgapenergy

(E g)(CassanoandOrlando,2000).Thebandgapenergyisdefinedastheamountof energythatisneededtopromoteanelectronfromitsgroundstateinthevalenceband toanexcitedstateintheconductionband.Thiselectronpromotioncreateswhatare knownas“electronholepairs”.Anelectronholeisthevacancyofanelectroninthe valencebandofanatom,thusgivingthevalencebandanetpositive(+)charge.The conductionband,whichhadapreviouslyneutralchargebecauseitwasempty,nowis

8 negatively()chargedduetothepresenceofthepromotedelectron.Aphotoexcited moleculecanbeconsideredanewchemicalspeciesthathasitsownuniquechemical andphysicalproperties,oftenquitedifferentfromthepropertiesofthegroundstate molecule(SerponeandPelizzetti1989).

Figure 1.2: The photoexcitationofaphotocatalyst(AnpoandYamashita,1996). Unlikeathermalreactionwherelargeamountsofenergyareaddedinthe formofheat,thephotocatalyticreactioncanbeperformedatstandardconditions.

Figure1.2illustratesthephotocatalyticpromotionofanelectronfromthevalence bandtotheconductionbandusinglightenergy.

1.3 Previous Work

TheselectiveoxidationofCOinthepresenceofH 2isnotanewtechnology.

TheSelectoxo TM processandthefirstgenerationSelectoxo TM catalystswere developedbyEngelhardCorporationinthe1960s,andwerecommercializedinthe early1970sforthepurposeofincreasingtheproductionrateof(NH 3) plants(Robertsetal2003).Thesecatalysts,developedbyBrownetal(Brownetal,

9

1960)weretheearliestknownandusedplatinumsupportedbyametaloxide substrate.TheSelectoxo TM catalystswereusedinaconventionalthermalreaction.

Adrawbackofusingplatinumasacatalystistherelativescarcityofthemetal.

Becauseofitsrarity,platinumisanextremelycostprohibitivechoiceforacatalytic material.However,inspiteofitshighcost,platinumisstillsoughtoutforits outstandingcatalyticperformancecharacteristicsandisarguablythemostused catalystforCOoxidation.TheplatinumprovidesasurfacewheretheCOwilladsorb throughthecarbonatom.Oxygengasalsoadsorbsontheplatinumsurfaceand dissociatesinalargelyirreversiblemanner.TheCOoxidationreactionthenoccurs ontheplatinumsurfacebetweentheadsorbedatomicoxygenandthemolecularly adsorbedCO,asshowninequation(3)(Salomonsetal,2007).

GermanscientistGerhardtErtlwonthe2007NobelPrizeforchemistryforhis groundbreakingstudiesconcerningthesurfacecatalyzedoxidationofCOon platinum(Miller,2007).ErtlfoundthattherateCOconversiononPtoscillatedover timeandwasabletoreproducetheseoscillations.Theoscillationsinthereactionrate werebasedonthefactthatCOinitiallycoversmostofthePtsurface.InorderforO 2 fromthesurroundingatmospheretodissociate,twositesareneededonthePtsurface andthesesitesaredifficulttocomebyduetotheCOsurfacecoverage.Whentwo adjacentoxygensitesareavailable,theO 2moleculecandissociateonthePt,forming atomicoxygen.TheatomicoxygenthenreactsquicklywiththeCO.Thisquick reactionfreeslargeclustersofsitesallowingfortheanddissociationof moreO2.TheoxygencoveredregionisnowhighlyreactivebecauseCOonlyneeds

10 oneavailablesitetooxidize.AstheoxygenonthePtsurfaceisconsumedbythe oxidationofCO,theprocessthenrepeatsitself.

OneofthemostcommonusesofplatinumasaCOoxidationcatalystisin automotivecatalyticconverters,whichaccountsfor35%oftheplatinumusedinthe

UnitedStates.(Brownetal,2000).

Inanefforttoreducethecostofusingplatinum,manystudieshavemixed platinumwithanothermetalinanattempttoeitherreducetheplatinumusedinthe catalyst,improvethecatalyticperformance,orboth.Liuetal(Liuetal,2002),

Robertsetal(Robertsetal,2003)andWatanabeetal(Watanabeetal,2003) investigatedthePt/FemixedmetalcatalystandcomparedittoPtalone.The oxide,whenplacedonorimmediatelyadjacenttotheplatinumsitesprovides alternativesitesforO 2adsorption.Allthreeofthesestudiesconcludedthatthe additionofFeprovidessitesthatarefavorabletooxygenadsorption.Inthe mechanismproposedforthecatalyticreaction,COwilladsorbonthePtsitewhileO isadsorbedontheFesiteandreactsimmediatelyifbothreactantssitonneighboring sites.Thistypeofmechanismhasbeentermedthebifunctionalmechanism

(WatanabeandMotoo,1975).

Platinumcatalystsusuallyrequirearelativelyhightemperaturetoenhance theircatalyticproperties;atemperatureof260°C,asshownbyRossoetal(Rossoet al,2004),wasneededtomovetheirselectiveCOoxidationreactionforward.

Kotobukietal(Kotobukietal,2005)performedselectiveoxidationexperiments usingvariouscombinationsofPt,FeandPt/Fecatalystsloadedontoamordenite substrateshowingthatthesystemwasefficientatamuchlowertemperatureof50°C.

11

Whilebimetallicplatinumcontaining,suchasthosementionedabove, areeffectiveintheoxidationofCOinthepresenceofH 2,theprohibitivelyhighcost ofplatinummakesitdesirabletodevelopaPROXcatalystthatisnotonly inexpensive,butiseasilypreparedandcanoperateatornearambientconditions

(Kamegawaetal,2006).

PozdnyakovaTellingeretalthenshowedthatplatinumonaceria(CeO 2) supportwasalsoactiveatlowertemperatures(50˚C)similartoplatinummetalthat wascombinedwithanonreducibleoxidesuchasalumina(PozdnyakovaTellingeret al,2007).Thisfindingshowsthatthechoiceofsubstratematerialplaysanimportant roleincatalystefficiency.Luoetalstudiedtheeffectsofoxide(CuO)ona

CeO 2substrate(Luoetal,2007).Luoreporteda10%conversionofCOata temperateof60˚Cusingthiscatayst.100%COconversionwasobtainedata temperatureof130˚C.

GammeraetalstudiedtheeffectthatparticlesizehadonCOconversionfora

CuOCeO 2catalyst(Gamarraetal,2007).ByreducingthesizeoftheCuOparticle, theCOconversionabilityofthecatalystincreaseduptoapoint.Theparticlesizethat gavethebestperformanceaveraged8nmandgave100%conversionat77˚C.

RomeroSarriaetalstudiedtheeffectofreducingthesizeofAunanoparticlesonAu

CeO 2catalystsforthereductionofCO(RomeroSarriaetal,2007).ReducingtheAu nanoparticlessizeto2to3nmresultedinthehighestcatalyticactivities.Haydenet alstudiedtheeffectofAuparticlesizeonthesubstratesofTiO 2andC(Haydenetal

2007).Hayden’sworkonAuparticlesizecomparedwellwiththeworkofRomero

SarriainwhichbothgroupsobservedthebestcatalyticactivitywithAuparticlesizes

12 ofapproximately3nm.Bokhimietalshowedthatparticlesizeandsurfaceareawere nottheonlyexplanationsforthechangesobservedinthecatalyticactivityforCO oxidation(Bokhimietal,2007).Thisstudyfoundthatthecatalyticperformanceof

Auona(anaturalformofTiO 2)substratewasdependentonthecatalyst preparationtemperature.Acatalystpreparedatalowertemperature,300˚C, performedbetterthanasimilarcatalystpreparedatahighertemperature,700˚C.

Chenetalstudiedtheuseofnanoparticlesembeddedinactivated carbon(Ag/AC)andcomparedittoAgonSiO 2fortheselectiveoxidationofCOin

H2richfeedgas(Chenetal,2007).Chenfoundthatthesubstrateplayedavery importantroleingoverningtherateofcatalyticactivity.Thesubstratematerialwas believedtobetheoxygentransportmechanismforallofthesystems.

SunetalstudiedtheeffectofusingCeO 2intheformofmicrospherecatalyst supportsloadedwithgold(Au)nanoparticlesforthereductionofCO(Sunetal,

2007).TheCeO 2microsphereformationincreasedthesurfaceareaofthecatalyst, thusincreasingtheavailablesitesforcatalyticactivity.Byincreasingthesurface area,theAuCeO 2microspherecatalysthad80%COconversionascomparedto20%

COconversionforAuonbulkCeO 2.HanetalalsousedAucatalystswithan increasedsurfaceareafortheoxidationofCO(Hanetal,2007).TheAu nanoparticleswereplacedonalumina(Al 2O3)nanofibersandtheirperformancewas comparedtoAunanoparticlesonbulkAl 2O3.Again,theresultsshowedincreased catalyticactivityfortheAuAl 2O3 nanofibercatalystascomparedtotheAuonbulk

Al 2O3.COconversionsof23%and5%at30˚Crespectivelywerereported.

13

Othersubstratematerialshavealsobeenrecentlyevaluated.Reddyetal studiedtheinfluenceofthesubstrateonCooxidationactivitybyplacingaceria zirconiacompositeoxideonalumina,silicaandtitania(Reddyetal,2007).Allofthe catalystsinthisstudyhadahighsurfacearea,≤60m 2g1.Thisstudydemonstrated thatthesubstrateplaysaroleinthecatalyticperformancewiththeAl 2O3substrate givingthebestresultsforCOoxidation,followedbyTiO 2andSiO 2.Also noteworthy,thesecatalystswererunundernormalatmosphericconditionswhichare similartotheresearchreportedinthisthesis.

Wakitaetalusedonanaluminasubstrate(Ru/Al 2O3)forthe oxidationofCOinthepresenceofNH 3(Wakitaetal,2007).Thepurposeofthis experimentwastothecatalyst’sresiliencetoammoniapoisoning.After3hours onsteamwith75ppmNH 3thecatalystwasabletoconvert80.8%oftheCOtoCO 2.

KimetalreportedthatthedisassociationofO 2onRuoccursatthestepsitesshowing thegeometryofthecatalystisimportant(Kimetal,2007).Itwasshownthatthe steppedRucatalystshowedhighercoverageofadsorbedoxygenatomsthandid smoothRuwhenusedfortheoxidationofCO.

ThepreviousworkdoneinthedevelopmentofCOoxidationcatalystsshows threeveryimportantconsiderationswhendesigninganewcatalyst:thesurfacearea ofthecatalysttoincreasecatalyticsiteavailability,thesubstratematerialforoxygen transportandtheparticlesizeofthecatalysttoincreaseoverallcatalyticefficiency.

AllthreeoftheseitemswillbeconsideredwhendesigningaCOoxidationcatalyst forthisresearch.

14

ProfessorMasakazu Anpo’sresearchgroupofOsakaPrefectureUniversityin

OsakaJapanhasbeenexploringtheuseofaphotocatalysttocarryoutCOPROX reactionsinexcessH 2.InMay2006theystatedthat“tothebestofourknowledge, noattempthasbeenmadetoapplyphotocatalysisforthePROXreactions”

(Kamegawaetal,2006).

Sincethen,photocatalyticmaterialshavebeenexploredfortheoxidationof

CO.Royetalused(Pd)onnanoTiO 2forthispurpose(Royetal,2007).

TheresultsofRoy’sresearchshowedamaximumof20%COconversionafter300s ofUVillumination.TheAnpogrouphassuccessfullyusedmetaloxide materials,specificallymolybdenumoxidechemicallyimpregnatedon asilicondioxidesubstrate(MoO 3/SiO 2),tophotocatalyticallyoxidizeCOinthe presenceofH 2atatemperatureof293Katapressureof88Pa.Thecatalystshowed

100%COconversionafter180minutesofexposuretoUVlight(Kamegawaetal,

2006).

Asemiconductorphotocatalyst,suchasMoO 3,isadvantageoustouseas comparedtootherconventionalchemicaloxidationmethods.Thisisbecause semiconductorsareinexpensive,nontoxicandcapableofextendedusewithout substantiallossofphotocatalyticactivity(FoxandDulay1993).Metaloxide semiconductorshavebeenfoundtobethemostsuitablecandidatesforphotocatalysts

(CormaandGarcia2004).Someexamplesofmetaloxidesemiconductorsthatare photocatalyticallyactiveareTiO 2,MoO 3andWO 3.

15

1.4 Objective of This Research

Theprimaryobjectiveofthisresearchhasbeentostudyaphotocatalytic systemwhichusesmolybdenumoxideonasilicondioxidesubstrateforthe preferentialoxidation(PROX)ofCOinthepresenceofexcessO2.Catalystsamples weredesignedandfabricatedutilizingthefacilitiesattheLaboratoryofSurface

ScienceandTechnology(LASST)locatedonthecampusoftheUniversityofMaine underthedirectionofProfessorScottCollins.Thecatalystsweremanufacturedusing microfabrication(microfab)andthinfilmdepositiontechniques(sputtering).There areinherentadvantagesintheuseofthesetechniquesascomparedtothe conventionalmethodsofchemicallyimpregnatingorgraftingthemetaloxidetothe surfaceofasubstratematerial.Byusingaphysicaldepositionmethodthereis improvedcontrolofthesubstratecoveragebythemetaloxidelayer.Also,the thicknessofthemetaloxidecanbepreciselycontrolledwhenutilizingsputter deposition.Thesputterdepositedmetaloxidewasanchoredtothesupportmaterial duringthedepositionprocessandappliedinitshighestoxidationstate(Mo 6+ ),thus reducingtheneedforpretreatmentssuchascalciningatahightemperatureina specificatmospherefollowedbydegassingatalowertemperatureunderavacuum.

Thecalciningprocessusedforimpregnatedcatalystsanchorsthemetaloxidetothe substrateandraisestheimpregnatedmetaloxidetoitshighestoxidationstate.

Degassingthenkeepsthemetaloxideinitshighestoxidationstatewhile finalizingtheanchoringprocess(AnpoandYamashita,1996).Calciningneednotbe performedinthesputterdepositedcatalyst;theonlypretreatmentnecessaryistoheat

16 thecatalystforonehourat100˚Ctoremoveanywaterthathasaccumulatedonthe thinfilmsurface(Wachs,1992).

ThepreparedMoO 3/SiO 2catalystsweretestedandevaluatedinacustom engineeredphotocatalyticreactorthatoperatesatroomtemperatureandatmospheric pressure.Thereactorconsistsofagasmixingsystem,acatalystpretreatmentsystem andthephotocatalyticreactioncell.ThePattersonresearchgrouphasample experienceinperformingphotocatalyticexperimentsintheliquidphase,butisnewto gasphasephotocatalysis.

Runningthecatalystsunderatmosphericpressureisauniqueapproach.Prior investigationsperformedbyotherresearchgroupsreporttheuseofchemically impregnatednonnoblemetaloxidecatalystsrunatnearvacuumconditions

(Kamegawaetal,2007).Whileinterestingandhelpfulforunderstandingthebasic scienceofthecatalyticreaction,nearvacuumisnotpracticalforalarge scaleindustrialprocess.Therefore,testingthecatalystsatatmosphericpressureas opposedtonearvacuumpressurewilllaythegroundworkforfurtherresearchinthe developmentandadvancementofmicrofabricatedmetaloxidephotocatalysts.

Insummary,theobjectiveofthisresearchhasbeentostudy,understandandpropose amechanismforthephotocatalyticoxidationofCOwithoxygeninthepresenceof hydrogen.Twoquestionsareaddressedinthisresearch.First,cansputterdeposited

MoO 3/SiO 2catalystsamplesbeusedasanalternativetotheconventionalchemically impregnatedcatalystsusedbyothers?Second,doesthemetaloxide/substrate interfacestructureofthecatalystlargelygoverntherateofCOoxidation?

17

Theinformationprovidedbytheproposedmechanismwillallowusto identifytheareasofthesputterdepositedMoO 3/SiO 2catalystthatcanbeimproved upon.ItisbelievedthattherateofCOoxidationisdependentonthemetal oxide/substrateinterfacestructureofthecatalyst,forbothchemicallyimpregnated andsputterdepositedcatalysts.

Toaddressthesequestions,threesputterdepositedMoO 3/SiO 2catalyst samples,eachwithadifferentmetaloxide/substrateinterfacearea,weredesigned andproduced.Thesamplesconsistedofamonolayersample,abilayersampleanda samplewitha60Åthicklayerofmolybdenumoxidecoveringthesubstrate.The monolayersamplewasdesignedtosimulateanimpregnatedcatalysthavingaone moleculethickmolybdenumoxidelayercoveringthesurfaceofthesubstrate;thus, givingitthelargestsemiconductoroxide/substrateinterfaceareaofthethree samplesproduced.ThebilayersampleiscomprisedoftwiceasmanyMoO 3 depositionsitesascomparedtothemonolayersample.Thereforethebilayersample containsonehalfasmanysemiconductor/oxideinterfacesitesasthemonolayer sampleduetoamorecompletecoverageofthesubstratesurfacebyMoO 3.The60Å samplehasaMoO 3layerwhichcompletelycoversthesubstrate,blockingoffthe

MoO 3/SiO 2interface.Theperformanceofeachcatalystwasdeterminedbythe percentofCOoxidized.Theresultsoftheseexperimentscanthenbeusedto formulateamechanismconsistentwiththeexperimentaldata.

