Direct Insolation Models
Total Page:16
File Type:pdf, Size:1020Kb
SERI/TR-33S-344 UC CATEGORY: UC-S9,61,62,63 DIRECT INSOLATION MODELS RICHARD BIRD ROLAND L. HULSTROM JANUARY 1980 PREPARED UNDER TASK No. 3623.01 Solar Energy Research Institute 1536 Cole Boulevard Golden. Colorado 80401 A Division of Midwest Research Institute Prepared for the U.S_ Department of Energy Contract No_ EG-77-C-01-4042 , '. Printed in the United States of America Available from: National Technical Information Service U.S. Departm ent of Commerce 5285 Port Royal Road Springfi e1dt VA 22161 Price: Microfiche $3.00 Printed Copy $ 5.25 NOTICE This report was prepared as an account of work sponsored by the United States Govern ment. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process dis closed, or represents that its us e would not infringe privately owned rights. S=�I TR-344 FOREWORD This re port documents wo rk pe rforme d by the SERI Energy Resource Assessment Branch for the Division of Solar Energy Technology of the U.S. De pa rtment of Energy. The re po rt compares several simple direct insolation models with a rigorous solar transmission model and describes an improved , simple, direct insolation model. Roland L. Hulstrom , Branch Chief Energy Resource Assessment , \ Approved for: SOLAR ENERGY RE SEARCH INSTITUTE for Research iii S=�I TR-344 TABLE OF CONTENTS 1.0 Introduction •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 2.0 Description of Models •••••••••••• . 3 2.1 SOL TR.AN' Model••••••••••••••••••••••••••••••••••••••••••••••••• 3 2.2 Atwater and Ball Model•••••••••••••• ....................... ... 4 2.3 Hoyt Model••••••••••••••••••••••••••• ••••••••••••••••••••••••• 5 2.4 Lacis and Hansen Model� ••••••••••••••••••••••••••••••••••••••• 7 2.5 Machta Model•••••••••••••••••••••••••••••••••••••••••••••••••• 7 2.6 AS RRAE Model •••••••••••••••••••••••••••••••••••••••••••••••••• 8 2.7 \V'att Model ................................................ ..... 8 2.8 Majumdar Model•••••••••••••••••••••••••••••••••••••••••••••••• 10 2.9 Bi rd Models••••••••••••••••••••••••••••••••••••••••••••••••••• 10 2.10 Additional Models and Other Considerat ions••••••••• ••• •••••••• 12 2.10.1 Water Vapo r••••••••••••••••••••••••••••••••••••••••••• 12 2.10.2 Ozone ••••••••••••••••••••••••••••••••••••••••••••••••• 13 2.10.3 Uniformly Mixed Gases••••••••••••••••••••••••••••••••• 14 2 • 10. 4 Ai r Mas s •••••••••••••••••••••••••••••••••••••••••••••• 15 2.10.5 Simple Transport Equation••••••••••••••••••••••••••••• 16 3.0 Model Compa'risons•• •••••••••••••••••• . 21 4.0 Summary and Conclusions .....•••••••••••••••••••••••••••••••••••••••• 39 5.0 Re fe rences •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 43 Appendix. Tabulated Model Data•••••••••••••••••••••••••••••••••••••••••• Al v S=�I IWI _________________________-= T�R__=-3:!.:4�4 -� �� LIST OF FIGURES 3-1 Transmittance versus Secant of Solar Zenith Angle for Midlatitude Summe r Model..................................... 22 3-2 Transmittance ve rsus Secant of 'S olar Zenith Angle for Subarctic Winter Model •••••••••••••••••.•..•••••••••••••••••• 23 3-3 Ozone Absorptance ve rsus Solar Zenith Angle for 0.31 em of Oz one (MLS ) ........................................... 25 3-4 Ozone Absorptance versus Solar Zenith Angle for 0.45 em of Ozone (SA��)............................................ 26 3-5 Absorptance versus Solar Zenith Angle for 2.93 cm of Water Va por (MLS ) ••••••••••••••••••••••••••••••••••••• 27 3-6 Absorptance versus Solar Zenith Angle for 0.42 cm of Water Va po r (SAW ) ••••••••••••••••••••••••••••••••••••• 28 3-7 Transmittance ve rsus So lar Zenith Angle for All Molecular Effects Except H20 Absorption (MLS ) •••••••••••••••• 29 3-8 Transmittance versus Solar Zenith Angle for All Molecular Effects Except H20 Absorption (SAW )................ 30 3-9 Aerosol Transmittance ve rsus Solar Zenith Angle for 5-km Visibility Aerosol •••••••••••••••••••••••••••••••••••••••••• 31 3-10 Ae rosol Transmittance versus Solar Zenith Angle for 23-km Vi sibility Ae rosol ••••••••••••••••••••••••••••••••••••••••• 32 3-11 Solar Irradiance versus Solar Zenith An gle, Visibility = 23 km (MLS) ••••••••••••••••••••••••••••••••••••••••• 34 3-12 Solar Irradiance versus Solar Zenith Angle, Visibility = 5 km (MLS ) •••••••••••••••••••••••••••••••••••••••••• 35 3-13 Solar Irradiance versus Solar Zenith Angle, Visibility = 23 km (SAW) •••••••••••••••••••••••••••••••.••••••••• 36 vii S;::�I ,�, ____________________________________________________� ________ �T �R �-�3 �4 �4 � - {..