Aphanomyces Euteiches Laurent Camborde

Total Page:16

File Type:pdf, Size:1020Kb

Aphanomyces Euteiches Laurent Camborde Fuctional characterization of different candidate effectors from the root rot oomycete Aphanomyces euteiches Laurent Camborde To cite this version: Laurent Camborde. Fuctional characterization of different candidate effectors from the root rot oomycete Aphanomyces euteiches. Vegetal Biology. Université Paul Sabatier - Toulouse III, 2020. English. NNT : 2020TOU30227. tel-03208760 HAL Id: tel-03208760 https://tel.archives-ouvertes.fr/tel-03208760 Submitted on 26 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Abstract Oomycetes are eukaryote pathogens able to infect plants and animals. During host interaction, oomycetes secrete various molecules, named effectors, to counteract plant defence and modulate plant immunity. Two different classes of cytoplasmic effectors have been described to date, Crinklers (CRNs) and RxLR proteins. The translocation process allowing the entrance into the host cells is still unclear, and while extended research gave insight into some molecular targets and role during infection, most of effectors have not been characterized. In the root rot pathogen of legumes Aphanomyces euteiches, only the CRNs are present. Based on a previous study reported by our research group, we published an opinion paper focused on the emergence of DNA damaging effectors and their role during infection. Previous experiments indicate that one of these Crinklers, AeCRN5, harbours a functional translocation domain and once the protein reaches host nuclei, dramatically disturbs root development. Here we reveal that AeCRN5 binds to RNA and interferes with biogenesis of various small RNAs, implicated in defence mechanisms or plant development. Furthermore, comparative genetic analyses revealed a new class of putative effectors specific to Aphanomyces euteiches, composed by a large repertoire of small-secreted protein coding genes (SSP), potentially involved during root infection. Preliminary results on these SSPs point out that AeSSP1256, which contains a functional nuclear localisation signal, enhances host susceptibility. Functional characterisation of AeSSP1256 evidenced that this effector binds to RNA, relocalizes a plant RNA helicase and interferes with its activity, causing stress on plant ribosome biogenesis. This work highlights that various effectors target nucleic acids and reveals that two effectors from distinct family are able to interact with plant RNA in order to interfere with RNA related defence mechanisms and plant development to promote pathogen infection. Keywords: Oomycetes, nucleus, DNA damage, RNA-binding proteins, CRN, SSP. Remerciements Alors par qui commencer… les membres de mon jury bien sûr, à commencer par Claire Veneault-Fourrey et Bruno Favery qui ont accepté d’évaluer mon travail. En ces temps de Covid et à l’heure où j’écris ces lignes, je ne sais pas encore si on se verra masqués, ou par écrans interposés, mais je vous remercie sincèrement pour le temps que vous m’accordez. Merci aussi à Christophe Roux pour avoir gentiment accepté de faire parti de mon jury. Un grand merci à Bernard Dumas, ancien chef de l’équipe lors de mon arrivée au laboratoire. Merci pour la confiance que tu m’as accordé et pour m’avoir un peu poussé à faire une thèse. Bon pour m’avoir beaucoup poussé à faire une thèse. Beaucoup. Mention spéciale à la plateforme d’imagerie, pour leur compétence, leur disponibilité et leur gentillesse en commençant par Alain Jauneau, avec qui j’ai passé des heures autour d’un laser, d’un microscope et d’un tableau Velleda, pour apprendre le FRET-FLIM. Il existe des gens qui rendent tout intéressant. Je n’oublie pas bien sûr Cécile Pouzet, avec qui j’ai beaucoup de plaisir à travailler, et qui en plus veut bien me prêter ses jouets à 500 000 euros. Merci aussi à Yves Martinez et Aurélie Le Ru, d’une patience rare, même si Aurélie me coûte plus cher en bières. Heureusement que vous êtes là. Merci à Jean Philippe Combier pour les discussions et les suggestions apportées. 