18

Chapter 2

EXPERIMENTAL

Thischapterpresentstheexperimentalportionofthisresearchbeginningwith thedesignoftheMoO 3/SiO 2sputterdepositedcatalysts.Thenewlymanufactured catalystswerecharacterizedbyusingXrayphotoelectronspectroscopy(XPS).The detailsofanewlybuiltphotocatalyticreactorarediscussedalongwiththedetection systemsusedtomonitorthecatalyticactivity.Inthefinalpartofthechapter,the proceduresthatwereusedtopreparethegassamplesandperformtheexperimentsare discussed.

2.1 Sputter Deposition Overview

Sputteringisaprocesscommonlyusedinthedepositionofthinfilmcoatings.

Theprocessisinitiatedbyplacingahighlypuretargetmaterialandthesubstrate materialintothesputteringdeviceandconnectingthemtothenegativeandpositive terminalsofahighvoltagesourcerespectively.Theapparatusisthenevacuatedand asmallamountofanoblegas,usuallyargon(Ar)isintroducedintothereaction chamber.Thepressureofthenoblegasisontheorderof10 6Pa.TheArgasisthen ionizedwhenahighvoltagefieldisapplied.Thisionizationcausestheargon(Ar +)to becomepositivelycharged.TheAr +acceleratestowardthenegativelychargedtarget surfacewithahighenoughkineticenergysuchthatonimpactwiththetarget,theAr + dislodgesanatomfromthetargetsurface(M).Thesedislodgedatomsarethen acceleratedinalldirections;someofthemstrikethesubstratesurfacetoformthethin filmcoating.Theinitialatomsthatcontactthesurfaceofthesubstratecanhave

19 enoughkineticenergytopenetratethesubstrateseveralatomiclayersdeep.This penetrationishelpfulinensuringagoodadhesionofthesputteredmaterialtothe substratesurface. Sputteringis anadvantageoustechniquewhere asitispossibleto changethetargetmaterialto formmultilayerthinfilmswith outhavingtodisturbthe entiresystem. Sputteringcanalsobedonewithmultipletargetsallowingtheco depositionofmaterial.Figure3 .1showsaschematicdiagramofasimplesputter depositionapparatus.

Figure 2.1: Illustrationofa basicargonionsputteringapparatus. 2.2 Catalyst Preparation

ToformtheMoO 3thinfilmlayers,atechniqueknownas reactivesputter depositionhasbeenemployed.Duringreactivesputterdeposition , asmallamountof nonnoblegas,inthiscase oxygenisinjectedintothereactionchamber(Soetal ,

1988). Theoxygenthenreactswiththemolybdenumatomsejectedfromthetargetto formmolybdenumoxide whilethemolybdenumatomsareinflighttoward the substratematerial.

20

TheMoO 3/SiO 2samplesusedforthisresearchwerepreparedusingthe reactivesputterdepositiontechniquedescribedinworkbyJankowskietal

(Jankowskietal,1992).TheMoOwasdepositedatlessthan2Ås 1,makingthe samplestransparentwithayellowhue.Thepressureinthevacuumchamberwas keptbetween3.0and5.0mTorr.Thegasmixtureforthereactivesputteringwas80%

Arand20%O 2.

ThreeMoO 3thinfilmsamplesofvaryingthicknesswereproducedforthis research.InprocessingthesesamplesitmustbenotedthatMoO 3 issolubleinwater.

Therefore,thefirststepinthepreparationofthecatalystistouseawetsawtocutthe substratematerialtothepropersizesothatitwillfitintothephotocatalyticreactor.

CuttingthesubstratemustbedonebeforethedepositionoftheMoO 3catalystoccurs.

Failuretodothiswillresultinthelossofthenewlydepositedthinfilmlayer.

Thefirstsampleproducedforthisexperimentwasdesignedtosimulatea chemicallyimpregnatedsubstratewithmonolayercoverageofcatalyticmaterial.

Thiswasdonebydepositingsmall“islands”ofMoO 3randomlyonthesurfaceofthe substrate.Theseislandsherearelessthantenatomsinsizeandtheirirregular coverageofthesubstratesurfacekeepstheintegrityoftheMoO 3/SiO 2interface whichwasnecessaryforthedesiredcatalyticreactiontomoveforward.

Thesecondsamplesimulatesbilayercoverageofthesubstrate.Itwassimilar tothemonolayerexcepttwiceasmany“islands”weredeposited.Becauseofthe increasedsubstratecoverage,someoftheMoO 3islandswilloverlaponeanother.

Thebilayersamplewasusedtoexaminehowcatalyticactivityisaffectedby

21

doublingtheareaofMoO 3coverageandconsequentlydegradingtheMoO 3/SiO 2 interface.

Thethirdsamplewasareactivelysputtered60angstrom(Å)thickcoatingof

MoO 3.Thepurposeofthissamplewastoobservetheaffectsofcompleteblockage oftheMoO 3/SiO 2interface.

Afterthesamplesweremade,thecompositionofthedepositedthinfilmwas verifiedandcharacterizedusingXrayphotoelectronspectroscopy(XPS).XPSisa spectroscopictechniquethatisusedtoquantitativelymeasurethechemicaland electronicstateofamaterialaswellasdetermineitsempiricalformula.XPSspectra isgatheredbyfirstirradiatingthesampletobetestedwithXrayswhile simultaneouslymeasuringthekineticenergyandnumberofelectronsthatescape fromthetop1to10nmofthetestmaterial’ssurface.Thebindingenergy,shownon thexaxisofanXPSspectrum,ismeasuredinunitsofelectronvolts(eV).OneeV hasapproximatelythesameenergyasonephotonwithawavelengthof1240 nmor1.60218X10 19 J(NIST,2007).XPScanaccuratelymeasureanareaassmall as10nm.Itisusedroutinelytocharacterizesemiconductors,inorganiccompounds, metalalloys,pureelementsandpolymers(BriggsandSeah,1983).Figure2.2shows thewidespectrumscanofthethinfilmmolybdenumoxidelayer.Showninthis spectrumarethepeaksformolybdenum,oxygenandsomecarbon.Thecarbonis surfacecarbonandistobeexpectedwhereasdepositedmetaloxidesemiconducting materialswilltendtoattractcarboncompounds(Wachs,1992).

22

Figure 2.2: TheXPSwidespectrumoftheMoO 3catalystasgrown.

Figure2 .3showsthenarrowscanoftheMoO 3catalyst.Thenarrowscanfor thecataly stshouldonlyshowtwopeaks. Sincetherearemorethantwopeaks,this tellsusthatthemolybdenumisnotfullyoxidizedandthatthesampleconsistsofMo andMoO x,wherexislessthanthree. Morespecifical ly,thepeaksat231eVand

4+ 6+ 234eVcorrespondtoMo O2;whilethelargepeakat232isMo O3(Epifanietal ,

2004).Thepeakformedat228eVisthatofnon oxidizedmolybdenum(Leung,

Wong,MitchellandSmith,1998).

23

Figure 2.3: ThenarrowXPSscanoftheMoO 3catalystasgrown.

Carefuls torageoftheMoO 3catalystsisveryimportanttoinsure theygive consistentresultswithrepeateduse. AsmentionedearlierMoO 3issoluble inwater, thereforethecatalystswere storedunderadryatmosphere .Prolonged exposureofthecatalystsampletoaircanpossiblydegradethemduetoinherent moisturefoundinambientconditions.

24

2.3 Apparatus

Thefollowingisadescriptionoftheapparatusdesignedandusedforthe experimentalpartofthisproject.Itconsistsofthreeseparatesystems;anapparatus topretreatthechemicallyimpregnatedcatalysts,thephotocatalyticreactioncell,and thedetectionsystem.Thischapterwilldescribeeachsystemandthejustificationfor theuseofaspecificapparatusortechnique.Asmentionedearlier,thisresearchwas primarilyperformedtodetermineifathinfilmmetaloxidecatalystusedfor photocatalyticredoxreactionswouldperformwellatatmosphericpressure.This researchisinitspreliminarystage;thereforesomeoftheapparatusandequipment choicesusedinthisresearchwerebasedsolelyonthefactthattheywerereadily availableforimmediateuseandnotnecessarilytheoptimumchoicetogivethebest results.Suggestionsforimprovementstotheapparatusandhowtheseimprovements willhelpinattaininglevelsofCOontheorderoflessthan10ppmwillbegiveninthe futureworksectionofthisthesis.

2.3.1 Gas Mixing System

Thegasmixingsystemiscommontoboththepretreatmentandreaction processes.Attheheartofthissystemisthegasproportioningvalvesuppliedbythe

ColeParmerInstrumentCompany,partnumberEW0321854.Theproportioning valvehastheabilitytomixuptothreedifferentgasesindifferingratios.Itisusedin boththecatalystpretreatmentprocessandinthepreparationofthegassamplefor thephotocatalyticreactionchamber.Theproportioningvalveconsistsofthree150 millimeterflowtubes;eachcontrolledbya16turnprecisionvalve.Figure2.4shows

25 theflowcapacitiesofthegasproportioningvalve.Thegasesusedforthese experimentswerehydrogen,carbonmonoxideaswellasoxygen,nitrogenandargon.

ProportioningValveFlowRatesforVariousGases

130

120

110

100

90

80 H2 Ar 70 CO 60 O2 50 N2

40

30

FlowRate/[StandardmL/minute]_ 20

10

0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 ScaleReading/mm

Figure 2.4:Gasflowcapacitiesofthegasproportioningvalve (Source: The Cole-Parmer Instrument Company).

2.3.2 The Photocatalytic Reaction Chamber

Thedesigncriterionforthephotocatalyticreactorisasfollows.Thereactor musthavetheabilitytocaptureandholdaspecificallypreparedgassampletobe suppliedbythegasmixingsystemandbeilluminatedbyanultraviolet(UV)light source.Thereactorneedstohaveasamplingportandworkatambientconditions.

Thereactionisabatchreaction,thereforenoprovisionsforflowintooroutofthe systemareprovidedwiththeexceptionofthesamplingport.Thematerialsused mustnotattenuateUVradiationfromthelightsource.

26

Thephotocatalyticreactionchamber wasmade byusingaquartztesttubean d acustommachinedTefloncap. Thequartztesttubeusedforthereactionchamber hasaninternalvolumeof25ml. TheTefloncaphasthreeopenings.Twoofthe openingsareusedtoconnect the500cctedlarbagscontainingthepreparedgas sample.Thetedlarbagsareused specificallyforgassampling.Thethirdopening wasusedasa septumsampling port.Borosilicateglasstubing andflexibleTygon tubingwasusedforallconnectionstothereactionchamber. Asilicone rubber septum wasusedatasampleportfortheextractionof thegassample.

UV VisAbsorptionvs.Wavelength

Figure 2.5: Theopticalpropertiesoffused quartzversusborosilicateglass.Thedata wasobtainedexper imentallyusingtheBeckman UVVisspectrometer.

Quartzwaschosenforthereactionvesselmaterialbecauseofitsabilityto passUVradiationlargelyunattenuated.Theopticalpropertiesofquartzareshownin

27 figure2.5;notetheareaofinterestisbetween250nmand400nmandinthis wavelengthregionthereislittleattenuationoftheUVradiationascomparedtothat ofborosilicateglass.

Thedesignandtestingofthesystemisnotatrivialprocess.Initsoriginal configuration,thereactionchamberhasafixedvolume.Thus,whensampleswere takenfromthesystem,theinternalpressureofthereactionchamberwoulddrop belowtheatmosphericpressureoutsideofthesystem.Thisinternaldropinpressure allowedoutsideairtoleakinasthesystemequilibrateditself.Thisconditionshowed itselfasalackofrepeatabilityduringpreliminarytestingofthesystemfor consistency.Afterperformingacalculationtodeterminethepressuredropinsidethe reactionvessel,showninappendixA,itwasdeterminedthatthereactionchamber hadtobemodifiedtoaccountforthiscondition.Theoriginalconfigurationofthe reactionsetupisshowninfigure2.6.

SamplingPort Quartztesttube

Inletfromgasproportioningvalve

Figure 2.6: Theoriginalreactionchamberconfiguration. Thereactionchamberapparatuswasthenalteredtoallowforavariable volume.Thiswasachievedbytheuseoftwo500cctedlarbagsconnectedtothe inletsofthereactionchamber.Theadditionofthetedlarbagsactasanexpandable diaphragmallowingthesystemtomaintainatmosphericpressureinsidethereaction 28 chamberafterasamplewaswithdrawn.Themodifiedreactionchamberwitha variableinternalvolumeisshowninfigure 2.7.

Tedlar bags (not to scale) Sampling port Quartz test tube

Figure 2.7: Themodifiedphotocatalyticreactorwithavariableinternalvolume. Figure2.8aand2.8b showtheresultsoftherepeatabilitytestsperformedon thephotocatalyticreactionchambertocheckforleaks.Theproceduretotestthe repeatabilityofthereactionchamberwastocreateagasmixturecharacteristicof whatwouldberunintheoriginalphotocatalyticexperiments.Thegassamplewas keptatatmosphericpressureandconsistedof1800ppmoxygen,900ppmcarbon monoxide,0ppmcarbondioxidewiththebalanceargon.Thesystemwassealedand

5LsamplesweredrawnoutusinganAgilentmodel51829606,10Lgastight syringe.Therewasnocatalystsampleplacedinthereactionchamberduringthese testssincethepurposeofthetestwasonlytocheckforleaks.

29

RepeatabilityTest;OriginalConfigurationRepeatabilityTestOriginalConfiguration GC/MSMethodO2andCO2

1 0.14

0.9 0.12 0.8

0.7 0.1

0.6 0.08 CO 0.5 O2 0.06 CO2 0.4 %CO2_

%Gas(COandO2)_ 0.3 0.04

0.2 0.02 0.1

0 0 0 1 2 3 4 5 6 Time/Hours 2.8a

RepeatabilityTest;ModifiedConfigurationRepeatabilityTestModifiedConfiguration GC/MSMethodO2andCO2 1 0.14

0.9 0.12 0.8

0.7 0.1 _

0.6 0.08 CO 0.5 O2 CO2 0.06

0.4 %CO2_

%Gas(COandO2) 0.3 0.04

0.2 0.02 0.1

0 0 0 1 2 3 4 5 6 Time/Hours

2.8b

Figure 2.8: Theresultsoftherepeatabilitytestsperformedontheunmodified(2.8a) andmodified(2.8b)reactionchambers. Testingresultsshowthattheoriginalconfigurationofthereactionchamber developedleaksasshowninfigure2.8a.Theleakcanbeidentifiedbytheincreasing amountofCOandCO 2inthesystemaswellasthedecreasingamountofO 2.The

30 observationofincreasingCOlevelsledtoaninterestingdiscoverywhichwasthatwe hadnoconclusivemethodtotestforCO.Coincidentally,COandnitrogengas(N2, themostabundantgasintheatmosphere)bothhaveamolecularmassof28;therefore thedetectionsystemuseddoesnothavetheresolutiontodifferentiatebetweenthe twogases.

Themodifiedphotocatalyticreactionchambertestresults,figure2.8b,show thatthenewsystemwasindeedcapableofproducingrepeatableresultsusingthe tedlarbagsasexpandablediaphragmswhichallowthevolumeofthereaction chambertochangeduringsampleextraction.

2.3.3 The Light Source

Thelightsourceusedinthepreliminaryreactionswasasixwattportable fluorescentUVunitfromColeParmerInstrumentCompany,partnumberEW09818

00.Theunitcontainstwofluorescenttubes;thefirstwhichistheshortwavetube emittingat254nm;andthesecond,alongwavetubeemittingat365nm.Thislight sourcewhichwasadequateforpreviousliquidphotocatalyticexperimentsdidnot givefavorableresultsduringthegasphaseexperiments.Previousworkusingthe portableUVsourcereportedanaverage1.73X10 7photonss 1wereemittedbythe portableUVlamp(Kanan,S.,Kanan,M.andPatterson,2001).

Areviewoftheliteratureshowedusthatahigherintensitylightsourcewould beneededtoperformphotocatalyticoxidationreactionsinthegasphase(Kamegawa etal,2005).ResearchgroupssuchastheAnporesearchgroupusea100WUV lamp.Atthetimeofthisresearchwedidnothaveamercuryarclamp

31 availableforuse.Wedid,however,salvageaUVxenonlampfromaSLM

InstrumentsSPF500fluorescencespectrometer.Thexenonbulb,modelnumber

LX300UV,isratedat300WandhasaUVspectraloutputcomparabletoamercury arclamp.

SpectralOutput

1

0.9

0.8

0.7 _

0.6

Xenon 0.5 Hg

0.4

RelitiveIrradience 0.3

0.2

0.1

0 200 250 300 350 400 Wavelength/nm

Figure 2.9: The spectraloutputsoftheUVxenonlampcomparedtoatypicalHg lamp(Source: PerkinElmer) .

