Parkinsonia Aculeata

Total Page:16

File Type:pdf, Size:1020Kb

Parkinsonia Aculeata Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3. Also to the rest of the ESP staff from CSIRO Health & Biosecurity, CSIRO Agriculture & Food and CSIRO Land and Water for many morning teas, encouragement and advice, career inspiration and long-lasting friendships. Thanks to Giles Hardy, Sonia Aghighi and Briony Williams from CPSM at Murdoch University for their work on Chapter 4. Thanks also to the Australian-American Fulbright Commission, the various Fulbright and IIE chapters in the USA, Prof Matteo Garbelotto, lab manager Doug Schmidt, and colleagues Laura Sims, Tina Popenuck and Mike Johnson from the Forest Pathology and Mycology Laboratory at UC Berkeley. Their support made Chapters 5 and 6 possible. Thank-you Louise Morin, Donald Gardiner, Kylie Ireland, Gavin Hunter and Luke Barrett (CSIRO) for internal reviews. Thanks to my incredible parents, Avril and Viv, for giving me the tools and confidence to challenge everything and for always believing in me. And to my brothers, Grant and Warren, who are my unceasing inspiration and have always offered support and understanding. Finally, to Bastian, for your sacrifices, patience, encouragement, neck rubs, our fieldwork adventures, your understanding and your love: you are the reason I can look back on this experience with an abundance of fond memories. Jag älskar dig. This page has been intentionally left blank Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full, or in part, for a degree at this or any other institution. Signed: ___ __ Tracey Vivien Steinrucken This page has been intentionally left blank TABLE OF CONTENTS List of Figures ................................................................................................................................ v List of Tables ............................................................................................................................... vii Abbreviations .............................................................................................................................. viii Thesis Abstract ............................................................................................................................. ix CHAPTER 1: Microbe-plant interactions, their influence on invasion ecology, and the use of dieback in the biocontrol of invasive plants: a review ......................................................... 1 1.1 Introduction ........................................................................................................................... 1 1.2 Plant-microbe interactions ..................................................................................................... 4 1.3 The roles of endophyte and other microorganisms in plant invasion .................................... 6 1.4 Plant dieback ......................................................................................................................... 8 1.4.1 Pathogen-related dieback of trees .................................................................................. 10 1.5 Dieback in Weeds of National Significance (WONS) ........................................................ 13 1.5.1 Parkinsonia aculeata ..................................................................................................... 14 1.5.2 The potential for using dieback in the biological control of parkinsonia ....................... 22 1.6 Summary ............................................................................................................................. 23 1.7 Thesis outline ...................................................................................................................... 24 1.8 Publications ......................................................................................................................... 26 CHAPTER 2: Endophyte community composition is associated with dieback occurrence in an invasive tree ........................................................................................................................ 30 2.1 Abstract ............................................................................................................................... 30 2.2 Introduction ......................................................................................................................... 31 2.3 Materials and methods ........................................................................................................ 36 2.3.1 Sampling and sample preparation .................................................................................. 36 2.3.2 Nucleic acid analysis ..................................................................................................... 40 2.3.3 Statistical data analysis .................................................................................................. 41 2.4 Results ................................................................................................................................. 42 2.4.1 Sampling effort .............................................................................................................. 42 2.4.2 Plant part and disease status effects ............................................................................... 42 2.4.3 Indicator species analysis .............................................................................................. 46 2.5 Discussion ........................................................................................................................... 46 2.6 Conclusion........................................................................................................................... 51 CHAPTER 3: Triggering dieback in an invasive plant: endophyte diversity and pathogenicity ... 52 3.1 Abstract ............................................................................................................................... 52 3.2 Introduction ......................................................................................................................... 53 3.3 Materials and method .......................................................................................................... 57 3.3.1 Sampling, identification and analysis of the fungal endophyte community .................. 57 i 3.3.2 Glass house pathogenicity trial ...................................................................................... 59 3.4 Results ................................................................................................................................. 64 3.4.1 Fungal endophytes in healthy and dieback-affected Parkinsonia aculeata ................... 64 3.4.2 Pathogenicity testing of isolates with a water stress interaction .................................... 69 3.5 Discussion ........................................................................................................................... 73 CHAPTER 4: First report of oomycetes associated with the invasive tree Parkinsonia aculeata (family: Fabaceae) .............................................................................................................. 78 4.1 Abstract ............................................................................................................................... 78 4.2 Introduction ......................................................................................................................... 79 4.3 Materials and Methods ........................................................................................................ 82 4.3.1 Field survey and sampling ............................................................................................
