Development and Assessment of Organic Growing Substrates for Tomato Transplant Production and Disease Suppression

Total Page:16

File Type:pdf, Size:1020Kb

Development and Assessment of Organic Growing Substrates for Tomato Transplant Production and Disease Suppression DEVELOPMENT AND ASSESSMENT OF ORGANIC GROWING SUBSTRATES FOR TOMATO TRANSPLANT PRODUCTION AND DISEASE SUPPRESSION A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by CLAUDIA MIREILLE LAFRENIERE In partial fulfillment of requirements for the degree of Master of Science May, 2011 © Claudia Mireille Lafreniere, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-80008-9 Our file Notre reference ISBN: 978-0-494-80008-9 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada ABSTRACT DEVELOPMENT AND ASSESSMENT OF ORGANIC GROWING SUBSTRATES FOR TOMATO TRANSPLANT PRODUCTION AND DISEASE SUPPRESSION Claudia Mireille Lafreniere Advisors: University of Guelph, 2011 Dr. Youbin Zheng Dr. Mike Dixon Organic systems are rigidly regulated in Canada and specify that no synthetic materials be permitted in growing substrates. Research on organic growing substrates is generally not sufficient enough that practical and dependable use recommendations for organic growers can be made. This thesis is an investigation of organic growing substrates for the production of healthy organic tomato transplants and an investigation of the use of manure compost, alone or in combination with Clonostachys rosea, for the suppression of root disease caused by Pythium ultimum in organic tomato transplants. Several substrate formulations consisting of peat moss, coconut coir, fine perlite, fine vermiculite, manure compost, vermicompost, worm castings, yard waste compost, pine bark compost, and/ or aged pine bark were successful for growing healthy tomato transplants in 10-cm pots with organic fertilizer applications. Transplant roots from sterilized substrates that were inoculated with P. ultimum were more fragile compared to other roots from other treatments, which suggested that some effect on roots was occurring. It was concluded that the establishment of P. ultimum in the root zone of transplants is more likely to occur when the transplants are grown in sterilized substrates that are not amended with the beneficial fungal endophyte C. rosea. ACKNOWLEDGMENTS I would like to thank my advisory committee, Drs. Mike Dixon, Youbin Zheng, and John Sutton for the opportunity to do this research and their time spent editing and providing me with helpful advice. I would also like to thank Dr. Greg Boland for helpful edits, Dr. Paul Sibley for acting as chair at my defense, Dr. Barry Micallef for accepting to be an external at my defense, and Ron Dutton, Roger Shantz, and David Kerec for technical support and assistance in the greenhouse. Sincere thanks to my Colleagues Celia Kennedy, Diane Cayannan, Donny Cayannan, Jamie Lawson, Jamie Simpson, Linping Wang, Maria Dombrowski, Matt Hannaberg, Dr. Micheal Stasiak, Olathe Maclntyre, Ping Zhang, and Tom Graham for their advice and support. A very special thanks goes out to Dr. Victoria Surrage for all the assistance, the late nights, the friendship, and advice throughout my research and to my family members for financial and emotional support. I would also like to thank the Ontario Ministry of Agriculture, Food and Rural Affairs and the Ontario Centre of Excellence for providing financial support, De Ruiter Seeds Inc. (Lakewood, CO, United States), Dingo Farms (Bradford, ON, Canada), Forterra Inc. (Puslinch, ON, Canada), Gro-Bark Organics Ltd. (Milton, ON, Canada), Millenniumsoils Coir Inc. (St. Catharines, ON, Canada), Peter van Straaten (University of Guelph, Guelph, ON, Canada) and Ed Vermolen (Aldershot Greenhouses Ltd., Burlington, ON, Canada) for materials. TABLE OF CONTENTS ACKNOWLEDGMENTS i TABLE OF CONTENTS ii LIST OF TABLES vi LIST OF FIGURES viii LIST OF ABBREVIATIONS x CHAPTER 1: Introduction and Literature Review 1 1.1 Overview 1 1.2 Greenhouse Tomato Production in Canada 2 1.2.1 Types of Production Systems 2 1.2.2 Soilless Organic Growing