Thespectraloutputsofthexenonandmercuryvaporlampsarepresentedinfigure

2.9 . Figure2.9showsthattheavailableUVxenonlightsourcewillsupplyample energyneededtophotoexcitethecatalyst.

32

Table 2.1:TheUVOutputofthexenonarclamp(Source: Perkin Elmer). Wavelength/nm PercentOutput OutputPower/W

200–250 0.31 0.93

250–300 2.49 7.47

300–350 3.50 10.50

350400 4.58 13.74

TotalUVOutput 10.88 32.64

Table2.1showstheUVoutputportionofthexenonarclampusedforthis research.Thislampoutputs32.36WintheUVspectrum,whichis5.5timesgreater thanthesixwattportableUVlampinitiallyusedforthereaction.Many photocatalyticoxidationexperimentsruninthegasphasehavesuccessfullyuseda

UVxenonlampastheexcitationsourceforthephotocatalyst.Forexample,Nojima etal,usedaxenonlamptoeffectivelyphotooxidizedioxideinairusinga

300Wxenonlightsource(NojimaandYamaashi,2003).

2.3.4 Photoreaction Cell Characterization

Thephotoreactioncellilluminatedbythe300Wxenonlightsourcewas characterizedusingastandardferrioxalate(K 3Fe(C 2O4)3)actinometer developedbyParkerandHatchardandpresentedinthebooksPhotochemistry by

CalvertandPittsand The Handbook of Photochemistry, Third Edition byMontaltiet al(CalvertandPitts,1967;Montaltietal,2006).TheK 3Fe(C 2O4)3 actinometeris verysensitiveandaccurateoverawiderangeofwavelengths,namely250nmto

33

570nm.TheK 3Fe(C 2O4)3 whenilluminatedreducestheironinthesystemforming

Fe 2+ ions.ThequantumyieldsofFe 2+ havebeenaccuratelydetermined.Sincethe illuminationareasofinterestarewavelengthsbetween250nmand390nm,a6.00X

3 10 MconcentrationofK3Fe(C 2O4)3 solutionwaspreparedusingtheParkerand

Hatchardprocedure.Thissolutionconcentrationwillabsorb99%ormoreofthelight upto390nmina1cmpath.

3 Whenexposedtolightbelow390nm,the6.00X10 MK3Fe(C 2O4)3 solution formsFe 2+ ions.TheFe 2+ iscomplexedwiththeindicator1,10phenanthroline

(C 12 H8N2)inacetate(CH 3COONa)bufferforonehourmakingahighly absorbingeasilyanalyzableredcolored1,10phenanthrolineFe 2+ complex.Afterthe solutioniscomplexed,theintensityofthelightsourcebeingcharacterizedcanbe determinedbymeasuringtheabsorbanceat510nmusingaUVvisspectrometer.

TocharacterizetheUVlightsource,25.00mlofthe6.00X10 3M

K3Fe(C 2O4)3 solutionwasplacedintothequartzreactionchamberandexposedtothe xenonsourceforatime(t),whichisdeterminedexperimentally,soastoproduce approximately5.00X10 8molesofFe 2+ /ml.Afterirradiationandbuffering,the absorptionspectrumwasmeasuredat510nmusingaBeckmanUVVisspectrometer.

ThenumberofFe 2+ formedduringphotolysiswasdeterminedfromequation(15).

20 I .6 023×10 V V log ( 0 ) 1 3 10 I η 2+ = (15) Fe V2lε

34

2+ 2+ HereηFe isthenumberofFe formed,V 1isthevolumeofthereaction chamber;V2isthevolumeofaliquottakenforanalysis;V 3isthefinalvolumeto whichthealiquotV 2isdiluted;log 10 (I 0/I)istheabsorbanceat510nm;listhelength pathofthespectrophotometercellused(1cm)andεistheexperimentalvalueofthe extinctioncoefficientoftheFe 2+ complex,givenas1.11X10 4liters/molcm(Calvert andPitts,1967;Montaltietal,2006).

Thelampflux(f)canthenbedeterminedusingequation(16):

η 2+ f = Fe (16) x φ 2+ t abs Fe

2+ 2+ Hereχabs isthefractionoflightabsorbed;φ Fe isthequantumyieldofFe andtis theirradiationtimeinunitofseconds(s).

Theactinometerymethodwasverifiedbycomparingpublisheddatatoour ownexperimentaldata.Usingthesamelightsourceandprocedureasreportedinthe literature,5.00mlofK 3Fe(C 2O4)3 solutionwasilluminatedfor12s.Thepublished datareportsalampfluxof1.73x10 17 photonss 1(Kananetal,2001).Theresultsof theourtestshowafluxvalueof1.80x10 17 photonss1,whichisa3.9%errorfrom thepublishedfigure.

Usingequation(16)andknowingthatthequantumyieldofFe 2+ isunity,the fluxvaluewascalculatedtobe8.50X10 17 photonssecond 1atawavelengthofless than390nmenteringthequartzreactionchamber.

Thexenonsourcewassetatadistanceof20cmfromthereactionchamber creatinganilluminatedcircleoflighthavingadiameterof5cmandasurfaceareaof

19.63cm 2.Theilluminatedareaofthecatalystwas12.90cm 2.Subtractingthearea illuminatedbythelightsourcefromtheilluminatedareaofthecatalystgivesaresult

35 of6.73cm 2whichwastheareaoflightenergywhichisbypassingthecatalyst,in otherwordsthiswasthelightenergywhichislost.Consequently,thecurrent reactor’slightutilizationefficiencyis65.7%.Thereforeusingtheactinometeryand efficiencydataitcanbeshownthatthexenonlightsourcehasatotalusableoutputof

1.30X10 18 photonss 1intheultravioletregion.

2.4 The Detection Methods

Twodifferentbutcomplimentarydetectionmethodswereusedinthis research.TheprimarydetectionmethodisaGas/Mass

Spectrometer(GC/MS);andthesecondarymethodisaportabledetector manufacturedbyRAESystems,theEntryRAE™.

GC/MSwaschosenbecauseofitsabilitytoaccuratelydetecttheamountsof reactantsandproducts..TheinstrumentusedforthisexperimentisanAgilent

Technologiesmodel6809NGasChromatographcoupledwithanAgilent

Technologiesmodel5973NetworkMassSelectiveDevice.Thegassamplesfrom thephotocatalyticreactorweremanuallyinjectedintotheinstrumentusingagastight syringe.

2.4.1 Introduction to GC/MS

TheGC/MSisactuallythecombinationoftwoseparateanalytical instruments.Firstisthegaschromatograph,orGC.Thisdeviceisusedtoseparate themixedgassampleintoitsindividualcomponentsforlateranalysis.This separationisaccomplishedbyinjectingthesampleintotheinstrumentandthen

36 havingthesamplesweptintoalongcoatedtubecalledacolumn.Thisisdonebyan inertgasstream,whichinthiscaseishelium.Mostcolumnsareontheorderof30 meterslongandhaveaninsidediameteroflessthan0.5millimeters.Thecolumn installedontheGC/MSforthisresearchisa0.32mmdiameterGasProtypeGSC

GasSeparatorColumnmanufacturedbyAdvancedSeparationTechnologiesInc.The

GasProcolumnislinedwithsmallsilicaparticlestoincreasetheretentiontimeof lightgasesandhydrocarbons.Thiscolumnalsohasatemperaturerangespecifically intendedforgasanalysis,80˚Cto260˚C.

Afterenteringthecolumn,theadsorptiveinteractionoftheinnercolumn coatingandthecomponentsofthegasstreamtoaseparationofthecomponents ofthegasmixturewiththelightestcomponentsexitingthecolumnfirstfollowedby theheaviercomponents.AfterseparationthegasesarefedintoaGCdetector.The identificationofgasesfromtheGCisbasedontheirretentiontimeinthecolumn.

Manycompoundswillhavethesameretentiontimewhichbringsinto questionthepurityoftheseparatedgassample.Asecondinstrumentknownasa massspectrometer(MS)iscoupledtotheoutputoftheGCtoovercomethequestion ofthepurityinaseparatedgassample.Themassspectrometerhastheabilityto quantitativelymeasurethecomponentsofthemixturebymeasuringeach component’satomicmass.Itdoesthisbyionizing(removinganelectronandthus givingthemoleculeanetpositivecharge)thematerialinahighvacuum,then propellingandfocusingtheionsandtheirfragmentationproductsintoamagnetic massanalyzer.Themassanalyzerthencollectsandmeasurestheamountsofeachof theselectedionsinthedetector.

37

TheAgilentTechnologiesmodel5973NetworkMassSelectiveDeviceusesa quadrupolemassfilter.Aquadrupolemassfilterconsistsoffourparallelmetalrods arrangedasinthefigure2.10.Voltagesappliedtotheserodsaffectthetrajectoryof ionstravelingdowntheflightpathcenteredbetweenthefourrods.Forgiven voltages,onlyionsofacertainmasstochargeratiopassthroughthequadrupolefilter andallotherionsarethrownoutoftheiroriginalpath.Amassspectrumisobtained bymonitoringtheionspassingthroughthequadrupolefilterasthevoltagesonthe rodsarevaried.Theadvantageofusingaquadrupoleisthattheinstrumenthasthe abilitytoquickly(<10 3sec.)focusaparticularmass.Thismakesthemonitoringofa specificionorionspossible(McLaffery,1980).

ThecombinationofthetwocomponentsintoasingleGC/MSsystemformsan instrumentcapableofseparatingmixturesintotheirindividualcomponents, identifyingandthenprovidingquantitativeandqualitativeinformationonthe amountsandchemicalstructureofeachcompound(M.McMasterandC.McMaster

1998).

38

Figure 2.10: Adiagramshowingthebasicconfiguration ofthequadrupolemass spectrometerusedinthisresearch( Source: Virginia Tech Department of Chemistry ).

2.4.2 Interpretation of GC/MS Data

Whenprocessingthedata,onemustnotethatweareanalyzingamixtureof gases.Amasss pectrumofa mixtureisalinearsuperpositionofthespectra’s individualcomponents.Ifyouthencanidentifyonecomponentoftheunknown mixture,youcanthensubtractthatcomponentandcontinueanalysis.This deconvolution techniqueisknownasspectrumstrippi ng(McLafferty,1980).

Whenidentifyingsubstancesusingthemassspectra,onemustlookatboththe unfragmentedionsaswellasthefragmentedions.Theunfragmentedionsareknown astheidentifiersandthefragmentedionsarethequalifiers.Recogni zing patterns formedbyboththeidentifiersandqualifiersandtheirrelativeabundanceinthe spectrummakeitispossibleto properlycharacterizethatsubstance.

39

TheunitofmeasurefortheMSism/z,wheremisthemassoftheatomor moleculeandzisthecharge.Themeasurementoftheunfragmentedions correspondscloselytotheatomicmassunits(amu)foundontheperiodictableofthe elements.Thetotalmassconsistsofthecombinedmassesoftheprotons,neutrons andelectronsofthesubstanceandthechargeisusually+1becauseafterionization themoleculewillhaveanetpositivechargeduetothelossofanelectron.

2.4.3 GC/MS Data Acquisition Method

Thedataacquisitionmethodconsistsofcontrollingmanyparametersofthe instrumenttogetconsistentandrepeatabledata.Manyconsiderationsgointo developingaprotocolfordataacquisition,suchas;solventchoice,retentiontimein thecolumn,initialoventemperature,ovenramprate,finaloventemperatureanddata collection(amudetection)range.Themethodusedforcollectingdataforthis experimentisshowninTable2.2.

Table 2.2:TheGC/MSmethodprogramusedfortheMoO 3/SiO 2experiments. Mode SIM Carrier Gas Helium

Ions Detected 18 28 32 40 44

Initial 100°C Final 180°C Temperature Temperature Run Time 4.00min Temperature 20°C/min Ramp Inlet Mode Split Split Ratio 30:1

Inlet 200°C Inlet Pressure 9psi. Temperature Injection 5L Solvent Deuterated Volume Chloroform Detector EM 1435 EM Offset 71 Volts

40

2.4.4 GC/MS Solvent Selection

ChoosingthecorrectsolventisanintegralpartofproperlyusingtheGC/MS instrument.Thesolventisusedtodiluteliquidsamplesandtowashtheinjectionport andcolumnpreventingcontamination.Forthisresearch,whileperforminggasphase injections,asmallamountofsolventwasdrawnintothesyringeafterthegassample wastakenfromthereactionchamber.Thissmallamountofsolventformedaliquid plugintheneedleofthesyringeminimizingcontaminationofthegassample containedwithinthesyringebytheoutsideatmosphere.Manyconsiderationsneedto betakenintoaccountwhenchoosingasolvent.Themostimportantofthese considerationsare:first,choosingasolventwhichiscompatiblewiththetypeof columninstalledintheGC;andsecond,makingsurethatthecolumnretentiontime andthesolvent’smassspectrumdonotinterferewiththedatabeingcollected.

ThemostcommonsolventsforusewiththeGC/MSarechloroform(CHCl 3) andmethanol(CH 3OH)(M.McMasterandC.McMaster,1998).Thesearetwogood choicesformostliquidbasedsamplesbeinginjectedintotheGC/MS.However,the massesencounteredinagassampleinjectioncontainionsoflowermass.Themasses fortheionsofinterestinthisresearchhaveanm/zof;32foroxygen,40forargon and44forcarbondioxide.

Figure2.11showsthemassspectrumformethanol.Methanolwasnotchosen tobethesolventbecauseofthestrongpeakatm/z=32.Themethanolpeakatm/z=

32woulddirectlyinterferewithoxygen,whichalsohasanm/z=32.

Figure2.12showsthemassspectrumforchloroform.Asshownbyfigure2.12, chloroformdoesnothaveanypeaksthatdirectlycoincidewithionsthatarebeing

41 monitored.However,chloroformhasadistinctpeakatm/z=46andtwosmallpeaks atm/z=42and43.Thepeaksatm/z=42,4 3and46areveryclosetothepeakfor carbondioxide(m/z=44).Therefore,anotherchoiceforsolve ntshouldbe investigatedbecausewemayexperienceinterferenceinthedatacollectiondueto closeproximityofthepeaksfoundinthemassspectrumof chloroform.

Thesolventchosenforthisresearchwasdeuteratedchloroform(CDCl 3) showninfigure2.13. Fromfigure2.13 itcanbeshownthatmassspectrum peaksfor chloroformddonotinterferewiththeionsofinterest fortheresearch.Alsothe chloroformdpeakatm/z=47 willhavenoeffectontheGC/MSdatacollected .

Figure 2.11: Themassspectrumformethanol (CH 3OH).

42

Figure 2.12 :Themassspectrumforchloroform(CHCl 3).

Figure 2.13:Themassspctrumofchloroform d(source: NIST)

43

2.4.5 The EntryRAE™

TheEntryRAE™isaportablehandheldgasdetectiondevice.Ithasthe capabilitytodetectuptofourdifferentgasesalongwiththeirconcentrations.The detectioncapabilitiesofinterestforthisresearchare;thedetectionofCOintherange of0to999ppmwitharesolutionof+/1ppmusingachemicaltypesensor,andthe abilitytomeasuretheoxygencontentofthegassamplerangingfrom0%to35% concentrationwitharesolutionof+/0.1%.TheEntryRAE™isutilizedtomakethe gasmixturesusedinthereactionchamber.Ithasalsobeenusedtocomplimentthe

GC/MSdataanddirectlymeasuretheCOcontentofthetedlarbagsafterthe photocatalyticexperimentiscomplete.

2.5 Catalyst Preparation Apparatus

Thepretreatmentsystemwasbuilttoproperlypretreatthepowdered chemicallyimpregnatedcatalysts,asperthespecificationsfoundintheliterature.

Thepretreatmentapparatusmusthavethecapabilitytoheatthecatalystat500°Cfor onehour.Thepretreatmentwasperformedatatmosphericpressurewithagas mixtureconsistingof2%oxygenand98%nitrogen.Afterthe500°Cheatingprocess wascomplete,thecatalystmustbedegassedata200°Cforanadditionalhourinan evacuatedchamber(Kamegawaetal,2005).

TheaboveparameterswereachievedusingaLindburg“HeviDuty”tube furnace,modelnumber55035A.Atube,ColeParmerInstrumentCompany partnumberEW3391101,waschosenasthepretreatmentchamber.Thistypeof insertissufficientforthehightemperatureandvacuumcontrolneededforcatalyst

44 pretreatment.Themullitetubewillnotchemicallyalterorcontaminatethecatalyst

(Ramadoraietal,1975).ThemullitetubewascappedwithrubbercoveredTeflon stopperswithmachinedfittingsallowingforconnectionstothegassupplysystemand vacuumpump.Thissystemwastestedtoatemperatureof750°Cunder2%O 2.

Thetubefurnaceapparatusthenunderwentvacuumtesting.UsinganEdwardsRV3 roughpump,thesystemwasevacuatedtoapressureof450mTorr.Thepressure measurementsweremadeusingaTelevac01000mTorrpressuretransducer.