5 min de discussion avec JP, c’est 5 mois de manips derrière. Faut pas y aller trop souvent non plus… Merci aux personnes avec qui j’ai travaillé sur ce sujet de thèse, notamment Annelyse, Amandine et Marie Alexane que j’ai eu en stage, Chiel Pel et Sarah Courbier qui ont initié le projet sur les SSP et avec qui j’ai passé de très bons moments. Diana Ramirez qui a effectué sa thèse sur les CRNs, ce qui nous a permis de découvrir le monde merveilleux des amphibiens, l’odeur de l’animal, les inséminations de grenouilles femelles, les injections d’ARN dans des centaines d’embryons. En fait on oublie, mais vraiment, travailler sur les plantes, c’est bien. Là c’est le paragraphe dédié aux gens qui m’ont rendu la vie plus facile. Par exemple David, qui réceptionne mes bons de commandes, donc mes erreurs hebdomadaires, dans une ambiance de zénitude et d’encens qui rappelle que rien n’est jamais grave avec David, c’est reposant. Catherine, notre gestionnaire, qui a su aussi être très patiente, mais sans la musique zen et l’encens. Son “CammmmmBBBOOORDEEEE” résonne encore dans ma tête. Merci aux membres de mon équipe, ancienne et actuelle, à ceux du LabCom, à Thomas et Olivier pour les discussions et conseils, c’est toujours agréable de parler avec vous. Merci à Charlène qui m’a soutenu, surveillé mes réinscriptions et ma phobie administrative, à Malo, à Andreï. Merci EMILIE, oui en majuscule, parce que tu m’as beaucoup aidé dans la gestion des affaires courantes comme on dit, en se partageant les tâches à merveille. En gros tu t’occupais de tout ce qui ne me plaisait pas! Enfin, un grand merci à ma directrice de thèse, Elodie Gaulin, qui a su me guider et me soutenir durant ce travail. Ta patience et la facilité avec laquelle tu évacues la pression m’ont beaucoup aidé. C’est un vrai plaisir de travailler avec toi! A ma famille, dont mes parents, éternelle source d’inspiration, à mes enfants, qui vont retrouver leur pôpa, et à ma femme, pour tout ce qu’elle est. List of abbreviations Ae Aphanomyces euteiches AEPs Apoplastic Effector Proteins AM Arbuscular Mycorrhiza Avr Avirulence Bd Batrachochytrium dendrobatidis BIC Biotrophic Interfacial Complex CSEPs Candidate Secreted Effector Proteins CBEL Cellulose Binding ELicitor CRN Crinkling and Necrosis CSEPs Candidate Secreted Effector Proteins CWDEs Cell Wall Degrading Enzymes ECM Ectomycorrhizal Fungi ER Endoplasmic Reticulum ESTs Expressed Sequence Tags ETI Effector-Triggered Immunity EVs Extracellular Vesicles FLIM Fluorescence Lifetime Imaging Microscopy FRET Fluorescence Resonance Energy Transfer GFP Green Fluorescent Protein GWAS Genome Wide Association Study HGT Horizontal Gene Transfer HIGS Host-Induced Gene Silencing HR Hypersensitive Response HRP HorseRadish Peroxidase HSP Heat Shock Protein JA Jasmonic Acid MAMP Microbe-Associated Molecular Pattern MAPKKK Mitogen Activated Protein (MAP) Kinase Kinase Kinase MAX Magnaporthe Avrs and ToX B-like effectors NES Nuclear Export Signal NLPs Necrosis and Ethylene inducing peptide 1 (Nep1)-like proteins NLRs Leucine-Rich Repeat proteins NLS Nuclear Localization Signal PAMP Pattern-Associated Molecular Pattern PTGS Post-Transcriptional Gene Silencing PTI PAMPs-Triggered Immunity PBS Phosphate-Buffered Saline PCW Plant Cell Wall PR Pathogenesis Related PTI PAMP-Triggered Immunity QTL Quantitative Trait Loci R Resistance RALPHs RnAse‐Like Proteins Associated with Haustoria REase Restriction Endonuclease (REase) superfamily RIP Repeat-Induced Point mutations RBPs RNA Binding Protein rDNA Ribosomal DNA ROS Reactive Oxygen Species SA Salicylic Acid SAR Systemic Acquired Resistance SAR Stramenopiles, Alveolates, and Rhizaria SDS Sodium Dodecyl Sulfate siRNA Small Interfering RNAs SSPs Small-Secreted Proteins SNPs Single Nucleotide Polymorphism TALE Transcription Activator-Like Effector TBS Tris-Buffered Saline TE Transposable Element TFs Transcription Factors Ubi Ubiquitin WGA Wheat Germ Agglutinin Y2H Yeast-2-Hybrid Table des matières Abstract ..................................................................................................................................................... List of abbreviations ................................................................................................................................. I – CHAPTER I: General Introduction ...................................................................................................... 1 I-1. Oomycetes and fungi, The World Is Not Enough .......................................................................... 1 I-1.1. The Phantom menace ................................................................................................................ 1 I-1.2. Defence and Resistance against pathogens ............................................................................... 2 I-2. Oomycetes, so close and yet so far from Fungi ............................................................................ 6 I-2.1. The false brothers ...................................................................................................................... 6
