Principles of the Measurement of Solar Reflectance, Thermal Emittance, and Color

Total Page:16

File Type:pdf, Size:1020Kb

Principles of the Measurement of Solar Reflectance, Thermal Emittance, and Color Principles of the Measurement of Solar Reflectance, Thermal Emittance, and Color Contents Roof Heat Transfer Electromagnetic Radiation Radiative Properties of Surfaces Measuring Solar Radiation Measuring Solar Reflectance Measuring Thermal Emittance Measuring Color 1. Roof Heat Transfer 3 Roof surface is heated by solar absorption, cooled by thermal emission + convection Radiative Cooling Convective Solar Cooling Absorption Troof Insulatio n T Qin = U (Troof – inside Tinside) Most solar heat gain is dissipated by convective and radiative cooling… ...because the conduction heat transfer coefficient is much less than those for convection & radiation 2. Electromagnetic Radiation 7 The electromagnetic spectrum spans radio waves to gamma rays This includes sunlight (0.3 – 2.5 μm) and thermal IR radiation (4 – 80 μm) (0.4 – 0.7 All surfaces emit temperature-dependent electromagnetic radiation • Stefan-Boltzmann law • Blackbody cavity is a perfect absorber and emitter of radiation • Total blackbody radiation [W m-2] = σ T 4, where – σ = 5.67 10-8 W m-2 K-4 – T = absolute temperature [K] • At 300 K (near room temperature) σ T 4 = 460 W m-2 Higher surface temperatures → shorter wavelengths Solar radiation from sun's surface (5,800 K) peaks near 0.5 μm (green) Thermal radiation from ambient surfaces (300 K) peaks near 10 μm (infrared) Extraterrestrial sunlight is attenuated by absorption and scattering in atmosphere Global (hemispherical) solar radiation = direct (beam) sunlight + diffuse skylight Pyranometer measures global (a.k.a. Pyranometer hemi-spherical) sunlight on with horizontal surface sun-tracking shade Pyrheliometer measures measures direct (a.k.a. collimated, diffuse beam) light from sun skylight Let's compare rates of solar heating and radiative cooling Spectral heating rate of a black roof facing the sky on a 24-hour average basis, shown on a log scale. Equal areas represent equal radiant fluxes. The box in the upper right shows the area of 100 W m-2. 3. Radiative Properties of Surfaces A photon striking a surface is reflected, absorbed, or transmitted • Spectral reflectance r(λ): probability that an incident photon of wavelength λ is reflected • Spectral absorptance a(λ): probability that photon is absorbed • Spectral transmittance t(λ): probability that photon is transmitted r(λ) + a(λ) + t(λ) = 1 Averaging solar spectral reflectance r(λ) weighted with solar spectral irradiance i(λ) yields solar reflectance R • Solar reflectance R is fraction of incident sunlight that is reflected • Integrating over the solar spectrum, R = ∫ i(λ) r(λ) dλ / ∫ i(λ) dλ • Solar absorptance and solar transmittance can be calculated in the same way Emittance compares emission of surface to that of a perfect emitter (black body) • Spectral emittance ε(λ): radiant power at wavelength λ emitted by a surface divided by that emitted by a black body at the same temperature Kirchhoff’s law: at each wavelength, emittance equals absorptance • Opaque enclosure in equilibrium enclosure at – The enclosure filled with temperature T a blackbody radiation: BT (λ) – The surface emits B radiation at the rate B ε ε(λ) BT (λ) – The surface absorbs radiation at the rate photon gas at B λ λ temperature T a( ) BT ( ) a = ε • Hence, we have Kirchhoff’s law: ε(λ) = a(λ) If ε(λ) ≠ a(λ), the surface will spontaneously warm or cool, violating the 2nd law of thermodynamics! Solar absorptance and thermal emittance are independent parameters • Emittance and absorptance are equal at the same wavelength. For example, – Bare shiny metals, such as aluminum, have low thermal emittance – Therefore bare metals have low absorptance (and high reflectance) in the thermal infrared • However, typical terminology is to refer to – Solar absorptance (weighted average from 0.3 to 2.5 µm) – Thermal emittance (weighted average from 4 to 80 µm) Typical radiative properties of some roofing materials (unsoiled) Material Solar Thermal reflectance emittance Gray-rock fiberglass asphalt shingle 0.10 0.90 Bare gray-cement concrete tile 0.15 0.90 Terracotta clay tile 0.40 0.90 Bare zincalume steel 0.75 0.05 Resin-coated zincalume steel 0.60 0.15 Zincalume steel w/25-µm white coating 0.70 0.85 Wood shake 0.50 0.90 4. Measuring Solar Radiation A pyranometer is a thermal-electrical instrument that measures solar