Proceedings of the Meetings

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Meetings IOBC / WPRS Working group „Integrated Protection of Fruit Crops” Sub group “Pome Fruit Diseases” Proceedings of the Meetings at Lindau (Germany) 31 August – 5 September 2002 and Piacenza (Italy) 31 August – 3 September 2005 Edited by Cesare Gessler, Vittorio Rossi and Simona Giosuè IOBC wprs Bulletin Bulletin OILB srop Vol. 29 (1) 2006 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l‘Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2006 The Publication Commission of the IOBC/WPRS: Horst Bathon Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstr. 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225, Fax +49 6151 407-290 Tel +32-9-2646152, Fax +32-9-2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat: Dr. Philippe C. Nicot INRA – Unité de Pathologie Végétale Domaine St Maurice - B.P. 94 F-84143 Monfavet Cedex France ISBN 92-9067-184-8 http://www.iobc-wprs.org Pome Fruit Diseases IOBC/wprs Bull. 29(1), 2006 Preface This Bulletin contains the proceedings of the meetings of the IOBC/WPRS Working Group “Integrated Protection of Fruit Crops” subgroup “Pome fruits diseases”. This volume includes the contributions from two workshops: the 6th International Workshop on Pome fruit Diseases held in Lindau, Germany, 31 August – 5 September 2002, and the 7th International Workshop on Orchard Diseases, held in Piacenza, Italy, 31 August – 3 September 2005. The Bulletin contains 41 contributions: 16 from the Lindau meeting and 25 from Piacenza. They concern several aspects of the most important fruit crop diseases, including epidemiology, biological and integrated control. Also diseases of increasing importance in Europe, like brown spot and bark canker on pears, were deeply investigated by several contributions of participants and round tables. In aggregate, 78 scientists from 15 countries in Europe, United States and Canada attended the Workshops. The local organization of the Workshops was handled by Peter Triloff and myself in collaboration with competent co-workers, for Lindau and Piacenza, respectively. Both organizers took care of the scientific planning and also handled the organizing details to guarantee successful meetings. In both occasions excursions were planned to visit pear and apple orchards both conventional and organic, showing different cropping methods, pathological problems, and strategies of fungicide applications. The next Workshop of this subgroup will be organized in Denmark in 2008, probably in October, by Arne Stensvand and two colleagues from Denmark. I believe that this Bulletin will be an useful tool for scientists and technicians as an updating of the knowledge about epidemiology and optimal control strategies for both well known and emerging diseases. Vittorio Rossi Convenor of the subgroup “Pome fruit diseases” i ii We thank all the sponsors of the meeting in Lindau (2002): iii Contents Preface........................................................................................................................................ i Sponsors of the Lindau Meeting .............................................................................................. ii List of Participants in Lindau, 2002........................................................................................ vii List of Participents in Piacenza, 2005 ...................................................................................... xi Meeting at Lindau (Germany), 2002 Control of apple scab (Venturia inaequalis) in organic apple growing. StopScab: A Danish research programme for screening substitutes to copper fungicides Marianne Bengtsson, John Hockenhull ........................................................................... 1 Apple scab IPM: preliminary report on the application of a new sampling technique to determine “scab-risk” J. Reardon, L. Berkett, M. Garcia, A. Gotlieb, T. Ashikaga, G. Badger.......................... 5 Spatial distribution of ascospores of Venturia inaequalis within the tree canopy O. Carisse, D. Rolland, J. Charest................................................................................... 9 Sanitation practices to reduce apple scab inoculum in orchards Piet Creemers, Alida Vanmechelen, Kjell Hauke .......................................................... 15 Effect of apple cultivar mixtures on the epidemic of Venturia inaequalis in a treated orchard F. Didelot, L. Brun, S. Clément, L. Parisi...................................................................... 25 Phytotoxic effect of lime sulphur on apple and pear Bart Heijne, Peter Frans de Jong, Imre Janos Holb ..................................................... 31 Pome fruit storage diseases Joana Henriques ............................................................................................................ 37 Durable disease resistance and high fruit quality, a challenge for apple breeding Markus Kellerhals, Cornelia Sauer, Ernst Höhn, Barbara Guggenbühl, Jürg Frey, Robert Liebhard, Cesare Gessler ......................................................................... 43 Geographical distribution of Venturia inaequalis strains virulent to the Vf gene in Europe L. Parisi, F. Laurens, F. Didelot, K. Evans, C. Fischer, V. Fouillet, F. Gennari, H. Kemp, M. Lateur, A. Patocchi, H. Schouten, C. Tsipouridis..................................... 49 Factors influencing deposition of Venturia inaequalis ascospores on apple trees Vittorio Rossi, Simona Giosuè, Riccardo Bugiani ........................................................ 