Recommended publications
  • Suitability of Parkinsonia Aculeata (L.) Wood Grown As an Architectural Landscape Tree in North Darfur State for Interior Design and Furniture
    Suitability of Parkinsonia aculeata (L.) Wood Grown as an Architectural Landscape Tree in North Darfur State for Interior Design and Furniture Osman Taha Elzaki 1Institute of Engineering Research and Materials Technology, NCR, Khartoum, Sudan Nawal Ibrahim Idris Institute of Engineering Research and Materials Technology, NCR, Khartoum, Sudan Mohamed Elsanosi Adam Habib 2University of Al Fashir; Faculty of Environmental Sciences and Natural Resources Tarig Osman Khider ( [email protected] ) University of Bahri, College of Applied and Industrial Sciences, Khartoum, Sudan https://orcid.org/0000-0003-4494-8402 Research Article Keywords: Parkinsonia aculeata , Architectural landscape, Basic density, Static Bending, Compressive Strength Posted Date: July 14th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40962/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract Wood samples of Parkinsonia aculeata (L.) were collected from Al bohaira Gardens of Al Fashir Town (the capital of North Darfur State, Western Sudan) where they were planted as architectural landscape trees and studied to determine their physical and mechanical properties as potential wood species for structural and furniture purposes. Moisture content, wood density (basic and oven-dry), as well as radial and tangential shrinkage were determined. The mechanical properties studied included static bending strength, compression strength parallel to the grain, the modulus of elasticity (MOE), the modulus of rupture (MOR), and the maximum crushing strength. The obtained results were compared with those of the well-known dominant small hardwood tree in the same area (Boscia senegalensis ). The wood of P. aculeata has shown medium oven-dry density (534.0 kg m-3) with reasonable bark-to-wood and shrinkage ratio.
    [Show full text]
  • Discussions on Fungal Taxonomy and Nomenclature of Allergic Fungal Rhinosinusitis
    Romanian Journal of Rhinology, Vol. 3, No. 11, July - September 2013 LITERATURE REVIEW Discussions on fungal taxonomy and nomenclature of allergic fungal rhinosinusitis Florin-Dan Popescu Department of Allergology, “Nicolae Malaxa” Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania ABSTRACT There is a significant debate regarding the role of fungi in chronic rhinosinusitis and whether allergic fungal rhinosi- nusitis truly represents an allergic subtype. The diverse nomenclature and heterogeneous taxonomy of fungi involved in the etiopathogenesis of this entity is important to be discussed in order to clarify the organisms detected and in- volved in this complex disease. KEYWORDS: fungi, allergic fungal rhinosinusitis INTRODUCTION flammatory cascade in AFRS is a multifunctional event, requiring the simultaneous occurrence of IgE- Fungal diseases of the nose and sinuses include a mediated sensitivity, specific T-cell HLA receptor ex- diverse spectrum of disease1. Although confusion pression and exposure to specific fungi4. Early recog- exists regarding fungal rhinosinusitis (FRS) classifi- nition of AFRS may be facilitated by screening pa- cation, a commonly accepted system divides FRS into tients with polypoid chronic rhinosinusitis or CRS invasive and noninvasive diseases based on histo- with nasal polyps (CRSwNP) patients for serum spe- pathological evidence of tissue invasion by fungi. cific IgE to molds5. Such specific IgE antibodies are The noninvasive diseases include saprophytic fungal also detectable in nasal lavage fluid and eosinophilic infestation, fungal ball and fungus-related eosinophi- mucin. Sinus mucosa homogenates may be assessed lic FRS (EFRS) that includes allergic fungal rhinosi- for IgE localization by immunohistochemistry and nusitis (AFRS). for antigen-specific IgE to fungal antigens by fluores- cent enzyme immunoassay6.