Whenpretreatinginaspecificatmosphere,thetubefurnacewasconnectedto thegasproportioningvalveontheinletside,andabubblerwasconnectedtothe outletside.Thebubbler,whichactsasaonewayvalve,consistsofanErlenmeyer flaskcontainingsiliconeoil.Aschematicdiagramofthepretreatmentsystemis showninappendixB.

Todegasthesample,thevalvetothebubblerwasclosedandthevacuum pumpswitchedon.Thevalveconnectingthevacuumpumptothetubefurnaceis thenslowlyopenedtopumpdownthemullitetubecontainingthecatalyst.

2.6 Experimental Methods

2.6.1 Gas Sample Preparation

TheEntryRAE™detectionsystemwasfirstconnectedtothegas proportioningvalve.Thegasproportioningvalvewasthenopenedandadjustedto thedesiredgasmixture.Itwasthenallowedtoreachasteadystateflowasreadin realtimefromtheEntryRAE™display.Whenthesteadystateflowconditionwas achieved,theEntryRAE™wasdisconnectedfromthegasproportioningvalveand

45 two500cctedlarbagswerefilledwiththedesiredgasmixture.Themixedgas sampleswerepreparedandkeptatatmosphericpressure.Thegassamplesconsistof

900ppmofcarbonmonoxide,1800ppmofoxygeninargon.

2.6.2 The Photocatalytic Reaction

Thethinfilmsamplesneedtobepretreatedpriortothephotocatalytic reaction.Pretreatmentconsistsofplacingthesamplesinanovenat100°Cforone hour.Thispretreatmentwasnecessarybecausewhenthesamplesareatroom temperatureandexposedtotheatmospheretheyarecoatedwithalayerofwaterthat mustberemovedpriortotheexperiment(WachsandFitzpatrick,1992).

Afterpretreatment,thecatalystwasthenmovedtothephotocatalyticreaction chamberandsealed.Thetedlarbagscontainingthepreviouslypreparedgassamples werethenconnectedtothereactionchamberandthechamberwasevacuatedusing thevacuumpump.Afterevacuationthegassamplewasintroducedintothereaction chamber.Thestartingtimefortheexperimentwasdefinedasthetimewhenthegas sampleinitiallycomesintocontactwiththecatalyst(t = 0) .

Afterthegasmixturehasbeenintroducedintothereactionchamberitwas keptinthedarkfortenminutes.Aftertenminutes,thexenonlightsourcewas switchedonilluminatingthecatalystandstartingthephotocatalyticreaction.

5Lsamplesaredrawnbysyringeoutofthesystem.Thesyringewasthen sealedbydrawing0.2Lofchloroformdintotheneedle.Thegassamplewasnow readytobemanuallyinjectedintotheGC/MS.Samplesweretakenforanalysis every30minutes.ThetimebetweendatapointsisgovernedbytheGC/MSdetection

46 instrument.TheprogrammedGC/MSmethodtakeseightminutestocompletethe analysisoftheinjectedgassample.Theinstrumentthenneedsapproximatelyten minutestorecoverbeforeitisreadyforthenextsampleinjection.Therecoverytime fortheGC/MSvariessoanextratenminuteswasaddedasabuffertoaccountfor thisvariability.

Aftertwohoursandthirtyminutesthexenonlightwasswitchedoff.

Illuminationofthecatalystforatimeoftwohoursandthirtyminuteswasdetermined aftermanytestruns.Theresultsoftheseinitialtestrunsshowedthattheoxidationof

COhadslowedtoundetectablelevelsafterapproximatelytwohours,therefore,two hoursandthirtyminuteswaschosenasareasonabletimeforcatalyst illumination.Thetedlarbagscontainingthegassampleswerethensealedand disconnectedfromthesystem.TheywerethenconnectedtotheEntryRAE™and pumpeddown.TheconcentrationofCOinthetedlarbagatthebeginningandendof theexperimentwererecordedforpostdataprocessing.Aprocessflowchartshowing thephotocatalyticsystemisshowninappendixC.

47

Chapter 3

EXPERIMENTAL RESULTS

BeforethephotocatalyticCOoxidationresultsarepresented,testswere performedtodetermineiftheoxidationofCOusingaMoO 3/SiO 2catalystwas indeeddrivenbyphotocatalysis.Twotestswereconductedusingthegasmixtures whichwerepreparedasdescribedinChapter2.Inthefirsttest,theMoO 3catalyst wasexposedtothegassamplefor240minutes,intheabsenceoflight;whereasfor thesecondtest,agassamplewasilluminatedbutcontainednoMoO 3catalyst.The resultsofbothtestsareshowninfigures3.1and3.2.Figure3.1clearlyshowsno catalyticactivitywhenthegasandcatalystcombinationareleftinthedark.

Likewise,figure3.2showsnocatalyticactivitywhenthegassamplehasbeen illuminatedwithoutthecatalystpresent.

MoOMoO3MonolayerCatalyst:NoLight3MonolayerCatalyst:NoLight Averageof2RunsAverageof2Runs 1800

1600

1400

1200

1000 O2 CO2 800

600 GasConcentration/ppm_

400

200

0 0 60 120 180 240 Time/minutes

Figure 3.1: ThecatalyticactivityoftheMoO 3catalystwithnoillumination.

48

IlluminationbytheXenonLightSource;NoCatalyst Averageof2Runs

1800

1600

1400

1200

1000 O2 CO2 800

600

GasConcentration/ppm_ 400

200

0 0 20 40 60 80 100 120 140 160 Time/minutes

Figure 3.2: Thecatalyticactivityofthegassamplewhileilluminatedwiththexenon lamp;oxygenandcarbondioxidelevelsmonitored.

Thephotocatalytictestresultsforthisresearcharepresentedinthefollowing format.Thetableatthebeginningofeachsectionliststheconcentrationofcarbon monoxideinpartspermillionasreadfromtheEntryRAE™detectoratthestartand conclusionofaphotocatalyticrun.AlsoincludedarechartsshowingthetotalCO 2 producedaswellasthetotalO 2consumed.

Thedatapresentedinthisresearchwastheresultofrunningallofthe

MoO 3/SiO 2samplesatatmosphericpressure,101kPa,inanefforttoexploretheir catalyticactivity.Theseresultswerethenusedtoformulateareactionmechanismfor theMoO 3/SiO 2system,whenusedphotocatalytically,fortheoxidationofCO.

49

3.1 The 5% by Weight Mo; Chemically Impregnated MoO3/SiO 2 Sample

ThechemicallyimpregnatedMoO 3/SiO 2samplessentbytheAnpogroup werereportedasgiving100%conversionofCOafterthreehoursofirradiation.

However,theresultsreportedintheliteraturewererunfarbelowatmospheric pressureat88Pa(Kamegawaetal,2006).

Table 3.1:Theconcentrationofcarbonmonoxideatthestartandendofeach photocatalyticrunforthechemicallyimpregnatedpowdersamples. Run ppm CO start ppm CO end 1 905 825 2 898 796 3 873 789

Theresultsintable3.3showthatanaverageof88ppmofCOwasoxidized.

Thecatalyticefficiencyofthepowdersamplewas9.9%basedontheCO concentrationofthetotalgassamplebeforeandaftertheexperimentasreadfromthe

EntryRAE™detector.Onlythreerunswereperformedonthepowderedsample whenitbecameobviousthatlittleornofurthercatalyticactivitywasoccurringat atmosphericpressure.

50

COCO2Conversion:5%Mo/SiO2Powder2Conversion:5%Mo/SiO 2Powder Averageof3runsAverageof3runs

100

90

80

70

60

50

40 CO2 ppm / _ 30

20

10

0 0 20 40 60 80 Time/minutes

Figure 3.3: Thecarbondioxideconversionresultsforthe5%MoO 3powdersample.

Figure3.3showsthecarbondioxideconversionforthe5%byweightMoO 3 powdersamplefromtheAnpogroup.TheCO 2conversionisminimalandshowsan overallconversionof59ppm.Thedataalsoshowsthatthecatalyticactivityreaches amaximumandthenstopsatapproximately40minutes.Atthebeginningofthe experiment,afterthespecifiedpretreatment,thecatalystwasbrightwhiteincolor.

Afterilluminationfor80minutesunderthexenonlamp,thecatalysthadturneda deepbluecolor.

51

O2Consumption:5%Mo/SiO2PowderO2Consumption:5%Mo/SiO 2 Powder Averageof3RunsAverageof3runs

2000

1800

1600

1400

1200

1000

800 O2/ppm_ 600

400

200

0 0 20 40 60 80 Time/minutes

Figure 3.4:Theoxygenconsumptionofthe5%MoO 3powdersample.

Figure3.4showstheoxygenconsumedduringthereaction.Thedatashows thattheoxygenlevelstartedat1876ppmandfinishedwith1837ppmforadifference of39ppm.Thisresultislow,asitshouldbebecausetheSiO 2transportmechanism toreoxidizethecatalystwouldnotactivateforthiscatalyst.Therefore,littletono atmosphericoxygenshouldhavebeenconsumedinthereaction.Theonlyoxygen availableforthereactionwasfromtheoxidationoftheMoO 3.

52

3.2 The Sputter Deposited Monolayer Sample

Table 3 2: Theconcentrationofcarbonmonoxideatthestartandendofeach photocatalyticrunforthesputteredmonolayersamples. Run ppm CO start ppm CO end 1 882 366 2 873 396 3 873 444 4 855 821 5 902 895 Average of runs 1, 877 402 2 and 3

Theresultsintable3.2showanaverageof475ppmofCOwasoxidized.The catalyticefficiencyofthemonolayersampleis55.2%basedonthegassample beforeandaftertheexperimentasreadfromtheEntryRAE™detector.This calculatedefficiencycomesfromtheaverageoftheefficienciesofruns1,2and3.

Thetableshowsthatwhenthesampleissubjectedtoanincreasingnumberof experimentalruns,thecatalyticactivityofthesampledegradessignificantlytothe pointofshowinglittletonoactivityforrunsfourandfive.Theinitialrunshowedthe bestcatalyticefficiencyof61.9%COforconversionwhilerunfiveshowedtheworst at0.8%conversion.

Figure3.5showsthecarbondioxideconversionaverageofthefirstthreeruns ofthesputteredMoO 3monolayersample.Thechartshowsnotonlytheresultsbut alsothestandarderrorfortheruns.TheGC/MSdatashowsthat760ppmofCOwas oxidized.TheGC/MSdatashowsalargerconversionthanthatreportedbythe

EntryRAE™detector.Thedifferenceof285ppmshowssignificantdisagreement

53 betweenthedetectionsystems.Thisdisagreementcanbeattributedtotheerror associatedwithtakingagassamplefromthephotocatalyticreactorandmanually injectingitintotheGC/MS;ascomparedtheRAEdetector’sabilitytomeasureCO whileconnecteddirectlytothegassampleonthereactor.Regardlessoftheerror, bothdetectionmethodsshowthatthereisacleartrendconfirminganincreasinglevel ofCO 2inthesystemwithtime.

CO2Conversion:MonolayerCO 2Conversion:Monolayer Averageof3RunsAverageof3Runs

1400

1200

1000

_ 800

600 CO2/ppm

400

200

0 0 10 30 60 90 120 Time/minutes

Figure 3.5:Thecarbondioxideconversionresultsforthesputteredmonolayer sample.

54

O2Consumption:Monolayer O2Conversion:Monolayer Averageof3RunsAverageof3Runs

4000

3500

3000

2500 _

2000

O2/ppm 1500

1000

500

0 0 10 30 60 90 120 Time/minutes

Figure 3.6:Theoxygenconsumptionofthesputteredmonolayersample.

Figure3.6showstheaverageoxygenconsumedduringphotocatalytic oxidationreactionusingthesputteredmonolayersample.Theexperimentbeganwith

1633ppmofoxygenasindicatedbytheGC/MSandfinishedwith804ppmfora differenceof829ppm.Again,theppmofoxygenconsumedshouldbeequaltothe ppmofCOoxidized,buttheydifferby427ppm.Thisdifferencecanalsobe attributedtotheerrorassociatedwithmanualsampleinjection.

55

CO2Conversion:MonolayerCO 2Conversion:Monolayer Run1Run1 1400

1200

1000

800

600 CO2/ppm_

400

200

0 0 10 25 45 60 90 120 150 Time/minutes

Figure 3.7:Thefirstcatalyticrunofthesputteredmonolayersampleshowingthe carbondioxidecontentinsidethesealedreactionchamberasafunctionoftime.

Acloserlookateachofthefirstthreerunsofthesputteredmonolayersample showshowthedegradationofthecatalyticactivityprogresses.Figure3.7showsthe initialrunusingthesputteredmonolayersample.TheCO oxidationrateofthe monolayersampleontheinitialtestis8.5ppmperminute.Thetotaltimeofthe experimentisshowntobe150minutes.After150minutes,themonolayersample’s conversionrateslowedduetothelackofavailabilityofreactants.

56

CO2Conversion:MonolayerCO 2Conversion:Monolayer Run2Run2 1400

1200

1000

800

600 CO2/ppm_

400

200

0 0 10 30 60 90 120 150 Time/minutes

Figure 3.8: Thesecondcatalyticrun ofthesputteredmonolayersampleshowingthe carbondioxidecontentinsidethesealedreactionchamberasafunctionoftime.

Figure3.8showsafurtherdeclineinperformanceascomparedtofigure3.7.

Therateofcatalyticactivitydeclinedafterapproximately60minutesofexposure timeandstoppedafter90minutes.TheCOoxidationrateforthesecondrunusing themonolayercatalystwas3.73ppm/minutefortheentirerun.TheCOconversion rateuptocatalyticdegradation,60minutes,is8.21ppm/minutewhichis comparabletotheconversionrateofrun1.

57

CO2Conversion:Monolayer CO 2Conversion:Monolayer Run3Run3 1400

1200

1000

800

600 CO2/ppm_

400

200

0 0 10 30 60 90 120 150 Time/minutes

Figure 3.9: Thethirdcatalyticrun ofthesputteredmonolayersampleshowingthe carbondioxidecontentinsidethesealedreactionchamberasafunctionoftime.

Figure3.9showsthecontinueddegradationofthesputteredmonolayer sample’sperformance.Thebehaviorofthemonolayersampleinthethirdrunwas muchlikethesecondexceptforacontinueddeclineinperformance.Thecatalyst showedagoodCOconversionratetoninetyminutes.AfterninetyminutesnoCO conversionwasdetectable.TheCOoxidationrateforthethirdrunusingthe monolayercatalystwas2.71ppm/minutefortheentirerun.TheCOconversionrate uptocatalyticdegradationtimeof90minuteswas4.37ppm/minutewhichshoweda

51%declineascomparedtotheinitialrun.

58

PerformanceoftheSputteredMonolayerSample

70.0

60.0

50.0

40.0

30.0 Conversion/%_ 20.0

10.0

0.0 0 1 2 3 4 5 6 Run

Figure 3.10:Thedegradingperformanceofthemonolayersampleoversuccessive runs.

Figure3.10showstheoveralldeclineinperformanceofthemonolayersample aftersubsequentcatalyticruns.Thesignificanceofthischartistoshowthedramatic decreaseinperformancefromrun3therun4.Thepercentconversionbetweenruns

3and4wentfrom49.1%to4%respectively,adecreaseof45.1%.Thedegradation incatalyticperformancewasnotreversibleevenafterheattreatingthecatalyst sampleinordertodriveoffanysurfacecontaminants.Therefore,thesuddendropin catalyticperformanceismostlikelyattributedtothemigrationofthecatalystintothe substratematerialasresultoftheheattreatments.

XPSdatafromthepostrunmonolayersample,showninfigure3.11,indicates thattheMoO 3layerwasnolongerpresent.Thiswouldaccountforthedegradationof thecatalyticperformanceofthemonolayersample.Thedegradationofthecatalytic materialwasdeterminedbycomparingthepostrunXPSspectrumoffigure3.11with

59 thenewlydepositedXPSspectrumshownearlier inFigure2.2 .Thepeaksshownat thebindingenergyof250eVan d450eVinfigure2.2areclearlydiminishedinfigure

3.9indicatingthelossoftheMoO 3layer.

Figure 3.11: TheXPSwidescanofthe MoO 3sampleaf terthecatalyticreaction .

Figure3.12sh ows thepostrunnarrowXPSspectrum.Thisshowsfurther evidenceofthedisappearanceoftheMoO 3 layerwhencomparedtofigure2 .3.Note

60 thatthepeaksatthebindingenerg yof229eVand232eVinfigure2.3arenotpresent infigure3.12.

Figure 3.12: TheXPSnarrowscanofthe MoO 3sampleafterthecatalyticreaction showingadegradationofthe MoO 3layer. Therearetwopossiblecausesforthe molybdenum oxidelayer’sdegradation.

FirstandmostlikelyscenarioisthattheMoO 3couldhavemigratedintothe borosilicateglasssubstrateduetorepeatedpre treatmentheatinginordertoremove moisturefromthecatalyst surface.MoO 3hasatendencytodiffuseinto aSiO 2 surfaceafterthermaltreatment attemperaturesof400˚C(Xuetal ,2001).Sincethis

61

researchusedasubstratemadeofborosilicateglass,whichconsistsof70%SiO 2,the migrationofMoO 3intothesubstratesurfaceatlowertemperaturesisapossibility.