Recommended publications
  • Salisapiliaceae</I> ÂŒ a New Family of Oomycetes from Marsh Grass Litter
    Persoonia 25, 2010: 109–116 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X551763 Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America J. Hulvey1, S. Telle 2, L. Nigrelli 2, K. Lamour 1*, M. Thines 2,3* Key words Abstract Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from internal transcribed spacer leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that nuclear ribosomal large subunit (nrLSU) bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora Peronosporales s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were phylogeny placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence Pythiaceae and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new ge- nus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration.
    [Show full text]
  • Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara Viticola
    plants Technical Note Rpv Mediated Defense Responses in Grapevine Offspring Resistant to Plasmopara viticola Tyrone Possamai 1 , Daniele Migliaro 2,* , Massimo Gardiman 2 , Riccardo Velasco 2 and Barbara De Nardi 2 1 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; [email protected] 2 CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy; [email protected] (M.G.); [email protected] (R.V.); [email protected] (B.D.N.) * Correspondence: [email protected] Received: 30 May 2020; Accepted: 20 June 2020; Published: 22 June 2020 Abstract: Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most serious grapevine diseases. The development of new varieties, showing partial resistance to downy mildew, through traditional breeding provides a sustainable and effective solution for disease management. Marker-assisted-selection (MAS) provide fast and cost-effective genotyping methods, but phenotyping remains necessary to characterize the host–pathogen interaction and assess the effective resistance level of new varieties as well as to validate MAS selection. In this study, the Rpv mediated defense responses were investigated in 31 genotypes, encompassing susceptible and resistant varieties and 26 seedlings, following inoculation of leaf discs with P. viticola. The offspring differed in Rpv loci inherited (none, one or two): Rpv3-3 and Rpv10 from Solaris and Rpv3-1 and Rpv12 from Kozma 20-3. To improve the assessment of different resistance responses, pathogen reaction (sporulation) and host reaction (necrosis) were scored separately as independent features.
    [Show full text]
  • Evidence of Resistance to the Downy Mildew Agent Plasmopara Viticola in the Georgian Vitis Vinifera Germplasm
    Vitis 55, 121–128 (2016) DOI: 10.5073/vitis.2016.55.121-128 Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm S. L. TOFFOLATTI1), G. MADDALENA1), D. SALOMONI1), D. MAGHRADZE2), P. A. BIANCO1) and O. FAILLA1) 1) Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy 2) Scientific – Research Center of Agriculture, Tbilisi, Georgia Summary ability during late spring and summer usually prevent the spread of the disease (VERCESI et al. 2010). The control of Grapevine downy mildew, caused by Plasmopara downy mildew on grapevine varieties requires regular appli- viticola, is one of the most important diseases at the inter- cation of fungicides. However, the intensive use of chemicals national level. The mainly cultivated Vitis vinifera varie- becomes more and more restrictive due to human health ties are generally fully susceptible to P. viticola, but little risk and negative environmental impact (BLASI et al. 2011). information is available on the less common germplasm. Damages due to P. viticola could be reduced by using The V. vinifera germplasm of Georgia (Caucasus) is char- resistant grapevine varieties. The breeding programs are acterized by a high genetic diversity and it is different usually carried out by crossing V. vinifera with resistant from the main European cultivars. Aim of the study is species and in particular with American Vitaceae that co- finding possible sources of resistance in the Georgian evolved with the pathogen. The first generation hybrids, autochthonous varieties available in a field collection in obtained from the end of the XIXth to the beginning of the northern Italy.