Substrates 7 1.3 Compost 7 1.3.1 Compost Utilization: Waste Management, Enhanced Crop Production, and Climate Change Mitigation 9 1.3.2 The Composting Process 11 1.3.3 Strategies to Optimize the Use of Compost 19 1.4 Disease 25 1.4.1 Common Diseases of Tomato 26 1.4.2 Current Disease Management Strategies 26 1.4.3 Disease Management with Composts 28 1.4.4 Disease Management with Seeded/ Inoculated Microorganisms 31 1.4.5 Rhizosphere Competency of Microorganisms and the Carrying Capacity of Compost-Amended Growing Substrates 33 1.4.6 Mechanisms of Action of Disease Suppression 34 1.5 Thesis Objectives 37 CHAPTER 2: Developing Organic Growing Substrates for Tomato Transplant Production 39 2.1 I ntroduction 39 2.2 Materials and Methods 42 2.2.1 Substrate Preparation 42 2.2.2 Chemical Properties of the Substrates 46 2.2.3 Growth Experiment 47 2.2.4 Growth Measurements 48 2.2.5 Statistical Analysis 49 n 2.3 Results and Discussion 49 2.4 Conclusion 57 CHAPTER 3: Zeolite as a Component in Organic Growing Substrates for Tomato Transplant Production ". 58 3.1 I ntroduction 58 3.2 Materials and Methods 59 3.2.1 Substrate Preparation 59 3.2.2 Chemical Properties of the Substrates 59 3.2.3 Growth Experiment 60 3.2.4 Growth Measurements 62 3.2.5 Statistical Analysis 62 3.3 Results and Discussion 62 3.4 Conclusion 65 CHAPTER 4: Developing New Organic Growing Substrates for Tomato Transplant Production 66 4.1 Introduction 66 4.2 Materials and Methods 67 4.2.1 Substrate Preparation 67 4.2.2 Growth Experiment 70 4.2.3 Chemical Properties of the Substrates 72 4.2.4 Growth Measurements 74 4.2.5 Leaf Chlorophyll Content and Gas Exchange Measurements 74 4.2.6 Statistical Analysis 74 4.3 Results and Discussion 75 4.4 Conclusion 88 CHAPTER 5: Using Processed Organic Waste in Growing Substrates for Tomato Transplant Production 89 5.1 Introduction 89 5.2 Materials and Methods 91 5.2.1 Substrate Preparation 91 5.2.2 Growth Experiment 95 5.2.3 Chemical Properties of the Substrates 96 5.2.4 Growth Measurements 96 5.2.5 Statistical Analysis 97 5.3 Results and Discussion 98 5.4 Conclusion 110 iii CHAPTER 6: Rate of Inclusion of Manure Compost in Organic Growing Substrates for Tomato Transplant Production 111 6.1 I ntroduction 111 6.2 Materials and Methods 113 6.2.1 Substrate Preparation 113 6.2.2 Growth Experiment 114 6.2.3 Chemical Properties of the Substrates 114 6.2.4 Growth Measurements and Leaf Chlorophyll Content Index 115 6.2.5 Physical Properties of the Substrates 115 6.2.6 Statistical Analysis 117 6.3 Results and Discussion 117 6.4 Conclusion 130 CHAPTER 7: Comparing the Physical Properties of Growing Substrates Including Peat, Coir, and Aged Pine Bark to the Physical Properties of Growing Substrates Including Peat, Coir, Perlite, and Vermiculite 131 7.1 Introduction 131 7.2 Materials and Methods 131 7.2.1 Substrate Preparation 131 7.2.2 Chemical Properties of the Substrates 133 7.2.3 Growth Experiment 134 7.2.4 Physical Properties of the Substrates 136 7.2.5 Growth measurements 137 7.2.6 Statistical Analysis 137 7.3 Results and Discussion 137 7.4 Conclusion 147 CHAPTER 8: Using Compost and Clonostachy rosea Inoculant to Suppress Pythium ultimum in Tomato Transplants 148 8.1 Introduction 148 8.2 Materials and Methods 152 8.2.1 Substrate Preparation 152 8.2.2 Chemical Properties of the Substrates 152 8.2.3 Growth Experiment 155 8.2.4 Treatments 157 8.2.5 Pathogen 158 8.2.6 Growth Measurements 159 8.2.7 Microbiology 159 8.2.8 Statistical Analysis 163 IV 8.3 Results 164 8.4 Discussion 178 8.5 Conclusion 186 CHAPTER 9:Summary and Recommendations 187 9.1 Summary 186 9.2 Recommendations 195 REFERENCES 200 v LIST OF TABLES Table 2.1 Abbreviations, and source information for materials 43 Table 2.2 Compacted bulk density, pH, electrical conductivity, and content of initial water-soluble nutrients in the individual materials 44 Table 2.3 Compositions of the growing substrates tested .46 Table 2.4 Substrates ranked
Recommended publications
  • Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
    J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work.