TherearenoknownliteraturereferencesonthetopicofMoO 3diffusioninto borosilicateglass.Second,theMoO 3couldhavebeenvolatized,meaningthatit reactedwiththeCOformingcarbonylcompounds(Mo(CO) 3)whichcanbeinthegas state,thusevaporatingtheoxidelayer.TheXPSanalysis,showninfigures3.11and

3.12,ofthemonolayersamplealonecannottelluswheretheMoO 3wentsofurther testingwasneeded.

AsatesttodeterminewhatishappeningtotheMoO3monolayersample,new

MoO 3monolayercatalystsamplesweremadewiththeborosilicateglasssubstrate coatedwithsiliconnitride(Si 3N4).TheSi 3N4 coatingactsasadiffusionbarrierwhich willnotallowtheMoO 3layertomigrateintotheborosilicateglasssubstrate.Si 3N4is routinelyusedasadiffusionbarrieronSicontainingsubstratesusedattemperatures upto1000˚C(Sambandametal,2005).TheresultsoftheSi 3N4 coatedmonolayer catalystsarepresentedinsection3.5.

62

3.3 The Sputter Deposited Bi-layer Sample

Table 3.3: Theconcentrationofcarbonmonoxideatthestartandendofeach photocatalyticrunforthesputteredbilayersamples.

Run ppm CO start ppm CO end 1 891 628 2 873 682 3 873 652 4 855 601 5 855 608 Average 869 614

CO2Conversion:BilayerCO 2Conversion:Bilayer Averageof5RunsAverageof5Runs 1400

1200

1000

800

600 CO2/ppm_

400

200

0 0 10 30 60 90 120 Time/minutes

Figure 3.13:Thecarbondioxideconversionresultsforthesputteredbilayersample. Thesputteredbilayersampleshowedconsistentbehaviorduringeachofits fiverunsasshownintable3.2.Therewasnoobservabledegradationinperformance andthecatalysthadanoverallefficiencyof29.3%,withthebestperformancebeing

63 run4at29.7%andtheworstbeingrun2at21.9%.Theresultsofthesputteredbi layersampleareshowninfigure3.13.Thesampleshowedfairinitialcatalytic activitywithaconversionrateof3.65ppm/minuteforthefirst60minutesof exposure.After60minutesaninterestingphenomenontookplace.TheCO 2 concentrationinthegasmixtureatboththe90and120minutereadingsdecreased.It issuspectedthattheCO 2isadsorbingonthecatalystsurface.Additionaltestswere conductedtodeterminethecauseofthedecreasingCO 2levels.Thefirstdatapointin figure3.13appearstocontainsignificanterrorwhereasitshouldreadzero.Thiserror ismostlikelyduetoairleakedintothesystemduringthemanualinjectionofthe sampleintotheGC/MS.Also,asmallamountofair,containingCO 2couldhave founditswayintothesystemduringinjectionandcausingtheerroneousreading.

O2Consumption:BilayerO2Conversion:Bilayer Averageof5RunsAverageof5Runs 4000

3500

3000

2500

2000

O2/ppm_ 1500

1000

500

0 0 10 30 60 90 120 Time/minutes

Figure 3.14:Theoxygenconsumptionofthesputteredbilayersample.

64

Theoxygenconsumptionforthesputteredbilayersampleisshowninfigure

3.14.Catalyticactivitycanbeobservedforthefirstsixtyminutesoftherundueto thedecreasingconcentrationofoxygeninthesystem.Aftersixtyminutestheoxygen contentremainsclosetoaconstantlevelof1200ppmindicatinganendtotheCO 2 conversion.Thisdataisconsistentwiththedatashowninfigure3.13whichalso showedadramaticshiftinactivityaftersixtyminutes.Thefirstdatapointinfigure

3.14appearstocontainsignificanterrorwhereasitshouldbegreaterthanthesecond datapoint.Thecauseofthiserroristhesameastheerrorreportedinfigure3.13.

Whenthesamplewasinjected,asmallamountofaircouldhavedilutedtheoxygenin theinjectionsyringe.

3.4 The Sputter Deposited 60 Å Sample

Table 3.4: Theconcentrationofcarbonmonoxideatthestartandendofeach photocatalyticrunforthesputterdeposited60Åsamples. Run ppm CO start ppm CO end 1 848 583 2 891 740 3 891 609 4 873 729 5 855 723 Average 872 677

Thesputtered60Åsamplealsobehavedasexpected.Becauseofthe relativelylargethicknessoftheMoO 3layerascomparedtotheprevioussputter depositedsamples,the60Åsampleshowedlowcatalyticactivity.Thislowcatalytic activitywasduetotheblockageoftheMoO 3/SiO 2interface.TheamountofCO 2

65 conversionforthe60Åis22.3%withrunoneshowingthehighestconversionat

31.3%andrunfiveshowingthelowestat15.4%.

Figure3.15showstheCO 2conversionaverageoffiveconsecutiverunsofthe

60Åsample.The60Åsamplehadpredictablebulkmaterialbehaviorwhenusedto oxidizeCO.Becauseofthethicknessoftheoxidelayer,theMoO 3/SiO 2interface wascompletelyblockedoff.Thus,whenitisusedinthisoxidationexperiment,it willreactwiththeCOformingCO 2untilthemolybdenumoxidelayerisreduced fromMoO 3toMoO 2andthenthereactionstops.

CO2Conversion:60ÅSampleCO 2Conversion:60ÅSample Averageof5RunsAverageof5Runs 1400

1200

1000

800

600 CO2/ppm_

400

200

0 0 15 30 60 90 120 150 Time/minutes

Figure 3.15:Thecarbondioxideconversionresultsforthesputtered60Åsample.

The60Åsamplehadaconversionrateof2.3ppm/minute,thelowestofall threesamples.Aftereightyminutes,theCO 2levelstartstodecreasepossiblydueto theCO 2diffusingintotheMoO 2material.Thethirddatapointoffigure3.15appears tobelow,againduetotheerrorassociatedwithmanuallyinjectingthesample.

66

Heatingbetweenexperimentalrunswouldregeneratethecatalyticproperties ofthe60Åsample.TheCO 2levelsforthissamplealsodropoffafter90minutesof exposuretime.Again,aswiththebilayersample,itisbelievedthattheCO 2is adsorbingontheMoO 3surface.Additionaltestswereperformedtodetermineifthis isthecaseandarepresentedinsection3.5.

O2Consumption:60ÅSampleO2Conversion:60ÅSample Averageof5RunsAverageof5Runs 4000

3500

3000

2500

2000

1500 O2/ppm_ 1000

500

0 0 15 30 60 90 120 150 Time/minutes

Figure 3.16:Theoxygenconsumptionofthesputtered60Åsample.

Theoxygenconsumptionofthe60Åsampleisshowninfigure3.16.The datashowsapredictablepatternwiththeoxygenlevelsholdingconstant.Thiswould indicatethatthereactionisconsumingtheoxygencontainedintheMoO 3thinfilm layer.

67

3.5 The Results of the New Monolayer Catalyst with a Si 3N4 Coated Substrate

Asmentionedinsection3.2,newMoO 3catalystsamplesweremanufactured whichhavetheborosilicateglasssubstrateofthesamplecoatedwithalayerofSi 3N4.

TheSi 3N4 actsasanionbarriersothatwemaytesttoseeiftheMoO 3thinfilmlayer isdiffusingintothesubstrateofthecatalyst.

TwosamplesofMoO 3wereexaminedbyXPS.Onesamplewassetasideand notruncatalytically;thissamplewillbereferredtoasthe“asgrown”sample.The secondsamplewasrununderthesamecatalyticconditionsastheoriginalandwillbe referredtoasthe“afterprocessing”sample.Theasgrownsample,showninfigure

3.17showsamuchstrongermolybdenumpeakbetween230eVand240eVandalso between400eVand430eVascomparedtotheafterprocessing,showninfigure

3.18.Theweakermolybdenumpeakshowninfigure3.18indicatesthatsomething hashappenedtothecatalyst’smolybdenumlayerduringprocessing.Table3.5 furthershowsthatthepercentageofcarboncontentonthesurfaceofthecatalyst samplehasincreasedfrom50%to76%,indicatingthatthecatalyst’ssurfacemay coveredwithcarbon,thuskeepingthemolybdenumfrombeingdetectedbyXPS.

Table 3.5: TheelementalXPSsurfaceanalysisbeforecleaningthecatalystsample surfaces. Sample Oxygen% Carbon% Molybdenum% Mo/O ratio Asgrown 35% 50% 15% 0.41 After 21% 76% 3% 0.12 Process

68

Theincreaseincarbononthecatalystsurface wouldhelpto explainthedecreasein

CO 2levelsas shownintheexp erimentalresultsforthebilay ersampleandthe60Å sample,describedinsections 3.3and3.4respectively.

Figure 3.17: TheXPSanalysisoftheasgrownsiliconnitridecoatedM oO 3thinfilm sample.

69

Figure 3.18: TheXPSanalysisoftheafterprocessingsiliconnitridecoated MoO 3 thinfilmsample. AdditionalXPStestingwasperformed ontheSi 3N4coatedmonolayer catalyststolookfor conclusive evidenceofsurfacecontaminationontheafter processingcatalystsample.Lowenergyoxygenplasmawasappliedtothesurfaceof thecatalystsamplefortenminutestoremoveanycarboncontainingsurface

70 contamination.TheXPSspectrumfortheoxygenp lasmacleanedsampleisshownin figure3.19.Notethatthemolybdenum3dpeakdecreasesfromfigure3.17to3.18 andthenincreasesagainforfigure3.19. Thepercentmolybdenumcontentincreased alsofrom3%beforeoxygenplasmacleaningto9.4%after oxygenplasmacleaning.

Thisshowsthatthemolybdenum layerstaysinplace,butwascoveredby acarbon surfacecontamination causedbyprolongedcontactwithCO 2inthephotocatalytic reactor.

Figure 3.19: TheXPSanalysisofthe oxygenplasmacleaned afterprocessingsilicon nitridecoatedMoO 3thinfilmsample.

71

Chapter 4

DISCUSSION

TheexperimentalresultspresentedinChapter3forthephotocatalytic experimentsusingsputterdepositedmetaloxidecatalystsruninthenewly constructedreactorsystemyieldedinterestingresults.Thesputterdeposited

MoO 3/SiO 2catalystsperformedsatisfactorilywhencomparedtoothercatalystsfor theoxidationofCOat293K.Table4.1showstheresultsofrecentlyreported catalystsystemsandhowtheycomparetothesputterdepositedMoO 3/SiO 2catalysts reportedinthisresearch.Table4.1showsthatthechoiceofcatalystmaterial, substrate,catalystsynthesis,reactortypeandtestpressureallhaveaneffectonCO oxidationperformance.

Table 4.1: Acomparisonofperformanceforrecentlyreportedcatalystsusedforthe oxidationofCOat293K. Kamegawa Sun Bragg Han Roy Luo (2007) (2007) (2007) (2007) (2007) (2007) COConversion 100% 80% 55% 23% 20% 10% 2+ Catalyst MoO 3 Au MoO 3 Au Pd CuO Substrate SiO 2 CeO 2 SiO 2 Al 2O3 TiO 2 CeO 2 TestPressure 88Pa 101kPa 101 kPa 101kPa 101kPa 88Pa Reactortype Batch Flow Batch Flow Flow Batch Catalyst I N S N N I Synthesis IImpregnatedCatalyst SSputterDepositedCatalyst NCatalyst

4.1 Considerations for the Reaction Mechanism

Theexperimentalresultsfromthisresearchalongwithsimilarstudiesdoneby othersonrelatedsystemsisthebasisfordeterminingthereactionmechanismforthe sputteredMoO 3/SiO 2catalysts.Valuableobservationsforthefinaldeterminationof

72 thereactionmechanismofthissystemwereformulatedasaresultofthese experiments.

Theformulationoftheproposedreactionmechanismforthisresearchisbased ontheprincipleofareduction/oxidation(redox)reaction.Redoxdescribeschemical reactionswhereatomsundergochangetotheiroxidationstateasreactantsbecome products.Thischangecanbeaccountedforbybalancingtheoxidationnumbersof thereactantsandproductsofthereaction.Foreachsubstanceoxidizedinaredox reaction,anothermustbereduced.Theoxidationofanatomisdefinedbyan increaseinitsoxidationnumber.Likewise,reductionisthendefinedbyadecreasein theoxidationnumber.Thedeterminationoftheoxidationofanatomissimplifiedby usingthewellknownrulestatingthatoxygen(O)usuallyhasanoxidationnumberof minustwo(O 2),theexceptioniscompoundswheretheoxidationnumberis

2 minusone(O 2 ).Molybdenumcanbeformedbutarerare(Greenwood andEarnshaw,1984).Usingthisinformation,theoxidationnumberofametal containedinanoxideformcanbedeterminedbysimplyaccountingforallofthe oxygenatoms(2)inthecompoundandbalancingthemwithacorrespondingpositive charge(+2)foranetresultofzero.Theinformationgiveninthissectionisthe foundationforthetheoreticalmodelpresentedinsection4.2.

73

4.2 The Molybdenum Oxide Catalyst

ThecatalyticoxidationofCOwithO 2onMoO 3consistsofthecyclic repetitionofthefollowingtwosteps;

CO(g) + O(s) → CO2 (g) + (s) (15)

(2 s) + O2 (g) → 2O(s) (16)

HereO(s)referstotheactiveoxygenontheMoO 3surfaceand(s)referstotheactive oxygenvacancyonthereducedMoO 3surfacefollowingCOoxidation(Iizukaetal,

1996).

Thecatalystusedinthisresearch,molybdenum,haspossibleoxidationstates of0,+2,+3,+4,+5and+6whichwillformthevariousmolybdenum.The mostcommonoxidationstatesformolybdenumare+4and+6oxidationstatesgiving theoxidesMoO 2andMoO 3,respectively(GreenwoodandEarnshaw,1984).MoO 2 andMoO 3haveverydistinctcolorcharacteristics.TheMoO2isadeepblue,while

MoO 3iswhite(OlherandBell,2005).

6+ 2 Themolybdenylbond[Mo =O ]ofMoO 3mustbeactivatedinorderto createsitesfavorableforcatalyticactivity.Activationofthisbondcancomeinthe formofUVirradiationasshowninequation(17)(Louisetal,1991),(Anpoand

Kubokawa,1987).

[Mo6+ = O 2− ] →hυ [Mo5+ − O − ]* (17)

Duringthephotocatalyticreaction,photoexcitedMoO 3willbehaveasa+5oxidation stateduetothepromotionofanelectronfromthevalencebandintotheconduction band(LouisandChe,1991).

74

ThisphotoexcitationwillallowtheMoO 3toreleaseoneofitsoxygenatomsto oxidizeCO,thuscreatingMoO 2.

4.2.1 Calculating the Light Energy for the Mo Bond Activation

Lightiselectromagneticradiation,whetheritisintheinfrared,visibleor ultravioletregionofthespectrum.Electromagneticradiationischaracterizedbythe classicalequation(18):

λυ = c (18) whereλisthewavelengthinnm, υ isthefrequencyinhertzandcistheconstant velocityoflight,2.998x10 8ms 1.

Electromagneticradiationconsistsofquantaofenergy.Thesmallestquantity ofenergycontainedinoneofthesequantacanberelatedtothefrequency(ν)ofthe electromagneticradiationbyPlanck’sconstant(6.33X10 34 Js)asshowninequation

(19).Thesequantaarecommonlyknownasphotons.

E = hυ (19)

Theinteractionoflightwithaphotocatalyticmaterialisdefinedasan interactionbetweenonecatalystmoleculeandonephotonoflight.Thiscanbe shownas:

A + hυ→*A (20)

HereAisthegroundstateofthemolecule,[ hυ ]istheabsorbedphotonand *Aisthe excitedstateofthemolecule.Initsexcitedstate,themoleculeis“photochemically” active.Byitself,onephotochemicallyexcitedatomormoleculedoesnotcontaina lotofexcessenergy.However,acumulativeincreaseinenergyisrealizedwhenone

75 moleofphotocatalyticallyactivematerial,asdefinedbyAvogadro’snumber(6.02X

10 23 ),isexcitedbyonemoleofphotons,knownasanEinstein.

The[Mo 6+ =O 2]bondneeds303kJ/moltobecomecatalyticallyactive(de

Lasaetal,2005).Theenergyperphotonisobtainedbydividingthetotalenergyby

Avogadro’snumber;thereforetheenergyperphotonneededtoexcitethisbondis

6.81x10 19 Js 1.Knowingtheenergyperphoton,thefrequencythencanbe calculatedusingequation(18).Aftercalculatingthefrequency,thewavelengthof lightneededforbondactivationcanbefoundbyusingequation(19).The[Mo 6+ =

2 O ]molybdenylbondofMoO 3canbephotocatalyticallyactivatedwith395nm electromagneticradiation.Asanote,electromagneticradiationbetween320nmand

400nmisknownaslongwaveultravioletlight(Fishbaneetal,1996),thuslongwave

UVlightisrequiredforMoO 3activation.