    [Show full text]
  • New Taxa in Aspergillus Section Usti
    available online at www.studiesinmycology.org StudieS in Mycology 69: 81–97. 2011. doi:10.3114/sim.2011.69.06 New taxa in Aspergillus section Usti R.A. Samson1*, J. Varga1,2, M. Meijer1 and J.C. Frisvad3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands; 2Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary; 3BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark. *Correspondence: Robert A. Samson, [email protected] Abstract: Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, inclucing two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetus CBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chaparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subsessilis and A. kassunensis on all trees. This species grew well at 37 °C, and acid production was not observed on CREA.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Nisan 2014 1.Cdr
    Nisan(2014)5(1)7-21 Doi :10.15138/Fungus.201456196 26.12.2013 30.04.2014 Research Article Light and Electron Microscope Studies of Species of Plant Pathogenic Basidiomycota Isolated from Plants in Kıbrıs Village Valley (Ankara, Turkey) Tuğba EKİCİ1 , Makbule ERDOGDU2* , Zeki AYTAÇ 1 and Zekiye SULUDERE1 1Gazi University , Faculty of Science, Department of Biology, Teknikokullar, Ankara-TURKEY 2Ahi Evran University, Faculty of Science and Literature , Department of Biology, Kırsehir-TURKEY Abstract: A search forbasidiomycetous plant parasites present in Kıbrıs Village Valley (Ankara, Turkey) was carried out during the period 2009-2010. Twenty-two basidiomycetous plant parasites were identified fromKıbrıs Village Valley . Morphological data obtained by light and scanning electron microscopy of identified fungi are presented. Key Words: Basidiomycota, Microstromatales, Uredinales, Ustilaginales, SEM. Kıbrıs'ın Köyü Vadisi'nde (Ankara, Türkiye) Bitkilerden İzole Edilmiş Bitki Patojeni Basidiomycota Türlerinin Işık ve Elektron Mikroskobu Çalışmaları Özet: Kıbrıs Köyü Vadisi' nde (Ankara, Türkiye) bulunan bazidiyumlu bitki paraziti mantarların araştırılması 2009-2010 yıllarında yapılmıştır.Kıbrıs'ın Köyü Vadisi' nde yirmi iki bazidiyumlu bitki parazititespit edilmiştir. Teşhis edilmiş mantarların ışık ve taramalı elektron mikroskobuna dayalı morfolojik verileri sunulmuştur. Anahtar Kelimeler: Basidiomycota, Microstromatales, Uredinales, Ustilaginales, SEM Introduction currently placed in theMicrostromataceae , is The orderMicrostromatales with the represented by two species (Microstroma album single familyMicrostromataceae was erected for (Desm.) Sacc. and Microstroma juglandis species having simple-septate hyphae and local (Bérenger) Sacc.) in Turkey (Göbelez 1967). interaction zones without the formation of Rust fungi (Uredinales ) are one of the interaction apparatus. Haustoria or other largest natural taxa within the kingdom intracellular fungal organs are lacking (Begerow Eumycota.
    [Show full text]
  • Fungal Allergy and Pathogenicity 20130415 112934.Pdf
    Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • Studies on Root Necrosis of Wheat Caused by Pythium Graminicola Subr John Edward Grafius Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1943 Studies on root necrosis of wheat caused by Pythium graminicola Subr John Edward Grafius Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Grafius, oJ hn Edward, "Studies on root necrosis of wheat caused by Pythium graminicola Subr " (1943). Retrospective Theses and Dissertations. 13814. https://lib.dr.iastate.edu/rtd/13814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI OT lOGf m'lOSIS OF 1^1 m mmwm «»»»» wii*' % SiifcfIns 4 ^iwl# Satoaitfced to th® Gradm#» for the I^gre® of seetoa ©r wii«®« iubjeotss Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. »« UMI Number: DP13246 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Seed Ecology of the Invasive Tropical Tree Parkinsonia Aculeata
    Plant Ecology (2005) 180:13–31 Ó Springer 2005 DOI 10.1007/s11258-004-2780-4 -1 Seed ecology of the invasive tropical tree Parkinsonia aculeata R. Cochard1,* and B.R. Jackes2 1Geobotanical Institute, Swiss Federal Institute of Technology, 8092 Zu¨rich, Switzerland; 2Department of Tropical Plant Sciences, James Cook University, Townsville Q4811, Australia; *Author for correspondence (e-mail: [email protected]) Received 28 January 2004; accepted in revised form 29 August 2004 Key words: Biocontrol, Bruchids, Seed bank dynamics, Seed germination, Invader management Abstract Parkinsonia aculeata is an invasive tree native to tropical America, but introduced to Australia. Propa- gation and stand regeneration is mainly by seed. To gain baseline knowledge for management decisions, seed bank dynamics were monitored for two months during the fruit dispersal period at a coastal wetland in Costa Rica (native habitat), and at a coastal wetland and two semi-arid rangeland sites in Northern Queensland, Australia (introduced habitats). Seed bank densities underneath dense, uniform Parkinsonia stands were found to be lowest in the Australian wetland but highest in the Costa Rican wetland. Post- dispersal seed losses were highest in the Australian wetland, primarily due to seed germination and/or death. At the other sites, seed losses were minor during the study period, and predation was the most important cause of losses. At the two rangeland sites bruchid beetles accounted for more than 95% of the seed losses by predation. Total predation was lowest in the Costa Rican wetland. In order to test for intrinsic differences of seed characteristics, germination trials were conducted using both canopy seeds and seeds from the soil seed bank.