    [Show full text]
  • Integrated Pest Management: Current and Future Strategies
    Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P.
    [Show full text]
  • Extension Plant Pathology Update July 2013
    Extension Plant Pathology Update July 2013 Volume 1, Number 6 Edited by Jean Williams-Woodward Plant Disease Clinic Report for June 2013 By Ansuya Jogi and Jean Williams-Woodward The following tables consist of the commercial and homeowner samples submitted to the UGA plant disease clinics in Athens and Tifton for June 2013 (Table 1) and for one year ago in July 2012 (Table 2). The wet weather has been great for plant growth, as well as plant diseases. Various root rots, leaf spots and rusts have been diagnosed on almost all crops. The incidence of bacterial diseases will increase through July, as will Sclerotium rolfsii and Rhizoctonia diseases. We also continue to confirm Rose Rosette-associated virus on Knock-Out rose samples. Also, Dr. Little has confirmed Cucurbit Yellow Vine Disease on squash, caused by the bacterium, Serratia marcescens. She has a graduate student working on this disease and wants to know if you are seeing it. See page 7 for her summary of cucurbit diseases, including cucurbit yellow vine disease. Looking ahead with the current weather pattern, we expect to see more leaf and root diseases on all crops. This isn’t a surprise. Warm days, cooler nights, high humidity, wet foliage and saturated soils are the recipe for plant disease development. Again, it is an exciting time to be a plant pathologist. Table 1: Plant disease clinic sample diagnoses made in June 2013 Sample Diagnosis Host Plant Commercial Sample Homeowner Sample Apple Bitter Rot (Glomerella cingulata) Alternaria Leaf Spot Alternaria sp.) Rust (Gymnosporangium sp.) Assorted Fruits Insect Damage, Unidentified Insect Nutrient Imbalance; Abiotic Banana Shrub Insect Damage, Unidentified Insect Environmental Stress; Abiotic Beans Root Problems, Abiotic disorder Bentgrass Anthracnose (Colletotrichum cereale) Colletotrichum sp./spp.
    [Show full text]
  • Studies on Root Necrosis of Wheat Caused by Pythium Graminicola Subr John Edward Grafius Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1943 Studies on root necrosis of wheat caused by Pythium graminicola Subr John Edward Grafius Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Grafius, oJ hn Edward, "Studies on root necrosis of wheat caused by Pythium graminicola Subr " (1943). Retrospective Theses and Dissertations. 13814. https://lib.dr.iastate.edu/rtd/13814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI OT lOGf m'lOSIS OF 1^1 m mmwm «»»»» wii*' % SiifcfIns 4 ^iwl# Satoaitfced to th® Gradm#» for the I^gre® of seetoa ©r wii«®« iubjeotss Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. »« UMI Number: DP13246 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • 1 a Native and an Invasive Dune Grass Share
    A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities Renee B Johansen1, Peter Johnston2, Piotr Mieczkowski3, George L.W. Perry4, Michael S. Robeson5, 1 6 Bruce R Burns , Rytas Vilgalys 1: School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand 2: Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 3: Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, U.S.A. 4: School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand 5: Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA 6: Department of Biology, Duke University, Durham, NC 27708, USA Corresponding author: Renee Johansen, Ph: +64 21 0262 9143, Fax: +64 9 574 4101 Email: [email protected] For the published version of this article see here: https://www.sciencedirect.com/science/article/abs/pii/S1754504816300848 1 Abstract Fungi are ubiquitous occupiers of plant roots, yet the impact of host identity on fungal community composition is not well understood. Invasive plants may benefit from reduced pathogen impact when competing with native plants, but suffer if mutualists are unavailable. Root samples of the invasive dune grass Ammophila arenaria and the native dune grass Leymus mollis were collected from a Californian foredune. We utilised the Illumina MiSeq platform to sequence the ITS and LSU gene regions, with the SSU region used to target arbuscular mycorrhizal fungi (AMF). The two plant species largely share a fungal community, which is dominated by widespread generalists.