4.3 The Experimental Results

ThepowdersamplesprovidedbytheAnpogroupwererunfirstandinitially showedCOconversion,buttheobservedcatalyticactivityceasedafterfortyminutes.

Thesamplesturnedtoadeepbluecolorafterillumination.Thiscolorchangeis indicativeofMoO 2 (Mannoetal,2002;OltherandBell,2005;Greenwoodand

Earnshaw,1984),whichmeansthattheMoO 2materialwasnotabletooxidizeback totheMoO 3 form.ThereactionstoppedafteralloftheavailableoxygenintheMoO 3 wasconsumed.ThepoorperformanceoftheimpregnatedsamplefromAnpowas veryhelpfulinunderstandingthemechanismofthereaction.ThecreationofMoO 2

76 wasacluethatthemolybdenumoxidematerialhadnomechanisminplacetooxidize toMoO 3,acriticalstepforthisreaction.

Thesputteredmonolayersampleshowedgoodcatalyticactivityinitially.Asa firstattemptatengineeringacatalyst,themonolayersampleshowedacceptable catalyticactivitywhencomparedtothecatalyticactivityoftheimpregnatedsamples senttousfromtheAnpogroup.Atfirstglance,thesputteredthinfilmmonolayer sampleperformedonly45%aswellasthechemicallyimpregnatedsampledata publishedbyKamegawaetal.(Kamegawaetal.,2006).However,thisassumesthat boththeimpregnatedsampleandthesputteredsamplewererununderthesame conditions.Theywerenot.InthedatapublishedbytheAnpogroup,thechemically impregnatedsamplewasrunatapressureof88Pa,whereasthesputteredsample usedinthisresearchwasrunat101350Pa,or1atm.Whenbothsampleswererun underthesameatmosphericpressureconditions,thesputteredmonolayersample performedbetterthanthechemicallyimpregnatedsample.Theresultsshowthatthe sputteredmonolayersampleconverted55.2%ofthetotalCOinthesystemtoCO 2;as comparedtothechemicallyimpregnatedsamplewhichonlyconverted9.9%ofthe

COtoCO 2.

AfterrepeatedusetheCOconversioncapabilityofthesputteredmonolayer sampledegradedtothepointofnodetectablecatalyticactivity.XPSanalysisshowed

thattheMoO 3 thinfilmlayerwasgonefromthesubstratematerial.Tofindthecause oftheMoO 3thinfilm’sdisappearance,newmonolayerMoO 3catalystswere manufacturedwithasiliconnitride(Si 3N4)coatingcoveringtheborosilicateglass substrate.Thenewsampleswerethenrununderthesameconditionsastheoriginal

77

catalystsamplesinordertodeterminewhatwashappeningtotheMoO 3thinfilm layer.XPSanalysisoftheSi 3N4coatedsamplesrevealedthattheMoO 3thinfilm layerwasstillpresentafterexperimentation.ThistellsusthattheMoO 3thinfilmon theoriginalmonolayersamplehaddiffusedintotheborosilicateglasssubstrate.The

Si 3N4 coatingonthenewmonolayersampleactsasanionbarrier,whichwillprevent thediffusionofthethinfilmlayerintothesubstrate.Withthethinfilmlayer’s disappearancefromtheoriginalmonolayersampleandhavingitretainedintheSi 3N4 coatedsample,onecandeducethatthethinfilmdiffusionintothesubstrateisthe causeofthecatalyticdegradationoftheoriginalmonolayersample.

Thesputteredbilayersamplewasproducedtotestcatalyticperformancewith adegradedMoO 3/SiO 2interfaceshowingthattheredoxreactionisdependentonthe

MoO 3/SiO 2interfacebetweenthetwomaterials.Coveringthesubstratewithmore

MoO 3,thebilayersamplereducestheareaofthecatalyst/substrateinterfaceandas aresult,decreasedcatalyticactivitywasobserved.Nocolorchangewasobservedin thebilayersamplewhereasthemolybdenumoxidematerialwasnotvisible.

However,eventhoughtherewasnoobservablechangetothecatalyst,the recordedcatalyticbehaviorshowedcharacteristicsofboththepowderedMoO 3/SiO 2 sampleandthesputteredmonolayersampleintermsofperformance.Thesputtered bilayersampleactivelyoxidizedCOforapproximatelythirtyminutes,thenthe observedcatalyticactivityceasedasaresultofcompromisingMoO 3/SiO 2interface’s abilitytoreoxidizetheMoO 2material.Someoxygencontainedinsidethereaction chamberwasconsumedduringtheexperimentwhichindicatesthattheMoO 3/SiO 2

78 interfacewasworking,albeitatalowerefficiencyduetoincreasedcoverageofthe substratebyMoO 3layer.

Thesputtered60Åsamplealsoperformedasexpected.Thepurposeofthis samplewastotestthebehaviorofthematerialwithablockedMoO 3/SiO 2interface andtodetermineiftheMooxideexhibitsanycatalyticpropertiesasabulkmaterial.

Theresultsshowthatindeedthe60ÅsampleoxidizedCOuntilalloftheavailable oxygenwasconsumed.ThiswasindicatedbythefactasmallamountofCO oxidationwasobservedbuttheoxygenlevelsinsideofthereactionchamber remainedrelativelyconstant.

Whenanalyzingtheresultsofallofthecatalyticruns,itwasclearthat optimizationoftheMoO 3/SiO 2interfacewasnecessaryforcreatingamoreefficient catalyst.Knowingthatthedeepbluecolorchangeinthecatalystisindicativeofthe creationofMoO 2wasanessentialobservationleadingtoabetterunderstandingof theimportanceoftheroleoftheSiO 2substrateanditsinterfacewiththeMoO 3thin filmwhendesigningoursputterdepositedcatalyst.Thegreatestgainsincatalytic activityarethoughttocomefromtheoptimizationoftheMoO 3/SiO 2interfacewhich provedtobetrueasshownbytheexperimentalresults.

4.4 The Reaction Mechanism

Thereactionmechanismforthethinfilmcatalystsisessentiallythesameas thatofthechemicallyimpregnatedsamples.Duringthephotocatalyticoxidationof

CO,theMoO 3moleculewillgiveuponeoxygenatomandbereducedtoMoO 2.The oxygenatomthatwasreleasedfromthemolybdenumoxideisthenusedinthe

79 reactiontooxidizetheCO.TheCOoxidationreactiontakesplaceonthesurfaceof

6+ theMoO 3,wheretheMo isanadsorptionsitefortheCOmolecule.The photocatalyticexcitationoftheMothenallowsanoxygenatomtobereleasedfrom theMoO 3,thusreducingtheMoO 3toMoO 2.Thisreleasedoxygenisusedtooxidize theadsorbedCOmoleculetoCO 2.TheformationofCO 2bytheoxidationofCO occursrapidly(Royetal,2007).

Inorderforthereducedmolybdenumoxidetoperformcatalytically,there mustbeamechanisminplacetosupplyatomicoxygenforthereoxidationofMoO 2.

Silicondioxide(SiO 2)wasusedastheoxygentransportmechanismtooxidizeMoO 2 bydisassociatingoxygengasfromthesurroundingatmospheretoformtheatomic oxygenneeded.Studieshaveshown,aspresentedinsection1.3ofthisthesis,that

SiO 2performswellasanoxygentransportmechanismforoxidationreactions.Mauti etalusedSiO 2astheoxygenpathwaytoperformthepartialoxidationofCH 4over silicasupportedmolybdena(MautiandMims,1993).Fukuokaetalshowed mesoporousSiO 2,whenusedasasubstrateforplatinumnanoparticles,providedthe atomicoxygenneededtooxidizeCOwhentherewasnootherO2gaspresentinthe system.Theyconcludedthattheoxygenneededforthisreactioncouldhaveonly comefromthemesoporoussilica(Fukuokaeial,2007).OlheretalandIizukaetal havealsoshownthatwhenusingSiO 2asasubstratematerial,theO 2fromthe surroundingatmospheredisassociatesonthesurfaceoftheSiO 2enablingtwo

IV adjacentMo cationstobeoxidizedbyoneO 2molecule(OlherandBell,2005;

Iizukaetal,1996).

80

TheSiO 2substrateactivityisnotdependentonUVirradiationwhereasSiO 2is invisibletoUV,allowingthelighttopassthroughlargelyunattenuated.

CharacterizationoftheSiO 2substrateusingUVvisspectroscopyshowsthistobe true,seefigure3.2

Asstatedintheintroduction,thesputterdepositedMoO 3/SiO 2catalystwas designedtooxidizecarbonmonoxide,formingcarbondioxide.Thereaction mechanismfortheoxidationofCOusingMoO 3/SiO 2ispresentedinequations(21),

(22)and(23).

6+ hν 5+ * Mo O3 → Mo O3 (21)

5+ * 4+ Mo O3 + CO → Mo O2 + CO2 (22)

4+ 6+ Mo O2 + O(SiO2 ) → Mo O3 (23)

TheproposedmechanismbeginswithMoO 3inthe+6oxidationstate.When theMo +6 isexcitedbyUVlight,anelectronispromotedtotheconductionbandand materialbehavesasMo +5 ,releasinganoxygenatomfromthemolybdenumoxide whichisusedtooxidizetheCOmoleculeadsorbedonthesurfaceoftheMo.A diagramoutliningthismechanismisshowninfigure4.1.TheMoO x/SiO 2interfaceis acriticalpartofthecatalystdesign.Thisphotocatalyticredoxreactionisgreatly dependentontheefficiencyoftheMoO x/SiO 2interface.Optimizationofthisareais wherethelargestgainsincatalyticactivitymayberealized.

81

Figure 4.1: ThephotocatalyticreactionmechanismfortheoxidationofCOusinga molybdenumoxidecatalyst.

82

Chapter 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary

Aphotocatalyticreactorwasdesignedandconstructedtoconductthe experimentationonthethinfilmmetaloxidecatalystsamples.Thegasdelivery systemandphotocatalyticreactorwerebuiltonaminimalbudgetinordertoprove theconceptthatredoxreactionsusingsputterdepositedthinfilmcatalystscouldbe performedatroomtemperatureandunderatmosphericpressure.Agasproportioning systemwasconstructedtosupplythespecificgasmixturesneededtocarryoutthe redoxreactions.Thegasproportioningsystemhastheabilitytomixuptothree individualgases.Itwasdesignedtoproducethegassamplesusedinboththe pretreatmentsystemandphotocatalyticreactor.

Alightsourcewasconstructedusingpartsfromanexistingspectrometer.The

300wattxenonlightsourceandenclosurewerebuiltusingfacilitiescourtesyofthe

UniversityofMaineDepartmentofPhysics.Thelightsourcewascharacterizedbya widelyusedpotassiumferroxylateactinometerymethodwhichshowedthatthexenon sourcehasaquantumfluxintheUVspectrumthatiseighttimesgreaterthanthe otherlightsourcesavailableinourlaboratory.Thepoweroutputofthexenonlamp intheUVrangewasalsocomparabletoequipmentreportedintheliterature referencesofthisthesis.

Apretreatmentsystemwasconstructedtofacilitatetheheattreatment requirementsofchemicallyimpregnatedsamples.Thepretreatmentsystemwasrun atatmosphericpressureforcalcinationprocess.Afterthecalcinationprocessis

83 complete,thesystemcanthenbesettorunundervacuumatareducedtemperaturein ordertodegasthecalcinedcatalystsamples.Thecalciningpretreatmentprocessis notnecessaryforthinfilmdepositedcatalysts.

AnavailableGC/MSsystemwithmanualinjectionwasusedastheprimary detectionsystem.ThemanualinjectionofgassamplesintotheGC/MSmayinduce largeerrorstothedegreeof±20%accordingtotheinstrumentmanufacturer,Agilent

Technologies.Theerrorsassociatedwithmanualinjectioncanbeminimizedthrough operatorpractice,wherethemoremanualinjectionstheinstrumentoperatormakes, themoreproficienthewillbecomeatmakingthoseinjectionsrepeatable.However, manualinjectionsofgassamplesintotheGC/MScannotbemadecompletely foolproof.Whilefarfromidealforthisapplication,gasphasemanualinjectionwas usedsuccessfullytoprovethattherewascatalyticactivitypresentinthesystem.

TheGC/MSwaslimitedtothedetectionofO2andCO 2;itcouldnotbeused forthedetectionofCO.COandnitrogengascoincidentallyhavethesameatomic mass,28.Therefore,whentheGC/MSdetectedanionwithamassof28,the instrument’sresolutioncouldnotdeterminewhethertheionwasfromCOinsidethe reactorsystemorfromN 2contaminationpossiblyleakingintothesyringepriortothe sampleinjectionintotheGC/MS.Tosolvethisproblem,aCOdetectorfromRAE systems,theEntryRAE™,wasusedtodirectlymeasureCOconcentrationsatthe beginningandconclusionofeachexperiment.

ThinfilmMoO 3sampleswerepreparedtostudytheirphotocatalytic propertiesfortheselectiveoxidationofCOascomparedtosamplesprepared conventionallyusingchemicalimpregnation.Catalystsforthisresearchwere

84 producedusingaphysicaldepositionmethod,specificallyanargonionreactive sputteringtechnique.Threesputterdepositedcatalyticsampleswerepreparedinthe

LASSTfacilities’cleanroom.Theyconsistedofamonolayer,abilayeranda60Å thickMoO 3sampleeachsputterdepositedonaborosilicateglasssubstrate.

Theengineeredsputterdepositedcatalystsoutperformedthechemically impregnatedcatalystswhenallcatalysttypeswererunundersimilarconditions.At atmosphericpressure,thecatalyticperformanceofthesputterdepositedmonolayer samplewasapproximatelyfivetimesbetterthantheperformanceofthechemically impregnatedsample.

Theexperimentalresultsfromtheoriginalmonolayersampleshowed degradationinthecatalyticperformanceofthesample;however,thisdegradationwas notobservedontheothersamples.XPSstudieswereusedtodeterminethecauseof themonolayersample’scatalyticdegradation.Afterdecontaminationofthesample’s surfacewithlowenergyoxygenplasma,theXPSanalysisshowedthatthe molybdenumoxidethinfilmlayerwasnotpresentonthesubstratematerial.

Migrationofthemolybdenumoxideintothesubstratematerialorvolatilizationofthe molybdenumoxidetoformcarbonylcompoundswerethesuspectedcausesofthe molybdenumoxidelayer’sdisappearance.

NewMoO 3/SiO 2samplesweremanufacturedinordertodeterminewhathad happenedtothemolybdenumoxidelayerontheoriginalmonolayersample.Thenew samplesweremanufacturedinthesamemannerastheoriginalsexceptthatthenew sampleshadthesubstratecoatedwithasiliconnitride(Si 3N4)layerwhichactedasan ionbarrierthatwouldnotallowtheMoO 3tomigrateintothesubstrate.XPSstudies

85

ofthenewMoO 3/SiO 2samplescontainingthesiliconnitridebarrierinitiallyshowed thattheMoO 3thinfilmlayeragainhaddisappeared.However,aftertreatingthe catalystsurfacewithlowenergyoxygenplasmaandrescanningwithXPS,itwas shownthattheMoO 3wasindeedstillpresentonthesurfaceofthesiliconnitride coatedsubstrate.Therefore,theXPSresultsoftheMoO 3/SiO 2 samplescontaining thesiliconnitridebarrierrevealedthattheoriginalcatalystsamplessufferedfromtwo problems.Thefirstoftheseproblemswasthatthemolybdenumoxidelayerhada tendencytomigrateintothesubstratesurface.Thisproblemwassolvedbytheuseof thesiliconnitrideonthesubstratematerialpriortothinfilmdeposition.Thesecond problemrevealedwasthatthemolybdenumoxidewaspronetosurface contamination,whichiswhythefirstXPSscansdidnotdetectthepresenceofthe molybdenumoxidelayer.

5.2 Conclusions

TheexperimentsperformedusingMoO 3/SiO 2sputterdepositedthinfilm catalystsshowedthattheywereeffectiveinoxidizingCOphotocatalyticallyunder atmosphericpressure.TheMoO 3/SiO 2catalystresultsareuniquewhencomparedto previousworkbyotherresearcherswhichusedchemicallyimpregnatedcatalyst samplesrunundernearvacuumconditions.Whiletheuseofsputterdepositedthin filmsarecommoninboththesemiconductorandsensormanufacturingindustries, theuseofthinfilmdepositedmetaloxidesareanewapproachforcatalystsintended forgasphaseredoxreactions.

86

ThisresearchshowedthattheMoO 3/SiO 2catalystscouldoxidizeCOunder atmosphericpressureandatroomtemperaturewithCOconversioncomparableto studiesconductedbyotherresearcherscitedintheintroduction.Fromthisstudy,it wasshownthatthesubstratematerialplayedaveryimportantroleinthereactionby disassociatingO 2fromthesurroundingatmospheretoreoxidizetheMoO 2thinfilm.