53 A Chorus tolerant population of Venturia inaequalis found in a South African apple orchard Wolf Schwabe ................................................................................................................ 59 Evaluation of in-vitro grown apple shoot sensitivity to Venturia inaequalis using a detached leaf assay E. Silfverberg-Dilworth, Andrea Patocchi, Cesare Gessler .......................................... 67 An adaptation of the New Hampshire degree-day model to predict ascospore release of Venturia inaequalis in Norway Arne Stensvand, David M. Gadoury, Terje Amundsen, Robert C. Seem ....................... 75 iv Meteorological data for warning systems: some views concerning sensors Christer Tornéus ............................................................................................................ 83 The simulation of ascospore release from apple scab: do we use suitable climatic data? Peter Triloff.................................................................................................................... 87 Chemical control of apple powdery mildew (Podosphaera leucotricha): mode of actions Xiangming Xu, Joyce Robinson, Angela Berrie ............................................................. 95 Meeting at Piacenza (Italy), 2005 Biological characteristics of dicarboximide-resistant isolates of Stemphylium vesica- rium from Italian pear orchards Giulia Alberoni, Marina Collina, Agostino Brunelli .................................................. 109 Control of brown spot of pear in organic pear orchard Loredana Antoniacci, Riccardo Bugiani, Rossana Rossi ........................................... 117 Screening of organically based fungicides for apple scab (Venturia inaequalis) control and a histopathological study of the mode of action of a resistance inducer Marianne Bengtsson, Hans J. Lyngs Jørgensen, Anh Pham, Ednar Wulff, John Hockenhull ................................................................................................................... 123 Development of an integrated pest and disease management system for apples to produce fruit free from pesticide residues – Aspects of disease control Angela Berrie, Jerry Cross........................................................................................... 129 Evaluation of alternative treatments to urea to eliminate leaf litter in organic apple production Angela Berrie, Barbara Ellerker, Karen Lower .......................................................... 139 Heterogeneity in apple scab: implication for management Odile Carisse, C. Meloche, Tristan Jobin, D. Rolland ................................................ 145 Field and in vitro sensitivity of Valsa ceratosperma (Cytospora vitis) to fungicides Marina Collina, Elena Cicognani, Benedetta Galletti, Agostino Brunelli .................. 151 Sensitivity in vitro of Stemphylium vesicarium to fungicides Marina Collina, Giulia Alberoni, Agostino Brunelli .................................................. 155 Relationship between biological agent populations and biocontrol of Monilinia spp in peaches Antonieta De Cal, Inmaculada Larena, Belén Guijarro, Rosario Torres, Mar Liñan, Pietro Domenichini, Alberto Bellini, Xavier Ochoa de Eribe, Josep Usall, Paloma Melgarejo ....................................................................................................... 163 Modelling dynamics of airborne conidia of Stemphylium vesicarium, the causal agent of brown spot
Recommended publications
  • Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
    J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Extension Plant Pathology Update July 2013
    Extension Plant Pathology Update July 2013 Volume 1, Number 6 Edited by Jean Williams-Woodward Plant Disease Clinic Report for June 2013 By Ansuya Jogi and Jean Williams-Woodward The following tables consist of the commercial and homeowner samples submitted to the UGA plant disease clinics in Athens and Tifton for June 2013 (Table 1) and for one year ago in July 2012 (Table 2). The wet weather has been great for plant growth, as well as plant diseases. Various root rots, leaf spots and rusts have been diagnosed on almost all crops. The incidence of bacterial diseases will increase through July, as will Sclerotium rolfsii and Rhizoctonia diseases. We also continue to confirm Rose Rosette-associated virus on Knock-Out rose samples. Also, Dr. Little has confirmed Cucurbit Yellow Vine Disease on squash, caused by the bacterium, Serratia marcescens. She has a graduate student working on this disease and wants to know if you are seeing it. See page 7 for her summary of cucurbit diseases, including cucurbit yellow vine disease. Looking ahead with the current weather pattern, we expect to see more leaf and root diseases on all crops. This isn’t a surprise. Warm days, cooler nights, high humidity, wet foliage and saturated soils are the recipe for plant disease development. Again, it is an exciting time to be a plant pathologist. Table 1: Plant disease clinic sample diagnoses made in June 2013 Sample Diagnosis Host Plant Commercial Sample Homeowner Sample Apple Bitter Rot (Glomerella cingulata) Alternaria Leaf Spot Alternaria sp.) Rust (Gymnosporangium sp.) Assorted Fruits Insect Damage, Unidentified Insect Nutrient Imbalance; Abiotic Banana Shrub Insect Damage, Unidentified Insect Environmental Stress; Abiotic Beans Root Problems, Abiotic disorder Bentgrass Anthracnose (Colletotrichum cereale) Colletotrichum sp./spp.