� LIST OF TABLES 2-1 Sources of Da ta for Construct ion of Models •••••••••••••••••••••••••• 14 2-2 Comparisons of Di rect Normal Irradiance for Di fferent Forms of the Transport Equation Using Bird Models and SOLTRAN .................. 17 2-3 Comparisons of Di rect Normal Irradiance fo r Di fferent Forms of the Trans po rt Equation Using Bi rd Models and SOLTRAN .................. 18 A-I Tabulated Da ta for the Midlatitude Summer Atmosphere (V = 23 km) for Several Models •••••••••••••••••••••••••••••••••••• A2 A-2 Tabulated Da ta fo r the Midlatitude Summer Atmosphere (V = 5 km) for Several Models ••••••••••••••••••••••••••••••••••••• A3 A-3 Tabulated Da ta for the Subarctic Winter Atmosphere (V = 23 km) for Several Models •••••••••••••••••••••••••••••••••••• A4 A-4 Tabulated Da ta fo r the Subarctic Winter Atmos phere (V = 5 km) for Several Models •••••••••••••••••••••••••••••••••••••••••••••••• AS ix TR-344 SECTION 1.0 INTRODUCTION Solar energy (insolation) conversion systems are different from systems based on other sources of energy, because the energy source is subject to varying meteorological conditions . As a result, reliable insolation data are required at each site of interest to design a solar energy system. Historical data have been collected by the National Weather Se rvice (NWS) on a very limited basis at 26 locations throughout the United States , and data are currently being collected at 38 locations. Be cause of the small number of stations in this netwo rk and the variability of insolation, it is essential to have accu ra te models to predict insolation at other locations. The accuracy of these models and expe rimental data affects the design, pe rformance, and economics of solar systems . Nume rous simple insolation models have been produced by different investiga tors over the past half century. The goal of these models has been to provide an uncomplicated estimation of the available insolation. These models, by very different methods, account for the influence of each atmospheric con stituent on solar radiation. This , in turn, leads to confusion and questions of validity from prospective users. This study compares several of the more re cent models of the direct component of the insolation for clear sky conditions . The comparison includes seven simple models and one rigorous model that is a basis for determining accu racy. The re sults of the comparisons are then used to formulate two simple models of differing complexity. The most useful formalisms of present models have been incorpo rated into the new models . The criteria for evaluating and formulating models are simplicity, accuracy, and the ability to use readily available meteorological data. In the future , a similar analysis of models for global and diffuse insolation is planned . Simple global and dif fuse models will be compared with a rigoro us model that uses Mo nte Ca rlo techniques. Ad ditional compa risons are planned, with very carefully taken expe rimental data for both direct and diffuse inso lation components. As many meteorological measurements as can reasonably be taken will be included with these data. The goal of this wo rk is to produce a well-documented global insolation model that includes the direct and diffuse clear sky insolation as we ll as cloud-and ground -reflected insolation. This re po rt is the first step towa rd achieving that goal. 1 5=~1 2 !5::�1! �l __________________________________________________________T.R�-�3�4�4� SECTION 2.0 DESCRIPTION OF MODELS A rigorous atmospheric transmission model has served as a basis for comparing the accuracy of simple empirical models. The next few sections present a description of the rigorous model and the mathematical expressions that form the simplified models. 2.1 SOLTRAN MODEL The rigorous model, called SOLTRAN, was constructed from the LOWTRAN [1-3] atmospheric transmission model produced by the Air Force Geophysics Laboratory and the extraterrestrial solar spectrum of Thekaekara [4]. The LOWTRAN model has evolved through a series of updates and continues to be improved with new data and computational capabilities. In this model, a lay ered atmosphere is constructed between sea level and 100-km altitude by de fining atmospheric parameters at 33 levels within the atmosphere. The actual layer heights at which atmospheric parameters are defined are: sea level (0.0 km) to 25-km altitude in 1.0-km intervals, 25 to 50 km in 5-km intervals, and at 70 km and 100 km, respectively. At each of these 33 altitudes the following quantities are defined: temperature, pressure, molecular density, �vater vapor density, ozone density, and aerosol extinction and absorption coefficients. A complete description of the standard model atmospheres incorporated in this