    [Show full text]
  • Published Version
    PUBLISHED VERSION Rays H. Y. Jiang ... Vincent Bulone ... et al. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica PLoS Genetics, 2013; 9(6):e1003272-1-e1003272-20 © 2013 Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Originally published at: http://doi.org/10.1371/journal.pgen.1003272 PERMISSIONS http://creativecommons.org/licenses/by/4.0/ http://hdl.handle.net/2440/97179 Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica Rays H. Y. Jiang1., Irene de Bruijn2¤a., Brian J. Haas1., Rodrigo Belmonte2,3,LarsLo¨ bach2, James Christie2,3, Guido van den Ackerveken4, Arnaud Bottin5, Vincent Bulone6, Sara M. Dı´az-Moreno6, Bernard Dumas5, Lin Fan1, Elodie Gaulin5, Francine Govers7,8, Laura J. Grenville-Briggs2,6, Neil R. Horner2, Joshua Z. Levin1, Marco Mammella9, Harold J. G. Meijer7, Paul Morris10, Chad Nusbaum1, Stan Oome4, Andrew J. Phillips2, David van Rooyen2, Elzbieta Rzeszutek6, Marcia Saraiva2, Chris J. Secombes3, Michael F. Seidl8,11, Berend Snel8,11, Joost H. M. Stassen4, Sean Sykes1, Sucheta Tripathy12, Herbert van den Berg2, Julio C. Vega-Arreguin13, Stephan Wawra2, Sarah K. Young1, Qiandong Zeng1, Javier Dieguez- Uribeondo14, Carsten Russ1", Brett M. Tyler12¤b", Pieter van West2*" 1 Broad Institute
    [Show full text]
  • Elicitation of Grapevine Defense Responses Against Plasmopara Viticola , the Causal Agent of Downy Mildew
    Elicitation of grapevine defense responses against Plasmopara viticola , the causal agent of downy mildew Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fachbereiche der Justus-Liebig-Universität Gießen Durchgeführt am Institut für Phytopathologie und Angewandte Zoologie Vorgelegt von M.Sc. Moustafa Selim aus Kairo, Ägypten Dekan: Prof. Dr. Peter Kämpfer 1. Gutachter: Prof. Dr. Karl-Heinz Kogel 2. Gutachterin: Prof. Dr. Tina Trenczek Dedication / Widmung I. DEDICATION / WIDMUNG: Für alle, die nach Wissen streben Und ihren Horizont erweitern möchten bereit sind, alles zu geben Und das Unbekannte nicht fürchten Für alle, die bereit sind, sich zu schlagen In der Wissenschaftsschlacht keine Angst haben Wissen ist Macht **************** For all who seek knowledge And want to expand their horizon Who are ready to give everything And do not fear the unknown For all who are willing to fight In the science battle Who have no fear Because Knowledge is power I Declaration / Erklärung II. DECLARATION I hereby declare that the submitted work was made by myself. I also declare that I did not use any other auxiliary material than that indicated in this work and that work of others has been always cited. This work was not either as such or similarly submitted to any other academic authority. ERKLÄRUNG Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig angefertigt und nur die angegebenen Quellen and Hilfsmittel verwendet habe und die Arbeit der anderen wurde immer zitiert. Die Arbeit lag in gleicher oder ahnlicher Form noch keiner anderen Prufungsbehorde vor. II Contents III. CONTENTS I. DEDICATION / WIDMUNG……………...............................................................I II. ERKLÄRUNG / DECLARATION .…………………….........................................II III.