    [Show full text]
  • 1 a Native and an Invasive Dune Grass Share
    A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities Renee B Johansen1, Peter Johnston2, Piotr Mieczkowski3, George L.W. Perry4, Michael S. Robeson5, 1 6 Bruce R Burns , Rytas Vilgalys 1: School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand 2: Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 3: Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, U.S.A. 4: School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand 5: Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA 6: Department of Biology, Duke University, Durham, NC 27708, USA Corresponding author: Renee Johansen, Ph: +64 21 0262 9143, Fax: +64 9 574 4101 Email: [email protected] For the published version of this article see here: https://www.sciencedirect.com/science/article/abs/pii/S1754504816300848 1 Abstract Fungi are ubiquitous occupiers of plant roots, yet the impact of host identity on fungal community composition is not well understood. Invasive plants may benefit from reduced pathogen impact when competing with native plants, but suffer if mutualists are unavailable. Root samples of the invasive dune grass Ammophila arenaria and the native dune grass Leymus mollis were collected from a Californian foredune. We utilised the Illumina MiSeq platform to sequence the ITS and LSU gene regions, with the SSU region used to target arbuscular mycorrhizal fungi (AMF). The two plant species largely share a fungal community, which is dominated by widespread generalists.
    [Show full text]
  • Fungicide Sensitivity of Corynespora Cassiicola and Assessment Of
    FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA. KATRINA SHIELA E. LAUREL (Under the Direction of Robert C. Kemerait, Jr.) ABSTRACT Target spot, caused by Corynespora cassiicola, is a serious foliar disease of cotton in the southeastern United States. Baseline (current) isolates of C. cassiicola were tested for sensitivity to metconazole (DMI), fluxapyroxad (SDHI) and pyraclostrobin (QoI). Further work compared fungicide sensitivity of C. cassiicola isolates from cotton to isolates from other hosts. Field experiments were conducted to establish a relationship between fungicide sensitivity in laboratory experiments and fungicide efficacy in managing target spot on cotton. Based on the sensitivity distribution, all isolates tested were considered sensitive to fungicides. However, these sensitivities varied among isolates offering an early indication that resistance can happen in the future. Additionally, all fungicides reduced disease severity and premature defoliation; however, Priaxor (pyraclostrobin + fluxapyroxad [QoI + SDHI]) proved to be most effective. Results from this study can help optimize fungicide sensitivity monitoring practices in an effort to improve fungicide use patterns for optimum disease management. INDEX WORDS: Corynespora cassiicola, Cotton, DMIs, Fluxapyroxad, Fungicide Resistance, Metconazole, Pyraclostrobin, QoIs, SDHIs, Target spot FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA. KATRINA SHIELA E. LAUREL B.S., Southern Luzon State University, Lucban, Philippines, 2010 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2018 ©2018 Ma. Katrina Shiela E. Laurel All Rights Reserved FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA.