radiation Solar irradiance is assessed from solar heating of black sensing element • Sensor is black disk backed by thermopile • Output voltage is proportional to temperature rise of the black disk in sunlight • Glass dome(s) over sensor inhibits convective heat transfer, blocks thermal infrared radiation • Instrument can measure incident or reflected radiation • A recent review on measurement errors: Gueymard and Myers, Solar Energy 83 (2009), 171–185 5. Measuring Solar Reflectance CRRC-approved reflectometer techniques for measuring solar reflectance Methods based on Devices & Services Solar Spectrum Reflectometer • Homogeneous surfaces: ASTM C1549-09(2014) – Laboratory or in-situ measurement of the solar reflectance of a small surface (diameter ~ 25 mm) – Average three points on surfaces • Heterogeneous surfaces: CRRC-1 Test Method #1 – Laboratory or in-situ measurement of the solar reflectance of a heterogeneous surface, such as a variegated asphalt shingle – Averages many randomly located points • Heterogeneous tiles: Tile Template Method – Laboratory or in-situ measurement of the solar reflectance of a heterogeneous tile surface – Averages many fixed points Design of Devices & Services Solar Spectrum Reflectometer (SSR) Sample Lamp in center Unit may be 2.5 cm aperture at inverted top Primarily a lab Interior coated technique, but can be used in-situ white Detectors view sample through collimating tube Aggregate spectral response of SSR's filtered detectors mimics solar spectral irradiance Response of each filtered Aggregate response compared detector (version 5) to solar spectral irradiance SSR version 6 (current model) has 'G1' output for global solar reflectance AM1.5 solar reflectances measured with SSRv5, SSRv6 compared to E903 global (Note: final edition of SSRv6 measures global horizontal solar reflectance at AM1, rather than AM1.5) ASTM C1549: Standard test method for determination of solar reflectance near ambient temperature using portable solar reflectometer • Specimen diffusely illuminated by incandescent bulb inside a white cavity • Light reflected through a tube at 20o from normal is measured by 4 filtered detectors • Aggregate spectral response of 4 filtered detectors mimics solar spectral irradiance • Weighted average of 4 detector readings approximates solar reflectance • Suitable for homogeneous surfaces • C1549 describes operation of SSR version 5 – SSR version 6 weights six (rather than four) detector readings and has more outputs CRRC-1 Test Method #1: Standard practice for measuring solar reflectance of a flat, opaque, and heterogeneous surface using a portable solar reflectometer • Application of C1549 (reflectometer) to non-uniform surface (e.g., blended asphalt roofing shingle) • Measure reflectance at n ≥ 30 random locations • Compute mean and sampling error (standard error of mean) • Measure reflectances at additional locations (if necessary) until sampling error (proportional to n-1/2) is sufficiently small • Report mean reflectance Other CRRC-approved techniques for measuring solar reflectance Method based on solar (UV-VIS-NIR) spectrometer with integrating sphere • Small, homogenous surfaces: ASTM E903-12 – Laboratory measurement of the spectral and solar reflectance of a very small surface Method based on first-class pyranometer • Large, low-slope surfaces: ASTM E1918-06 (2015) – In-situ (field) measurement of the solar reflectance of a large surface (diameter ~ 4 m) ASTM E 903: Standard test method for solar absorptance, reflectance, and transmittance of materials using integrating spheres • Use spectrometer w/integrating sphere to measure spectral reflectance or transmittance • Spectral measurements are essential for in-depth studies • Weight spectral reflectance with solar spectral irradiance to obtain solar reflectance – Weight with ASTM E891 beam-normal irradiance—matches 1.5 output of SSRv5, 1.5E output of SSRv6 – Weight with air mass 1 (sun at zenith) global horizontal (AM1GH) irradiance—matches G1 output of SSRv6 Integrating sphere design Example of spectrometer with integrating sphere • Perkin-Elmer Lambda 900 UV-VIS-NIR Spectrometer – Solar: 300 - 2,500 nm – Ultraviolet: 300 - 400 nm – Visible: 400 - 700 nm – Near-infrared: 700 - 2,500 nm – LBNL measures reflectance at 5-nm intervals (balancing detail, speed) • Labsphere integrating sphere – Hollow sphere with very white interior (Spectralon coating, r ≈ 99%) – Collects all diffuse light reflected by sample • Two light sources, two detectors, several