    [Show full text]
  • Host-Pathogen Interactions in Root Infecting Oomycete Species
    Host-Pathogen Interactions in Root Infecting Oomycete Species Sara Hadji Mollahossein Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2015 Acta Universitatis Agriculturae Sueciae 2015:9 Cover: Pea plant infected with Phytophthora pisi (left), control plant (right). Sporangia releasing zoospores (left) and oospores (right) in infected root tissue. (Photo: Sara Hosseini) ISSN 1652-6880 ISBN (print version) 978-91-576-8216-1 ISBN (electronic version) 978-91-576-8217-8 © 2015 Sara Hadji Mollahossein, Uppsala Print: SLU Service/Repro, Uppsala 2015 Host-Pathogen Interactions in Root Infecting Oomycete Species Abstract The oomycetes include some of the most devastating pathogens on both cultivated crops and wild plants. In the genus Phytophthora some closely related species have a broad host range, while others are very host specific. The aim of this project was to gain an understanding of the mechanisms underlying the differentiation of a subgroup of root-infecting Phytophthora species and to gain knowledge about the plant immune responses triggered by distantly related oomycetes that adapted to the same legume host. We investigated the zoospore chemotaxis of legume-root infecting Phytophthora species to different isoflavonoid compounds and explored a possible connection to host preference. Our results showed that specific chemotaxis towards host isoflavones is of limited importance in Phytophthora sojae and Phytophthora vignae, while, specific chemotaxis of Phytophthora pisi and Phytophthora niederhauserii indicated an adaptation to their pathogenicity on the host and lack of pathogenicity on non-host plants. The comparative proteomic study of P. pisi and P.
    [Show full text]
  • Intracellular Eukaryotic Pathogens in Brown Macroalgae in the Eastern Mediterranean, Including LSU Rrna Data for the Oomycete Eurychasma Dicksonii
    Vol. 104: 1–11, 2013 DISEASES OF AQUATIC ORGANISMS Published April 29 doi: 10.3354/dao02583 Dis Aquat Org Intracellular eukaryotic pathogens in brown macroalgae in the Eastern Mediterranean, including LSU rRNA data for the oomycete Eurychasma dicksonii Martina Strittmatter1,2,6, Claire M. M. Gachon1, Dieter G. Müller3, Julia Kleinteich3, Svenja Heesch1,7, Amerssa Tsirigoti4, Christos Katsaros4, Maria Kostopoulou2, Frithjof C. Küpper1,5,* 1Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK 2University of the Aegean, Department of Marine Sciences, University Hill, 81 100 Mytilene, Greece 3Universität Konstanz, FB Biologie, 78457 Konstanz, Germany 4University of Athens, Faculty of Biology, Athens 157 84, Greece 5Oceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, UK 6Present address: CNRS and UPMC University Paris 06, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, 29688 Roscoff Cedex, France 7Present address: Irish Seaweed Research Group, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland ABSTRACT: For the Mediterranean Sea, and indeed most of the world’s oceans, the biodiversity and biogeography of eukaryotic pathogens infecting marine macroalgae remains poorly known, yet their ecological impact is probably significant. Based on 2 sampling campaigns on the Greek island of Lesvos in 2009 and 1 in northern Greece in 2012, this study provides first records of 3 intracellular eukaryotic pathogens infecting filamentous brown algae at these locations: Eury - chas ma dicksonii, Anisolpidium sphacellarum, and A. ectocarpii. Field and microscopic observa- tions of the 3 pathogens are complemented by the first E. dicksonii large subunit ribosomal RNA (LSU rRNA) gene sequence analyses of isolates from Lesvos and other parts of the world.