    [Show full text]
  • Stemphylium Revisited
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 77–103 (2017). Stemphylium revisited J.H.C. Woudenberg1, B. Hanse2, G.C.M. van Leeuwen3, J.Z. Groenewald1, and P.W. Crous1,4,5* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; 3National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; 4Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: P.W. Crous, [email protected] Abstract: In 2007 a new Stemphylium leaf spot disease of Beta vulgaris (sugar beet) spread through the Netherlands. Attempts to identify this destructive Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydro- genase were also sequenced for a subset of isolates (N = 149).
    [Show full text]
  • Stemphylium Leaf Blight of Garlic (Allium Sativum) in Spain: Taxonomy and in Vitro Fungicide Response
    Plant Pathol. J. 32(5) : 388-395 (2016) http://dx.doi.org/10.5423/PPJ.OA.03.2016.0063 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology Research Article Open Access Stemphylium Leaf Blight of Garlic (Allium sativum) in Spain: Taxonomy and In Vitro Fungicide Response Laura Gálvez1, Jéssica Gil-Serna2, Marta García2, Concepción Iglesias1, and Daniel Palmero1* 1Department of Agricultural Production, Plant Protection Laboratory, Technical University of Madrid, Madrid 28040, Spain 2Department of Microbiology, Complutense University of Madrid, Madrid 28040, Spain (Received on March 16, 2016; Revised on April 27, 2016; Accepted on April 28, 2016) The most serious aerial disease of garlic is leaf blight effec tive at reducing mycelial growth in S. vesicarium caused by Stemphylium spp. Geographical variation in with EC50 values less than 5 ppm. In general, the effec- the causal agent of this disease is indicated. Stemphy- tiveness of the fungicide was enhanced with increasing lium vesicarium has been reported in Spain, whereas S. dosage. solani is the most prevalent species recorded in China. In this study, Stemphylium isolates were obtained Keywords : mycelial growth, Pleospora herbarum from symptomatic garlic plants sampled from the main Spanish production areas. Sequence data for the ITS1–5.8S–ITS2 region enabled assignation of the iso- Garlic (Allium sativum L.) is a crop cultivated worldwide. lates to the Pleospora herbarum complex and clearly According to the Food and Agriculture Organization of distinguished the isolates from S. solani. Conidial mor- the United Nations (FAO), the world production in 2013 phology of the isolates corresponded to that of S.
    [Show full text]
  • Fungal Flora of Korea
    Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera 2015 National Institute of Biological Resources Ministry of Environment Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Seung Hun Yu Chungnam National University Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Copyright ⓒ 2015 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon, 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788968111259-96470 Government Publications Registration Number 11-1480592-000905-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Kim, Sang-Bae Author : Seung Hun Yu Project Staff : Youn-Bong Ku, Ga Youn Cho, Eun-Young Lee Published on March 1, 2015 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Preface The biological resources represent all the composition of organisms and genetic resources which possess the practical and potential values essential for human lives, and occupies a firm position in producing highly value-added products such as new breeds, new materials and new drugs as a means of boosting the national competitiveness.
    [Show full text]
  • Risk Assessment of Secondary Metabolites Produced by Fungi in the Genus Stemphylium
    Canadian Journal of Microbiology Risk assessment of secondary metabolites produced by fungi in the genus Stemphylium Journal: Canadian Journal of Microbiology Manuscript ID cjm-2020-0351.R1 Manuscript Type: Review Date Submitted by the 29-Oct-2020 Author: Complete List of Authors: Stricker, Sara; University of Guelph, Plant Agriculture Gossen, Bruce D.; Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre; McDonald,Draft Mary Ruth; University of Guelph, Plant Agriculture Keyword: Stemphylium, toxins, allergen, Pleospora Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : © The Author(s) or their Institution(s) Page 1 of 19 Canadian Journal of Microbiology 1 Risk assessment of secondary metabolites 2 produced by fungi in the genus Stemphylium 3 4 Sara M. Stricker1, Bruce D. Gossen2, Mary Ruth McDonald1* 5 6 1Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada 7 8 2Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan. 9 Canada. 10 11 * [email protected] (MRM) 12 Draft 1 © The Author(s) or their Institution(s) Canadian Journal of Microbiology Page 2 of 19 13 Abstract 14 The fungal genus Stemphylium (phylum Ascomycota, teleomorph Pleospora) includes plant 15 pathogenic, endophytic, and saprophytic species with worldwide distributions. Stemphylium spp. 16 produce prodigious numbers of air-borne spores, so are a human health concern as allergens. 17 Some species also produce secondary metabolites such as glucosides, ferric chelates, aromatic 18 polyketides, and others that function as toxins that damage plants and other fungal species. Some 19 of these compounds also exhibit a low level of mammalian toxicity.