    [Show full text]
  • Parkinsonia Aculeata
    Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3.
    [Show full text]
  • Fungicide Sensitivity of Corynespora Cassiicola and Assessment Of
    FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA. KATRINA SHIELA E. LAUREL (Under the Direction of Robert C. Kemerait, Jr.) ABSTRACT Target spot, caused by Corynespora cassiicola, is a serious foliar disease of cotton in the southeastern United States. Baseline (current) isolates of C. cassiicola were tested for sensitivity to metconazole (DMI), fluxapyroxad (SDHI) and pyraclostrobin (QoI). Further work compared fungicide sensitivity of C. cassiicola isolates from cotton to isolates from other hosts. Field experiments were conducted to establish a relationship between fungicide sensitivity in laboratory experiments and fungicide efficacy in managing target spot on cotton. Based on the sensitivity distribution, all isolates tested were considered sensitive to fungicides. However, these sensitivities varied among isolates offering an early indication that resistance can happen in the future. Additionally, all fungicides reduced disease severity and premature defoliation; however, Priaxor (pyraclostrobin + fluxapyroxad [QoI + SDHI]) proved to be most effective. Results from this study can help optimize fungicide sensitivity monitoring practices in an effort to improve fungicide use patterns for optimum disease management. INDEX WORDS: Corynespora cassiicola, Cotton, DMIs, Fluxapyroxad, Fungicide Resistance, Metconazole, Pyraclostrobin, QoIs, SDHIs, Target spot FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA. KATRINA SHIELA E. LAUREL B.S., Southern Luzon State University, Lucban, Philippines, 2010 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2018 ©2018 Ma. Katrina Shiela E. Laurel All Rights Reserved FUNGICIDE SENSITIVITY OF CORYNESPORA CASSIICOLA AND ASSESSMENT OF MANAGEMENT OF TARGET SPOT OF COTTON IN GEORGIA by: MA.
    [Show full text]
  • Exploitation of the Mycoparasitic Fungus Pythium Oligandrum in Plant Protection
    Plant Protection Science – 2002 Vol. 38, No. 1: 29–35 REVIEW Exploitation of the Mycoparasitic Fungus Pythium oligandrum in Plant Protection JANA BROOVÁ Research Institute of Crop Production Division of Plant Medicine, Prague-Ruzynì, Czech Republic Abstract BROOVÁ J. (2002): Exploitation of the mycoparasitic fungus Pythium oligandrum in plant protection. Plant Protect. Sci., 38: 2935. Pythium oligandrum Drechs. belongs to the order Oomycetes. It is parasitic on many fungi from the same or other orders. The antagonism of P. oligandrum is a multifaceted process dependent on the target species involved. P. oligandrum is nonpathogenic on 12 species of crops from six families. It does not attack their tissue but occurs on the root surface, predominantly in the regions of hypocotyl – taproot, together with plant pathogenic fungi. It utilises the root exudates and fungus hyphae on the root surface, including those of the plant pathogens, for its own support. A growth stimulation of plants was observed. P. oligandrum can be utilised for biological control on a wide spectrum of crop plants. Different methods of application have been developed. The effect of a mycoparasite preparation is more preventive. Keywords: biological control; soil fungi; antagonism; rhizosphere; growth stimulation; Botrytis cinerea The importance of plant protection in modern agricul- fungi from the same or other orders (Table 1). It can pene- ture increases as crop yields and concerns about produc- trate their hyphae and live on the contents. tion quality rise. Plant protection should be sufficiently Some genera, species and isolates of fungi are more effective, affordable and considerate of the environment. susceptible to attack by P.
    [Show full text]
  • Stemphylium Revisited
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 77–103 (2017). Stemphylium revisited J.H.C. Woudenberg1, B. Hanse2, G.C.M. van Leeuwen3, J.Z. Groenewald1, and P.W. Crous1,4,5* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; 3National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; 4Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: P.W. Crous, [email protected] Abstract: In 2007 a new Stemphylium leaf spot disease of Beta vulgaris (sugar beet) spread through the Netherlands. Attempts to identify this destructive Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydro- genase were also sequenced for a subset of isolates (N = 149).