    [Show full text]
  • <I>Sirolpidium Bryopsidis</I>, a Parasite of Green Algae, Is Probably
    VOLUME 7 JUNE 2021 Fungal Systematics and Evolution PAGES 223–231 doi.org/10.3114/fuse.2021.07.11 Sirolpidium bryopsidis, a parasite of green algae, is probably conspecific with Pontisma lagenidioides, a parasite of red algae A.T. Buaya1, B. Scholz2, M. Thines1,3,4* 1Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 2BioPol ehf, Marine Biotechnology, Einbúastig 2, 545 Skagaströnd, Iceland 3Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438 Frankfurt am Main, Germany 4LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany *Corresponding author: [email protected] Key words: Abstract: The genus Sirolpidium (Sirolpidiaceae) of the Oomycota includes several species of holocarpic obligate aquatic chlorophyte algae parasites. These organisms are widely occurring in marine and freshwater habitats, mostly infecting filamentous green early-diverging algae. Presently, all species are only known from their morphology and descriptive life cycle traits. None of the seven new taxa species classified in Sirolpidium, including the type species, S. bryopsidis, has been rediscovered and studied for their Oomycota molecular phylogeny, so far. Originally, the genus was established to accommodate all parasites of filamentous marine Petersenia green algae. In the past few decades, however, Sirolpidium has undergone multiple taxonomic revisions and several species phylogeny parasitic in other host groups were added to the genus. While the phylogeny of the marine rhodophyte- and phaeophyte- Pontismataceae infecting genera Pontisma and Eurychasma, respectively, has only been resolved recently, the taxonomic placement Sirolpidiaceae of the chlorophyte-infecting genus Sirolpidium remained unresolved.
    [Show full text]
  • Studies on Root Necrosis of Wheat Caused by Pythium Graminicola Subr John Edward Grafius Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1943 Studies on root necrosis of wheat caused by Pythium graminicola Subr John Edward Grafius Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Grafius, oJ hn Edward, "Studies on root necrosis of wheat caused by Pythium graminicola Subr " (1943). Retrospective Theses and Dissertations. 13814. https://lib.dr.iastate.edu/rtd/13814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI OT lOGf m'lOSIS OF 1^1 m mmwm «»»»» wii*' % SiifcfIns 4 ^iwl# Satoaitfced to th® Gradm#» for the I^gre® of seetoa ©r wii«®« iubjeotss Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. »« UMI Number: DP13246 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • Parkinsonia Aculeata
    Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3.
    [Show full text]
  • Genetic Mapping of Resistance to Aphanomyces Root Rot in Alfalfa *E
    Genetic mapping of resistance to Aphanomyces root rot in alfalfa15 Samac, D.A.*, Dornbusch, M. R., Bucciarelli, B., Miller, S. S. and Yu, L.-X. USDA-Agricultural Research Service *e-mail: [email protected] KEYWORDS: Aphanomyces euteiches, genotyping by sequencing, NBS-LRR resistance genes Aphanomyces root rot (ARR), caused by the oomycete Aphanomyces euteiches, is one of the most important yield-limiting factors in production of legumes. In Europe, it is the main limiting factor for pea production while in the United States it is one of the most important diseases of alfalfa and pea (Gaulin et al., 2007). The disease causes stunting and death of alfalfa seedlings with complete stand loss occurring in wet and poorly drained soils. Non-lethal damage to seedling roots reduces forage yields and winter survival. The pathogen can infect adult plants during wet periods to cause loss of feeder roots and root nodules, reducing nitrogen fixation, forage yield, and stand life. Varieties with resistance to ARR became widely available in the 1990s; however, failure of resistant varieties identified a second race of the pathogen. Recent reports of failure of varieties with resistance to both race 1 and race 2 suggest that additional pathogenic races are present in alfalfa production fields. The goals of this research were to: (i) determine the prevalence of race 1 and race 2 strains in Minnesota and New York; (ii) identify novel strains of the pathogen; (iii) characterize the race-specific resistance to Aphanomyces root rot; and (iv) map resistance genes in order to facilitate breeding for resistance and to clarify race/resistance gene relationships.
    [Show full text]