    [Show full text]
  • Characterization of the Stemphylium Blight Pathogens and Their Effect on Lentil Yield
    Characterization of the stemphylium blight pathogens and their effect on lentil yield A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Masters of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Kiela B. Caudillo-Ruiz © Copyright Kiela B. Caudillo-Ruiz, July, 2016. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Plant Sciences University of Saskatchewan 51 Campus Drive Saskatoon, Saskatchewan S7N 5A8 i ABSTRACT The disease stemphylium blight has become common in lentil fields in Saskatchewan, but the effect of this disease on developing lentil plants, has not been studied under field conditions.
    [Show full text]
  • EPIDEMIOLOGY of STEMPHYLIUM BLIGHT on LENTIL (LENS CULINARIS) in SASKATCHEWAN. a Thesis Submitted to the College of Graduate
    EPIDEMIOLOGY OF STEMPHYLIUM BLIGHT ON LENTIL (LENS CULINARIS) IN SASKATCHEWAN. A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Masters of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By EDMORE MWAKUTUYA © Copyright Edmore Mwakutuya, April, 2006. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Plant Sciences 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan S7N 5A8 i Abstract Stemphylium blight is a defoliating fungal disease caused by Stemphylium botryosum.
    [Show full text]
  • Product: 366 - Molds, Rusts and Smuts, Absidia Ramosa
    Product: 366 - Molds, Rusts and Smuts, Absidia ramosa Manufacturers of this Product Antigen Laboratories, Inc. - Liberty, MO (Lic. No. 468, STN No. 102223) Search Strategy PubMed: absidia and hypersensitivity; absidia and allergy; absidia ramosa; absidia corymbifera allergy Google: absidia ramosa allergy; absidia ramosa allergy adverse; absidia ramosa allergen; absidia ramosa allergen adverse Nomenclature ATCC website: Absidia ramosa (Lindt) Lendner, teleomorph deposited as Tieghemella italiana (Costantin et Perin) Naumov, teleomorph. Stedmans Book (ATCC Fungus Names, 1993): Absidia corymbifera (Cohn) Saccardo et Trotter,1912. Index Fungorum website: Absidia ramosa (Zopf) Lendn., Mat. fl. crypt. Suisse 3(1): 144 (1908) & Lichtheimia ramosa (Zopf) Vuill., Bull. Soc. mycol. Fr. 19: 126 (1903). Parent Product 366 - Molds, Rusts and Smuts, Absidia ramosa Published Data No supportive data were identified. A. ramosais is an organism associated with mucormycosis and farmers' lung. These are hypersensitivity reactions and do not affect the safety of the extract. Panels: Original Panel Recommendation Reclassification Panel Recommendation Diagnosis: none none Therapy: none none Page 1 of 180 9/9/2011 Product: 367 - Molds, Rusts and Smuts, Achorion (Trichophyton) schoenleinii Recommended Scientific Name Trichophyton schoenleinii Manufacturers of this Product Antigen Laboratories, Inc. - Liberty, MO (Lic. No. 468, STN No. 102223) Search Strategy PubMed: trichophyton schoenleinii and allergy (or allergen); trichophyton schoenleinii Google: trichophyton schoenleinii allergy; trichophyton schoenleinii allergy adverse; trichophyton schoenleinii allergen; trichophyton schoenleinii allergen adverse Nomenclature ATCC website: Trichophyton schoenleinii (Lebert) Langeron et Milochevitch, anamorph deposited as Achorion schoenleinii Remak ex Gueguen, anamorph. Stedmans Book (ATCC Fungus Names, 1993): Trichophyton schoenleinii (Lebert) Langeron et Milochevitch Index Fungorum website: Trichophyton schoenleinii (Lebert) Langeron & Miloch.
    [Show full text]