    [Show full text]
  • University Microfilms International 300 North ZM B Road Ann Arbor
    INFORMATION TO USERS This material was produoad from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependant upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. Whan a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections w ith a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Universitat Politècnica De València Exploring the Potential of Trichoderma for Broad- Spectrum Protection Against Pests and Di
    UNIVERSITAT POLITÈCNICA DE VALÈNCIA DEPARTMENT OF AGRO‐FORESTRY ECOSYSTEMS MASTER'S DEGREE IN PLANT HEALTH IN SUSTAINABLE CROPPING SYSTEMS EXPLORING THE POTENTIAL OF TRICHODERMA FOR BROAD- SPECTRUM PROTECTION AGAINST PESTS AND DISEASES ANA PAULA LEITE MONTALVAO ACADEMIC YEAR: 2017/2018 MASTER THESIS Experimental tutor 1: Dra. Soraya de Carvalho França Experimental tutor 2: Dr. Apostolos Pekas Academic Tutor: Prof. Dr. Josep Armengol Forti Valencia, September 2018 EXPLORANDO EL POTENCIAL DE TRICHODERMA PARA UNA PROTECCIÓN DE AMPLIO ESPECTRO CONTRA PLAGAS Y ENFERMEDADES DE PLANTAS RESUMEN Los patógenos y las plagas de las plantas causan graves pérdidas en cultivos en todo el mundo. Aunque el control químico sigue siendo la herramienta más ampliamente utilizada, la demanda por métodos de control más sostenibles ha aumentado significativamente. El control biológico es una alternativa ecológica y eficiente al control químico. Idealmente, los agentes de control biológico multifuncionales, que podrían actuar contra los patógenos y plagas de las plantas, son de gran interés. Los microbios beneficiosos, como Trichoderma, pueden ser útiles contra tales amenazas bióticas. En este trabajo, hemos realizado varios experimentos en invernadero para evaluar el potencial de Trichoderma asperellum BB005 para actuar contra i) la enfermedad Pythium ultimum y ii) contra los áfidos. Para los experimentos usamos plantas de pepino cultivadas en lana de roca. Las interacciones Trichoderma-patógeno se estudiaron en cuatro ensayos. Los síntomas de la enfermedad fueron decoloraciones amarillo-marrón y pudrición en la base del tallo. En infecciones graves el desarrollo de la raíz se redujo, sin embargo, no se observó putrefacción de la raíz. Se probaron dos concentraciones de inóculo del patógeno y solo la dosis alta de una mezcla de micelio y oosporas fue efectiva para causar enfermedad.
    [Show full text]
  • Stemphylium Leaf Blight of Garlic (Allium Sativum) in Spain: Taxonomy and in Vitro Fungicide Response
    Plant Pathol. J. 32(5) : 388-395 (2016) http://dx.doi.org/10.5423/PPJ.OA.03.2016.0063 The Plant Pathology Journal pISSN 1598-2254 eISSN 2093-9280 ©The Korean Society of Plant Pathology Research Article Open Access Stemphylium Leaf Blight of Garlic (Allium sativum) in Spain: Taxonomy and In Vitro Fungicide Response Laura Gálvez1, Jéssica Gil-Serna2, Marta García2, Concepción Iglesias1, and Daniel Palmero1* 1Department of Agricultural Production, Plant Protection Laboratory, Technical University of Madrid, Madrid 28040, Spain 2Department of Microbiology, Complutense University of Madrid, Madrid 28040, Spain (Received on March 16, 2016; Revised on April 27, 2016; Accepted on April 28, 2016) The most serious aerial disease of garlic is leaf blight effec tive at reducing mycelial growth in S. vesicarium caused by Stemphylium spp. Geographical variation in with EC50 values less than 5 ppm. In general, the effec- the causal agent of this disease is indicated. Stemphy- tiveness of the fungicide was enhanced with increasing lium vesicarium has been reported in Spain, whereas S. dosage. solani is the most prevalent species recorded in China. In this study, Stemphylium isolates were obtained Keywords : mycelial growth, Pleospora herbarum from symptomatic garlic plants sampled from the main Spanish production areas. Sequence data for the ITS1–5.8S–ITS2 region enabled assignation of the iso- Garlic (Allium sativum L.) is a crop cultivated worldwide. lates to the Pleospora herbarum complex and clearly According to the Food and Agriculture Organization of distinguished the isolates from S. solani. Conidial mor- the United Nations (FAO), the world production in 2013 phology of the isolates corresponded to that of S.
    [Show full text]