diffraction gratings • Solar spectral reflectance measured relative to a calibrated standard (Spectralon disk) Spectrometer design details Schematic of Perkin-Elmer Lambda 900 spectrometer (without integrating sphere) ASTM E1918: Standard test method for measuring solar reflectance of horizontal and low-sloped surfaces in the field • Step 1: Measure incident sunlight – Face pyranometer away from surface (sensor parallel to surface) • Step 2: Measure reflected sunlight – Face pyranometer toward surface (sensor parallel to surface) • Step 3: Calculate solar reflectance – R = reflected sunlight / incident sunlight • Requirements: – Unobstructed sunlight (clear skies) – High sun (solar zenith angle ≤ 45°) – Large surface (at least 4 m × 4 m) to
Recommended publications
  • Plant Lighting Basics and Applications
    9/18/2012 Keywords Plant Lighting Basics and Light (radiation): electromagnetic wave that travels through space and exits as discrete Applications energy packets (photons) Each photon has its wavelength-specific energy level (E, in joule) Chieri Kubota The University of Arizona E = h·c / Tucson, AZ E: Energy per photon (joule per photon) h: Planck’s constant c: speed of light Greensys 2011, Greece : wavelength (meter) Wavelength (nm) 380 nm 780 nm Energy per photon [J]: E = h·c / Visible radiation (visible light) mole photons = 6.02 x 1023 photons Leaf photosynthesis UV Blue Green Red Far red Human eye response peaks at green range. Luminous intensity (footcandle or lux Photosynthetically Active Radiation ) does not work (PAR, 400-700 nm) for plant light environment. UV Blue Green Red Far red Plant biologically active radiation (300-800 nm) 1 9/18/2012 Chlorophyll a Phytochrome response Chlorophyll b UV Blue Green Red Far red Absorption spectra of isolated chlorophyll Absorptance 400 500 600 700 Wavelength (nm) Daily light integral (DLI or Daily Light Unit and Terminology PPF) Radiation Photons Visible light •Total amount of photosynthetically active “Base” unit Energy (J) Photons (mol) Luminous intensity (cd) radiation (400‐700 nm) received per sq Flux [total amount received Radiant flux Photon flux Luminous flux meter per day or emitted per time] (J s-1) or (W) (mol s-1) (lm) •Unit: mole per sq meter per day (mol m‐2 d‐1) Flux density [total amount Radiant flux density Photon flux (density) Illuminance, • Under optimal conditions, plant growth is received per area per time] (W m-2) (mol m-2 s-1) Luminous flux density highly correlated with DLI.
    [Show full text]
  • Spectral Reflectance and Emissivity of Man-Made Surfaces Contaminated with Environmental Effects
    Optical Engineering 47͑10͒, 106201 ͑October 2008͒ Spectral reflectance and emissivity of man-made surfaces contaminated with environmental effects John P. Kerekes, MEMBER SPIE Abstract. Spectral remote sensing has evolved considerably from the Rochester Institute of Technology early days of airborne scanners of the 1960’s and the first Landsat mul- Chester F. Carlson Center for Imaging Science tispectral satellite sensors of the 1970’s. Today, airborne and satellite 54 Lomb Memorial Drive hyperspectral sensors provide images in hundreds of contiguous narrow Rochester, New York 14623 spectral channels at spatial resolutions down to meter scale and span- E-mail: [email protected] ning the optical spectral range of 0.4 to 14 ␮m. Spectral reflectance and emissivity databases find use not only in interpreting these images but also during simulation and modeling efforts. However, nearly all existing Kristin-Elke Strackerjan databases have measurements of materials under pristine conditions. Aerospace Engineering Test Establishment The work presented extends these measurements to nonpristine condi- P.O. Box 6550 Station Forces tions, including materials contaminated with sand and rain water. In par- Cold Lake, Alberta ticular, high resolution spectral reflectance and emissivity curves are pre- T9M 2C6 Canada sented for several man-made surfaces ͑asphalt, concrete, roofing shingles, and vehicles͒ under varying amounts of sand and water. The relationship between reflectance and area coverage of the contaminant Carl Salvaggio, MEMBER SPIE is reported and found to be linear or nonlinear, depending on the mate- Rochester Institute of Technology rials and spectral region. In addition, new measurement techniques are Chester F. Carlson Center for Imaging Science presented that overcome limitations of existing instrumentation and labo- 54 Lomb Memorial Drive ratory settings.