Themonolayersamplewasdesignedtohavethelargestthinfilm/substrate interfacearea,whichmademoreoxygentransportsitesavailableforthereoxidation oftheMoO 2.Increasingtheareaofthethinfilm/substrateinterfaceimprovedthe

COconversioncapabilityofthecatalyst.Theincreaseininterfaceareawasdueto thefactthatthedepositedMoO 3islandsweremadeassmallaspossible(particlesizes fortheMoO 3werebetween5to20nm)onthesubstrate.Thisallowedformore

MoO 3islandstobedepositedonthesubstrateand,therefore,moreavailableinterface sitesforoxygentransport.

Thisreactionwasperformedasa“batch”reaction,meaningthattherewereno provisionsforgastoenterorleavethereactorsystem.Becauseofthis,thecatalyst surfacebecamecontaminatedwithCO 2afterapproximately50%oftheCOwas converted.ThiswasshownintheresultssectionbythefiguresdepictingtheCO 2 concentrationsforthebilayer(figure3.13)and60Å(figure3.15)samples,wherethe

CO 2levelswouldincreasefor60and90minutesrespectively,andthendecrease.

ThisdecreasewastheresultofCO 2adsorbingontheMoO 3surfaceandfillingthe activeoxidationsites.CO 2adsorptiononthemolybdenumoxidewasconfirmedby

XPS,whichshowedthepresenceofthemolybdenumoxideaftertheremovalof surfacecontamination(adsorbedCO 2)bytreatingthecatalystsurfacewithalow

87 energyoxygenplasma.Runningthesecatalystsinaflowreactorshouldalleviatethis problembecausetheCO 2concentrationwillonlyincreasedownstreamofthecatalyst

(Reddyetal,2007).

TheproposedmechanismforaMoO 3/SiO 2catalyticsystemisbasedontwo processesthatmustoccurinorderforthephotocatalyticreactiontotakeplace.The firstprocessisthephotoexcitationoftheMoO 3thinfilmlayerbyUVradiation.The

6+ 2 [Mo =O ]bondofMoO 3needs303kJ/molofenergytobecomeactivated.This energyissuppliedasUVelectromagneticradiationwithawavelengthof395nmor shorter.TheMo 6+ behavesasMo 5+ afterphotoactivationofthemolybdenylbond.

TheMo 5+ allowsoneofthethreeoxygenatomscontainedinthemolybdenum trioxidetobereleased,creatingMoO 2.Thereleasedoxygenatomthencombines withtheCOmolecule,whichisadsorbedonthesurfaceofthemolybdenum,forming

CO 2.

Thesecondprocessisthemechanism’sdependenceontheMoO 3/SiO 2 interfaceforuseasanoxygentransportmechanism.Duringredox,thephotoexcited

MoO 3isreducedtoMoO 2.Thereductionofthemolybdenumoxideiswhatsupplies theoxygenatomneededtooxidizeCO.Inorderfortheprocesstorepeatandbetruly catalytic,theremustbeapathwayinplacetoreoxidizetheMoO 2.TheSiO 2 substratematerialprovidesthatpathway.Oxygengasfromthesurrounding atmospheredisassociatesontheSiO 2surfaceandoneO 2moleculecanreoxidizetwo adjacentMoO 2sites.Theborosilicateglasssubstrateusedinthemanufactureofthe catalystsampleswasnotthebestchoice;however,itwasanavailablematerialthat provedadequateforthisportionoftheproject.Thecatalyticefficiencyofthe

88

sampleswouldmostlikelybenefitfromtheuseofapureSiO 2substratewherethe borosilicateglassisaround70%SiO 2content.

Overall,theuseofsputterdepositedthinfilmoxidesforphotocatalytic oxidationhasshownitselftobeauniqueandpromisingapproachfortheefficient productionofcatalyticsystemsthatcanbeusedtoperformoxidationreactions.

5.3 Future Work

Engineeringthesecatalystsgivestheresearchermanynewpathwaystostudy andimprovethecatalyst’sperformance.Theengineeringofnewcatalystscantake onmanydifferentapproaches.Forexample,thisresearchprojectshowedthatthe catalyticactivitywasgreatlydependentontheworkingareaofthethinfilm/ substrateinterface.Onthemonolayercatalystusedinthisresearch,theMoO 3layer wasmadeasthinaspossibleinanattempttooptimizetheMoO 3/SiO 2interfacearea, thusyieldingthebestCOoxidationresults.Theoptimizationoftheinterfaceareasof otherphotoactivesystems,suchassolarcells,isacommonapproachtoincreasing theirefficiency.ResearchersatStanfordUniversityarealsoexploringthe maximizationofthedonor/acceptorinterfaceofsolarcellstoincreasethepower outputefficiencybyusingshapeselectivitytoensurethateverypartofthedonorin thelightabsorbingregionofthesolarcelliscontactingtheacceptor(Bjorklundetal,

2007).

UsingLASST’smicrofabcapabilities,MoO 3“islands”or“channels”canbe patternedusingshapeselectionmethodsonapureorporousSiO 2substratewith theintentofmaximizingthesurfaceareaoftheMoO 3/SiO 2interface.TheseMoO 3

89 islandscanbemanufacturedofvaryingthickness’whichcouldleadtofurther enhancementoftheredoxreaction.

Anotherapproachcouldbetoexplorecoatingthesubstratematerial.Coatings canbeappliedtotheSiO 2surfacewhichcouldenhanceoxygenadsorptionfromthe surroundingatmosphereandimprovetheefficiencyoftheO 2molecule disassociation.Forexample,Nowotnyetalreportsthatzirconiaiseffectivefor oxygendissociationatroomtemperature.TheO 2dissociationismostprevalentalong thegrainboundariesofthezirconialayer(Nowotny,2005),againshowingthe importanceofthegeometryandinterfaceregionsofthecatalyst.Theidentification andformulationofthesecoatings,suchaszirconia,couldgreatlyimprovethe efficiencyofthecatalyst’soxygentransportmechanismattheMoO 3/SiO 2interface, thusimprovingtheoverallcatalyticactivity.

CatalystscanalsobemadeusingcodepositiontechniqueswheretheMoO 3 andSiO 2aredepositedsimultaneously.HavingboththeMoO3andSiO 2sidebyside willplaceanoxygentransportsite(SiO 2)besideoneoftheMoO 3sites,vastly increasingthenumberofMoO 3/SiO 2boundarysites.Byusingcodeposition,the importantpropertiesoftheMoO 3/SiO 2interfacewillpropagateacrossthefaceofthe catalyticmaterial.Thesecodepositedcatalystscanbeproducedwithsputter depositedlayersthatarethickenoughtoensuretotalcoverageofthesubstrate.The performanceofthecodepositedthinfilmsamplescanthenbecomparedtothe originalmetaloxidethinfilmsampleswhichdependedonthethinfilm/substrate interfacefortheoxygentransport.

90

Therehasalsobeenworkdoneshowingincreasedcatalyticactivitywhen usingmixedmetaloxidecatalystssuchasacombinationofMoO 3andWO 3.This areacouldbeexploredasanotherapproachtoimprovingthecatalyticefficiencyby alteringthecontentofthemetaloxidecatalyst.Baecketalusedcombinatorial methodstopreparearraysofMoO 3/WO 3invariousconcentrationsstartingwithpure

MoO 3andendingwithpureWO 3.Themixturesthenvariedby10%ateachpoint whenmovingacrossthearray;forexample,thefirstmixtureafterthepureMoO 3was a90/10mixtureofMoO 3/WO 3,thesecondwas80/20,thethirdwas70/30andsoon.

Thephotoresponseofeachmixedmetaloxideclusterwasmeasuredanda50/50 mixtureofMoO 3/WO 3wasshowntobethemostphotoactive(Baecketal,2002).

The50/50mixtureofMoO 3/WO 3mixedmetaloxidecouldbedepositedonaSiO 2 substratetoexploreitspotentialasphotocatalystusedforredoxreactions,comparing itscatalyticperformanceagainstthecatalyticperformanceofsinglemetaloxide catalystsusedunderthesameconditions.Ifthemixedmetaloxidecatalystshows promise,itcouldthenbecodepositedwithSiO 2,asmentionedearlier,toenhancethe oxygentransportmechanism.

IftheGC/MSistoberetainedasthedetectiontechnique,agassampling valveshouldbefittedtothesystem.Thisgassamplingvalvewilleliminatetheerror associatedwithmanualinjectionandallowforrealtimekineticstudiestobe performedundergasflowconditions;thiswouldbeadvantageousoverthecurrent systemwhichperformsonlybatchreactions.Also,thegassamplingvalvewould allowforthedirectmonitoringofhydrogeninthesystem.Hydrogenwasnotused forthisresearchprojectbecauseitdiffusedrapidlyoutofthegastightsyringeand

91 thereforenoreliablereadingscouldbetakenwhenhydrogenwaspresentinthe photocatalyticreactorsystem.ThesealedflowreactorsystemwillalsopreventCO 2 surfacecontaminationofthecatalyst.AflowsystemwillkeeptheCO 2concentration onthecatalystsurfaceatalowsteadystatelevelasopposedtotheincreasingCO 2 concentrationfoundinabatchsystem.

TheGerstelcryostatsetupshouldbemadeoperationaltoallowforbettergas separationswhenusingthegaschromatographyportionoftheGC/MSinstrument.

Thecryostatcoolsthegassample,usingliquidnitrogen,beforeitentersthecolumn oftheGC.Thiscoolingincreasestheretentiontimeofthegassampleinthecolumn allowingforbetterseparations.Thecryostatwouldincreasethesensitivityofthe

GC/MSmakingitpossiblefortheinstrumenttodistinguishbetweenCOandN 2.The

GC/MSwhenadaptedforgassamplingisoneofthemostpowerfulanalyticaltools available(Sun,2007).

AnewOceanOpticsRamanspectroscopysystembeingconstructedbythe

ChemistryDepartmentatTheUniversityofMainewillallowforthepossibilityof uniqueandinterestingresults.Ramanspectroscopyisacharacterizationtechnique thatisusedtostudyvibrationalmodesinasystem(Gardner,1989).Raman spectroscopyreliesoninelasticscatteringoflight,knownasRamanscattering,of monochromaticlight.Themonochromaticlightsourcewillbealaseroperatinginthe visible,nearIRorultravioletrange.Byusingthissystem,thesamplescanbetested insituundervacuumorpartialpressures.ThenewRamansystemwillhavethe abilitytorecordspectraevery30secondsallowingfornearrealtimeobservationsso onecandeterminetheratioMoO 2toMoO 3asafunctionoftimeinkineticstudies.

92

RamanspectroscopycanbeusedtodetectthevariousoxidationstatesofMoO 3x, whereastheRamanbandsat823cm 1and995cm 1aredependentonoxygen stoichiometry(Dieterleetal,2002).Withincreasingoxygenvacancies,i.e.the reductionofmolybdenumtrioxideduringthereaction,theRamanbandswillbroaden andintensifyallowingustodeterminetheMoO 2toMoO 3ratio.

ByaddingthegassamplingvalvetotheGC/MS,atacostof$4500,along withtheconversionofthecurrentbatchreactorsystemtoaflowsystem,atan estimatedcostof$3000,wouldallowfortheaccuratedetectionofCOatlevelsbelow

10ppm.Furthermore,thenewOceanOpticsRamansystemcurrentlyunder constructionwillallowfordirectinsitumeasurementsofthesurfaceactivityonthe catalyst.DatagatheredfromtheGC/MSandthenewRamansystemcanbeusedto complementeachother.Forexample,ifthereisachangeintheRamanbands,as describedabove,thischangecouldbecorrelatedwithachangeinCOthelevel detectedbytheGC/MS.Withtheabovesuggestedcapabilitiesbuiltintothenew catalyticreactor,COlevelsatwellbelow10ppmcanbemonitoredintandemwiththe surfaceactivityonthecatalyst.

93

REFERENCES

M.Anpo,H.Yamashita,1996,Photochemistryofsurfacespeciesanchoredonsolid surfaces. Surface Photochemistry, JohnWiley&Sons,NewYork,NewYork. M.Anpo,N.Aikawa,Y.Kubokawa,M.Che,C.Louis,E.Giamello,1985, Photoluminescenceandphotocatalyticactivityofhighlydispersedtitaniumoxide anchoredontoporousVycorglass. J. Phys. Chem ,89,5017. M.Anpo,Y.Kubokawa,1987,Photoinducedandphotocatalyticreactionson supportedmetaloxidecatalysts,excitedstatesofoxidesandreactionintermediates. Review of Chemical Intermediates, 8,105–124. J.L.Ayastuy,M.P.GonzálezMarcos,J.R.GonzálezVelasco,M.P.GutiérrezOritz, M,2007,MnOx/Pt/Al 2O3catalystsforCOoxidationinH 2richstreams.Applied Catalysis B: Envirnmental, 70,532541. S.H.Baeck,T.F.Jaramillo,C.Braendli,E.W.McFarland,2002,Combinatorial electrochemicalsynthesisandcharacterizationofbasedmixedmetaloxides. Journal of Combinatorial Chemistry ,4(6),563568. C.Baird,M.C.Cann,2005, Environmental Chemistry, W.H.Freeman&Co.,New York,NewYork. M.R.Beychok,1974,CoalGasificationforcleanenergy.Energy Pipelines and Systems ,3,2427. G.C.Bjorklund,T.M.Baer,2007,Organicthinfilmsolarcellresearchconductedat StanfordUniversity.Photonics Spectra ,41(11),7076. X.Bokhimi,R.Zanella,A.Morales,2007,Au/Rutilecatalysts:effectsofsupport dimensionsonthegoldchrystallitesizeandthecatalyticactivityforCOoxidation. J. Phys. Chem. C ,111,1521015216. F.Bosc,A.Ayral,N.Keller,V.Keller,2007,Roomtemperaturevisiblelight oxidationofCObyhighsurfacearearutileTiO 2supportedmetalphotocatalyst. Applied Catalysis B ,69,133137. D.Briggs,M.P.Seah,1983, Practical Surface Analysis: by Auger and X-Ray Photo- Electron Spectroscopy ,JohnWiley&Sons,NewYork,NewYork. T.Brown,H.LeMay,B.Bursten,2000, Chemistry, The Central Science, Prentice Hall,UpperSaddleRiver,NewJersey. M.L.BrownJr.,A.W.Green,G.Cohn,H.C.Andersen,1960,Purifyinghydrogen byselectiveoxidationofcarbonmonoxide.Ind. Eng. Chem .,52,841.

94

J.G.Calvert,J.N.Pitts,1967, Photochemistry ,JohnWiley&Sons,NewYork, NewYork. A.E.Cassano,O.M.Alfano,2000,Reactionengineeringofsolidsuspended heterogeneousphotocatalyticreactors.Catalysis Today, 58,167197. L.Chen,D.Ma,X.Bao,2007,Hydrogentreatmentinducedsurfacereconstruction: formationofspeciesonactivatedcarbonoverAg/activatedcarbon catalystsforselectiveoxidationofCOinH 2richgases. J. Phys. Chem. C ,111,2229 2234. S.Colluccia,A.Trench,R.Segall,1979,Surfacestructureandsurfacestatesin oxidepowders. J. Chem. Soc. Faraday Transactions ,75,1769. A.Corma,H.Garcia,2004,basedphotocatalysts.Chem. Comm., 13,1443 1459. G.W.Crabtree,M.S.Dresselhaus,M.V.Buchanan,2004,Thehydrogeneconomy. Physics Today, 57,3944. J.Dahl,KBuechler,R.Finley,T.Stanislaus,AWeimer,A.Lewandowski, C.Bingham,A.Smeets,A,Schnider,2002,Rapidsolarthermaldissociationof naturalgasinanaerosolflowreactor.Proceedings of the U.S. DOE Hydrogen Program Review.

H.deLasa,B.Serrano,M.Salaices,2005, Photocatalytic Reaction Engineering , SpringerScience+BuisnessMedia,Inc.,NewYork,NewYork. M.Dieterle,G.Weinberg,G.Mestl,2002,Ramanspectroscopyofmolybdenum oxides. Phys. Chem. Chem. Phys. ,4,812821. M.Epifani,P.Imperatori,L.Mirenghi,M.Schioppa,P.Siciliano,2004,Synthesis andcharacterizationofMoO 3thinfilmsandpowdersfromamolybdenum chloromethoxide. Chem. Mater., 16,54955501. P.M.Fshbane,S.Gasiorowicz,S.T.Thornton,1996, Physics for Scientists and Engineers, PrenticeHall,UpperSaddleRiver,NewJersey. M.A.Fox,M.T.Dulay,M,1993,Heterogeneousphotocatalysis.Chem. Rev., 93, 341357. A.Fukuoka,J.Kimura,T.Oshio,Y.Sakamoto,M.Ichikawa,2007,Preferential oxidationofcarbonmonoxidecatalyzedbyplatinumnanoparticlesinmesoporous silica.J. Am. Chem. Soc. ,129,1012010125.

95

D.Gamarra,G.Munuera,A.B.Hungria,M.FernandezGarcia,J.C.Conesa,P.A. Midgley,X.Q.Wang,J.C.Hanson,J.A.Rodriguez,A.MartinezArias,2007, StructureactivityrelationshipinnanostructuredcopperceriabasedpreferentialCO oxidationcatalysts. J. Phys. Chem. C, 111,1102611038.