    [Show full text]
  • Alien and Invasive Species Lists, 2014
    STAATSKOERANT, 1 AUGUSTUS 2014 No. 37886 3 GOVERNMENT NOTICE DEPARTMENT OF ENVIRONMENTAL AFFAIRS No. 599 1 August 2014 NATIONAL ENVIRONMENTAL MANAGEMENT: BIODIVERSITY ACT 2004 (ACT NO, 10 OF 2004) ALIEN AND INVASIVE SPECIES LISTS, 2014 I, Bomo Edith Edna Molewa, Minister of Water and Environmental Affairs, hereby publishes the following Alien and Invasive Species lists in terms of sections 66(1), 67(1), 70(1)(a), 71(3) and 71A of the National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004) as set out in the Schedule hereto. MS. BOMO EDITH EDNA MOLEWA MINISTER OF WATER AND ENVIRONMENTAL AFFAIRS This gazette is also available free online at www.gpwonline.co.za 4 No. 37886 GOVERNMENT GAZETTE, 1 AUGUST 2014 NOTICES AND LISTS IN TERMS OF SECTIONS 66(1), 67(1), 70(1)(a), 71(3) and 71A Notice 1:Notice in respect of Categories 1a, 1 b, 2 and 3, Listed Invasive Species, in terms of which certain Restricted Activities are prohibited in terms of section 71A(1); exempted in terms of section 71(3); require a Permit in terms of section 71(1) Notice 2:Exempted Alien Species in terms of section 66(1). Notice 3:National Lists of Invasive Species in terms section 70 1 . 559 species /croups of species List 1: National List of Invasive Terrestrial and Fresh-water Plant Species 379 List 2: National List of Invasive Marine Plant Species 4 List 3: National List of Invasive Mammal Species 41 List 4: National List of Invasive Bird Species 24 List 5: National List of Invasive Reptile Species 35 List 6: National List of Invasive Amphibian
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • Secondary Metabolites from Eurotium Species, Aspergillus Calidoustus and A
    mycological research 113 (2009) 480–490 journal homepage: www.elsevier.com/locate/mycres Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities Gregory J. SLACKa, Eva PUNIANIa, Jens C. FRISVADb, Robert A. SAMSONc, J. David MILLERa,* aOttawa-Carleton Institute of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6 bDepartment of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark cCBS Fungal Biodiversity Centre, PO Box 85167, NL-3508 AD Utrecht, The Netherlands article info abstract Article history: As part of studies of metabolites from fungi common in the built environment in Canadian Received 22 July 2008 homes, we investigated metabolites from strains of three Eurotium species, namely Received in revised form E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally 26 November 2008 identified as Aspergillus ustus. The latter have been recently assigned as the new species Accepted 16 December 2008 A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin Published online 14 January 2009 B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metab- Corresponding Editor: olites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum Stephen W. Peterson produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in Keywords: E. amstelodami. This species also produced questin and neoechinulin E as minor metabo- Aspergillus insuetus lites. This is the first report of epiheveadride occurring as a natural product, and the first A.
    [Show full text]
  • Pembrokeshire Fungus Recorder Issue 2/2018
    Pembrokeshire Fungus Recorder Issue 2/2018 Published biannually by the Pembrokeshire Fungus Recording Network www.pembsfungi.org.uk Contents 1. Contents & Editorial 2. Fungus records. 4. A study of the distribution of green and brown Microglossum species in Wales (DJH) 5. Entoloma bloxamii - A Pembrokeshire perspective on big blue pinkgills (DJH) 6. Training and field days 7. Microstroma - an uncommon? smut in west Wales (MC, AOC, RNS) Editorial A wet start to the year eventually gave way to a hot and dry July. Whatever the reasons, very few records of note were reported in the first half of the year. Fortunes may change however, as the wet August produced good fruiting in woodlands. Hopefully the grassland and dunes will also respond as we move into the autumn. Our 2017 records have now been submitted to the local and national databases. Only 547 records - reflecting the very disappointing year. The adjacent map shows where most of the effort was targetted. Hopefully this year we can collect significantly more than 1,000 records. Thanks are due to eveyone who submitted well documented, verified records. Particular thanks are due to our top recorders for 2017: Jane Hodges (122 records), DJH (119), Adam and Suzanne Pollard- Powell (108) and Nigel Lee (57). David Harries August 2018 Records Sarcomyxa serotina (Olive oysterling) As 2017 was drawing to a close, Den Vaughan reported this fine collection of Sarcomyxa serotina on dead wood near Pengelli forest. This species, previously known as Panellus serotinus, is often found fruiting late into the winter. Hypocreopsis rhododendri (Hazel gloves) Three new sites have been found so far this year: Lawrenny (March) reported by Jon Hudson, Naples Farm (August) - this observation quite appropriately made during a recording day organised by the West Wales Biodiversity Information Centre (WWBIC).
    [Show full text]