D.J.Gardner,1989, Practical Raman Spectroscopy ,SpringerScienceandBuisness Media.,NewYork,NewYork. N.H.Greenwood,A.Earnshaw,1984, Chemistry of the Elements, PergamonPress Inc.,Elmsford,NewYork. Y.Han,Z.Zhong,K.Ramesh,F.Chen,L.Chen,2007,Effectsofdifferenttypesof γAl 2O3ontheactivityofgoldnanoparticlesforCOoxidationatlowtemperatures.J. Phys. Chem. C, 111,31633170. B.E.Hayden,D.Pletcher,M.E.Rendall,J.Suchland,2007,COoxidationongoldin acidicenvironments:particlesizeandsubstrateeffects. J. Phys. Chem. C ,111, 1704417051. D.A.Hickman,L.D.Schmidt,1992,Synthesisgasformationbydirectoxidationof methaneoverPtmonoliths.Journal of Catalysis, 138(1),267282. M.Hoffmann,S.Martin,W.Choi,D.Bahnemann,1995,Environmentalapplications ofsemiconductorphotocatalysts.Chem. Rev. ,95,6996. S.T.Hong,M.Matsuoka,M.Anpo,2006,Preparationandcharacterizationof Cu/Pt/BEAcatalystforlowtemperatureoxidationofCO.Catalysis Letters ,107, 173176.

Y.Iizuka,M.Sanada,J.Tsunetoshe,J.Furukawa,A.Kumao,S.Arai,K.Tomishige, YIwasawa,1996,MechanismofthecatalyticoxidationofCOwithO 2onanMo catalystsupportedonsilicaandonbulkMoO 3.J. Chem. Soc., Faraday Trans, 92(7), 12491256. A.F.Jankowski,L.R.Schrawyer,1992,Workinggaspressureandfloweffectson reactivelysputteredmolybdenumoxidethinfilms.Surface Science and Technology , 54:55,349354. T.Kamegawa,J.Morishima,M.Matsuoka,J.M.Thomas,M.Anpo,2007, Eliminatingtracesofcarbonmonoxidephotocatalyticallyfromhydrogenwitha singlesite,Nonnoblemetalcatalyst.Journal of Physical Chemistry C, 111(3), 10761078. T.Kamegawa,R.Takeuchi,M.Matsuoka,M.Anpo,CharacterizationofMo/SiO 2 andMo/Al 2O3andtheirphotocatalyticreactivityfortheselectiveoxidationofCO

96

withO 2inthepresenceofH 2.11th International Symposium on Hybrid Nano Materials toward Future Industries .Nagaoka,Japan.35February2006. T.Kamegawa,R.Takeuchi,M.Matsuoka,M.Anpo,2006,Photocatalyticoxidation ofCOwithvariousoxidantsbyMooxideonhighlydispersedSiO 2at293K. Catalysis Today, 111,248253. S.Kanan,M.C.Kanan,H.H.Patterson,2001,PhotophysicalpropertiesofAg(I) exchangedzeoliteAandthephotoassisteddegradationofmalathion. J. Phys. Chem. B, 105,75087516. M.Kitano,M.Takeuchi,M.Matsuoka,J.Thomas,M.Anpo,2007,Photocatalytic watersplittingusingvisiblelightresponsiveTiO 2thinfilmphotocatalysts. Catalysis Today, 120,133138. Y.K.Kim,G.A.MorganJr.,J.T.YatesJr.,2007,Roleofatomicstepsitesonthe catalyticoxidationofcarbonmonoxide:comparisonbetweenRu(001)andRu(109) singlechrystalsurfaces.J. Phys. Chem. C ,111,33663368. E.Y.Ko,E.D.Park,K.WSeo,H.C.Lee,D.Lee,S.Kim,2006,Acomparative studyofcatalysisforthepreferentialCOoxidationinexcesshydrogen.Catalysis Today, 116,377383. O.Korotkikh,R.Farrauto,2000,SelectivecatalyticoxidationofCOinH 2:fuelcell applications.Catalysis Today, 62,249254. M.Kotobuki,A.Watanabe,H.Uchida,H.Yamashita,M.Watanabe,2005,Reaction mechanismofpreferentialoxidationofcarbonmonoxideonPt,Fe,andPtFe/ mordenitecatalysts.Journal of Catalysis, 236,262269. A.B.Lovins,2005,Twentyhydrogenmyths.Rocky Mountain Institute ,17February 2005, www.rmi.org.

Y.L.Leung,P.C.Wong,K.A.R.Mitchell,K.J.Smith,1998,Xrayphotoelectron spectroscopystudiesofthereductionofMoO 3thinfilmsbyNH 3. Applied Surface Science, 136,147158. X.Liu,O.Korotkikh,R.Ferrauto,2002,SelectivecatalyticoxidationofCOinH2: structuralstudyofFeoxidepromotedPt/aluminacatalyst.Applied Catalysis A: General ,226(12),293303. C.Louis,M.Che,M.Anpo,1991,ActivationandpropertiesofMo=Obondsin Mo/SiO 2catalysts.Research on Chemical Intermediates ,15,8198.

97

M.Luo,Y.Song,J.Lu,X.Wang,Z.Pu,2007,IdentificationofCuOspeciesinhigh surfaceareaCuOCeO 2catalystsandtheircatalyticactivitiesforCOoxidation.J. Phys. Chem. C, 111,1268612692. F.W.McLafferty,1980, Interpretation of Mass Spectra. UniversityScienceBooks, MillValley,California. D.Manno,M.DiGiulio,A.Serra,T.Siciliano,G.Micocci,2002,Physicalproperties ofmolybdenumoxidethinfilmssuitableforgassensingapplications.J. Phys. D: Appl. Phys .,35,228233. M.Maysuoka,T.Kamegawa,R.Takeuchi,M.Anpo,2007,Insitucharacterizationof thehighlydispersedMo 6+ oxidespeciessupportedontovariousoxidesandtheir photocatalyticreactions. Catalysis Today ,122,3945. R.Mauti,C.A.Mims,1993,Oxygenpathwaysinmethaneselectiveoxidationover silicasupportedmolybdena.Catalysis Letters ,21(34),201207. M.McMaster,C.McMaster,1998, GC/MS: A Practical User’s Guide. JohnWiley& Sons,NewYork,NewYork. J.Miller,2007,Nobelchemistryprizehonorscareerinsurfacescience. Physics Today ,60(12),1417.

M.Montalti,A.Credi,L.Prodi,M.T.Gangolfi,2006, The Handbook of Photochemistry, Third Edition. CRCPress,NewYork,NewYork. K.Nojima,Y.Yamaashi,2003,Studiesonphotochemicalreactionsofairpollutants. XIV.Photooxidationofsulfurdioxideinairbyvariousairpollutants.Chem. Pharm. Bull. ,52(3),335338. M.K.Nowotny,T.Bak,J.Nowotny,C.C.Sorrel,K.E.Prince,S.J.L.Kang,2005, Chargetransferatoxygen/zirconiainterfaceatelevatedtemperatures.Advances in Applied ,104,206213. A.Ogata,A.Kazusaka,M.Enyo,I.Toyoshima,1986,ActivesitesontheMoO 3/SiO 2 catalystphotoreducedwithCOforCO 2reductiontoCO. Chem. Phys. Lett., 127,283 285. N.Olher,A.T.Bell,2005,AStudyofredoxpropertiesofMoO x/SiO 2.J. Phys. Chem. 109,2341923429. O.PozdnyakovaTellinger,D.Teschner,J.Krohnert,F.Jentoft,A.KnopGerike,R. Schlogl,A.Wootsch,2007,SurfacewaterassistedpreferentialCOoxidationon Pt/CeO 2catalyst.J. Phys. Chem. C, 111,54265431.

98

G.Ramadori,M.E.Wadsworth,C.K.Hansen,1975,Thekineticsofmolybdenum dioxideoxidation.Metallurgical Transactions, 6(b),579584. B.M.Reddy,P.Lakshmanan,P.Bharali,P.Saikia,G.Thrimurthulu,M.Muhler,W. Gruner,2007,Influenceofalumina,silicaandtitaniasupportsonthestructureand COoxidationactivityofCe xZr 1xO2nanocompositesubstrates. J. Phys. Chem. C, 111,1047810483.

ResearchandInnovativeTechnologyAdministration,“WhyHydrogen.”The President’sNationalScienceandTechnologyCouncil.RetrievedJanuary20,2007, fromtheWorldWideWeb:www.hydrogen.gov G.W.Roberts,P.Chin,X.Sun,J.J.Spivey,2003,Preferentialoxidationofcarbon monoxidewithPt/Femonolithiccatalysts:interactionsbetweenexternaltransportand thereversewatergasshiftreaction.Applied Catalysis B: Environmental, 46,601 611. F.RomeroSarria,L.M.Martinez,M.A.Centeno,J.A.Odriozola,2007,Surface dynamicsofAu/CeO 2catalystsduringCOoxidation.J. Phys. Chem. C ,111,14469 14475. I.Rosso,C.Galletti,G.Saracco,E.Garrone,V.Specchia,2004,DevelopmentofA supportednoble–metalcatalystsforCOpreferentialoxidation:H 2gas purificationforfuelcells.Applied Catalysis B: Environmental, 48,195203. S.Roy,M.S.Hedge,N.Ravishankar,G.Madras,2007,Creationofredoxadsorption 2+ sitesbyPd ionsubstitutioninnanoTiO 2forhighphotocatalyticactivityofCO oxidation,NOreduction,andNOdecomposition.J. Phys. Chem. C ,111,81538160. S.Salomons,R.E.Hayes,M.Votsmeir,A.Drochner,H.Vogel,S.MAlmburg,J. Gieshoff,2007,OntheuseofmechanisticCOoxidationmodelswithaplatinum monolithcatalyst.Applied Catalysis B: Environmental ,70,305313. S.N.Sambandam,B.Bethala,D.K.Sood,S.Bhansali,2005,Evaluationofsilicon nitrideasadiffusionbarrierforGdSiGefilmsonsilicon.Surface & Coatings Technology, 200,13351340. N.Serpone,E.Pelozzetti,1989, Photocatalysis, Fundamentals and Applications, JohnWileyandSons,NewYork,NewYork. F.C.T.So,E.Kolawa,S.C.W.Nieh,X.A.Zhao,MA.Nicolet,1988,Propertiesof reactivelysputteredMo 1xOxfilms. Appl. Phys. A,45,265270. C.Sun,H.Li,L.Chen,2007,StudyofflowerlikeCeO 2microspheresusedascatalyst supportsforCOoxidationreaction.J. of Phys. and Chem. of ,68,17851790.

99

P.Suppan,1994, Chemistry and Light, TheRoyalSocietyofChemistry,Cambridge, England. NationalInstituteofStandardsandTechnology,TheNISTreferenceonConstants, UnitsandUncertainty.RetrievedNovember20,2007,fromtheWorldWideWeb: physics.nist.gov/cuu/Units/outside.html UnitedStatesDepartmentofEnergy,Hydrogen,FuelCells&Infrastructure TechnologiesProgram.RetrievedNovember20,2007,fromtheWorldWideWeb: http://www.eere.energy.gov/hydrogenandfuelcells/production/ coalgasification.html I.E.Wachs,1992, Characterization of Catalytic Materials ,ManningPublications Co.,Greenwich,Connecticut. H.Wakita,KUkai,T.Tatsuya,W.Ueda,2007,Mechanisticinvestigationof deactivationofRu/Al 2O3catalystsforpreferentialCOoxidationinthepresenceof NH 3.J. Phys. Chem. C ,111,22052211. M.Watanabe,S.Motoo,1975,Electrocatalysisbyadatoms.III.Enhancementofthe oxidationofcarbonmonoxideonplatinumbyrutheniumadatoms. J. Electroanal. Chem. ,60(3),27583. M.Watanabe,H.Uchida,K.Ohkubo,H.Igarashi,2003,Hydrogenpurificationfor fuelcells:selectiveoxidationofcarbonmonoxideonPt/Fe/Zeolitecatalysts. Applied Catalysis B: Environmental, 46,595600. G.Wang,J.Jaio,X.Bu,2007,DetailedmechanismforCOoxidationonAuNi 3(111) extendedsurface:Afunctionaltheorystudy.J. Phys. Chem. C ,111,12335 12339. W.Xu,J.Xu,N.Wu,J.Yan,Y.Zhu,Y.Huang,W.He,Y.Xie,2001,Studyofthe diffusionbehaviorofMoO 3andZnOonoxidethinfilmsbySRTXRF.Surface and Interface Analysis ,32,301305.

100

APPENDICES

101

APPENDIX A Amount of gas(moles) in test tube at the start of the experiment − 3 P:= 101350 V:= 20⋅ 10 R:= 8.314 T:= 293

PV⋅ n := RT⋅ n= 0.832

Amount of gas(moles) extracted after one 5L sample is taken

− 6 PV⋅ Vsyr := 5⋅ 10 syr nsyr := − 4 RT⋅ nsyr = 2.08× 10 Pressure Drop per Sample:

()n− nsyr ⋅R⋅T P := P = 101325 P := PP− P = 25.338 2 V 2 drop 2 drop

Pressure after multiple samples are taken: x = # of 5uL samples taken x:= 0.. 30

Pnew x():= P− x⋅ Pdrop

PressureDropvs.#ofsamplestaken

5 1.012 .10

5 1.01 .10

Pnew x() 5 1.008 .10 Pressure(Pa)

5 1.006 .10

5 1.004 .10 0 5 10 15 20 25 30 x Numberofsamplestaken

TheCalculationWorksheetDeterminingthePressureDropintheReactionChamber.

[Part1of2].

102

Percent Pressure Drop (reference pressure point is atmospheric pressure) Below Atmospheric

()Pnew x() Ppd x() := ⋅100 P

TheCalculationWorksheetDeterminingthePressureDropintheReactionChamber.

[Part2of2].

103

APPENDIX B Gas Prop Valve 1 2 A Furnace B

Bubbler O2 C CO Vacuum N2 Pump 1. HeatFurnaceto500°C. 2. Placedesiredamountofcatalystinthequartztesttube. 3. Placecatalyst/testtubeintocenteroffurnace. 4. SealendsoftubefurnacewithTeflon/rubberstoppers,securewithhose clamps. 5. ConnectBubbler/VacuumPumptotheFurnaceatBreak(2). 6. ConnectGasProportioningValvetoFurnaceatBreak(1). 7. Openvalve(B)tobubbler. 8. Closevalve(C)tovacuumpump. 9. Openvalve(A)tosupply0.2%O2toCatalyst. 10. Wait1hourat500°C. 11. Closevalve(A)stoppinggassupply. 12. Closevalve(B). 13. DecreaseOvento200°C. 14. Openvalve(C)andStartVacuumPump. 15. Wait1hour. 16. StopVacuumPump. 17. Slowlyremovetubeatbreak(1)toventthefurnace, 18. RemovehoseclampsandTeflon/rubberstoppers. 19. RemoveCatalyst.

The ProcessFlowDiagramforCatalystPreTreatment:ChemicallyImpregnated PowderSamples.

104

APPENDIX C SamplePort Gas (E) Prop Valve B C A TedlarBag TedlarBag (nottoscale) Vacuum Pump Quartz D Test Ar O2 Tube SpacerPipe UVLight CO EntryRAE 1.PreparegassamplesbyattachingatedlarbagandtheEntryRAEtovalveA. 2.Valve(A)Open 3.Allowflowinggasmixturetoachievesteadystateconcentration. 4.Openvalveontedlarbagallowingitfill. 5.Whentedlarbagisfull,closevalveonbagandremovefromtheproportioning valve. 6.Insertcatalystintoquartztesttube. 7.InsertTeflonplugintotesttube. 8.Attachtedlarbagcontainingthegasmixtureto(B),donotopenvalve. 9.OpenValve(D)toVacuumPump. 10.Startvacuumpumpandevacuatefor5minutes. 11.Stopvacuumpumpandclosevalve(D). 12.Openvalveontedlarbagandintroducegasmixturetothesystem. 13.Draw5Lofgasintoagastightsyringeatpoint(E). 14.InjectintoGC/MSusingmethod“gassim4ramp”. 15.Wait20minutesandrepeatstep14. 16.TurnonUVlight. 17.Repeatstep14every30minutes. 18.Turnofflight. 19.MeasuregassampleintedlarbagusingtheEntryRAEdetector. ThePhotocatalyticOxidationReactionProcessFlowDiagram.

105

BIOGRAPHY OF THE AUTHOR DonaldBraggwasborninDexter,Maine.HeworkedatWDMEradiofrom

1982to1984.HegraduatedfromFoxcroftAcademyinDoverFoxcroft,Mainein

1984andwenttoworkatGuilfordofMaine,atextilemanufacturerlocatedin

Guilford,Maine,until2000.Heearnedhisbachelor’sdegreeinMechanical

EngineeringfromTheUniversityofMainein2004andgraduated cum laude .He joinedTheUniversityofMaineMechanicalEngineeringgraduateprogramasa researchassistant.

Bragg is a candidate for the Master of Science degree in Mechanical Engineering fromTheUniversityofMaineinDecember,2007.

106