    [Show full text]
  • Applied Spectroscopy Spectroscopic Nomenclature
    Applied Spectroscopy Spectroscopic Nomenclature Absorbance, A Negative logarithm to the base 10 of the transmittance: A = –log10(T). (Not used: absorbancy, extinction, or optical density). (See Note 3). Absorptance, α Ratio of the radiant power absorbed by the sample to the incident radiant power; approximately equal to (1 – T). (See Notes 2 and 3). Absorption The absorption of electromagnetic radiation when light is transmitted through a medium; hence ‘‘absorption spectrum’’ or ‘‘absorption band’’. (Not used: ‘‘absorbance mode’’ or ‘‘absorbance band’’ or ‘‘absorbance spectrum’’ unless the ordinate axis of the spectrum is Absorbance.) (See Note 3). Absorption index, k See imaginary refractive index. Absorptivity, α Internal absorbance divided by the product of sample path length, ℓ , and mass concentration, ρ , of the absorbing material. A / α = i ρℓ SI unit: m2 kg–1. Common unit: cm2 g–1; L g–1 cm–1. (Not used: absorbancy index, extinction coefficient, or specific extinction.) Attenuated total reflection, ATR A sampling technique in which the evanescent wave of a beam that has been internally reflected from the internal surface of a material of high refractive index at an angle greater than the critical angle is absorbed by a sample that is held very close to the surface. (See Note 3.) Attenuation The loss of electromagnetic radiation caused by both absorption and scattering. Beer–Lambert law Absorptivity of a substance is constant with respect to changes in path length and concentration of the absorber. Often called Beer’s law when only changes in concentration are of interest. Brewster’s angle, θB The angle of incidence at which the reflection of p-polarized radiation is zero.
    [Show full text]
  • Black Body Radiation and Radiometric Parameters
    Black Body Radiation and Radiometric Parameters: All materials absorb and emit radiation to some extent. A blackbody is an idealization of how materials emit and absorb radiation. It can be used as a reference for real source properties. An ideal blackbody absorbs all incident radiation and does not reflect. This is true at all wavelengths and angles of incidence. Thermodynamic principals dictates that the BB must also radiate at all ’s and angles. The basic properties of a BB can be summarized as: 1. Perfect absorber/emitter at all ’s and angles of emission/incidence. Cavity BB 2. The total radiant energy emitted is only a function of the BB temperature. 3. Emits the maximum possible radiant energy from a body at a given temperature. 4. The BB radiation field does not depend on the shape of the cavity. The radiation field must be homogeneous and isotropic. T If the radiation going from a BB of one shape to another (both at the same T) were different it would cause a cooling or heating of one or the other cavity. This would violate the 1st Law of Thermodynamics. T T A B Radiometric Parameters: 1. Solid Angle dA d r 2 where dA is the surface area of a segment of a sphere surrounding a point. r d A r is the distance from the point on the source to the sphere. The solid angle looks like a cone with a spherical cap. z r d r r sind y r sin x An element of area of a sphere 2 dA rsin d d Therefore dd sin d The full solid angle surrounding a point source is: 2 dd sind 00 2cos 0 4 Or integrating to other angles < : 21cos The unit of solid angle is steradian.
    [Show full text]
  • CNT-Based Solar Thermal Coatings: Absorptance Vs. Emittance
    coatings Article CNT-Based Solar Thermal Coatings: Absorptance vs. Emittance Yelena Vinetsky, Jyothi Jambu, Daniel Mandler * and Shlomo Magdassi * Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; [email protected] (Y.V.); [email protected] (J.J.) * Correspondence: [email protected] (D.M.); [email protected] (S.M.) Received: 15 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: A novel approach for fabricating selective absorbing coatings based on carbon nanotubes (CNTs) for mid-temperature solar–thermal application is presented. The developed formulations are dispersions of CNTs in water or solvents. Being coated on stainless steel (SS) by spraying, these formulations provide good characteristics of solar absorptance. The effect of CNT concentration and the type of the binder and its ratios to the CNT were investigated. Coatings based on water dispersions give higher adsorption, but solvent-based coatings enable achieving lower emittance. Interestingly, the binder was found to be responsible for the high emittance, yet, it is essential for obtaining good adhesion to the SS substrate. The best performance of the coatings requires adjusting the concentration of the CNTs and their ratio to the binder to obtain the highest absorptance with excellent adhesion; high absorptance is obtained at high CNT concentration, while good adhesion requires a minimum ratio between the binder/CNT; however, increasing the binder concentration increases the emissivity. The best coatings have an absorptance of ca. 90% with an emittance of ca. 0.3 and excellent adhesion to stainless steel. Keywords: carbon nanotubes (CNTs); binder; dispersion; solar thermal coating; absorptance; emittance; adhesion; selectivity 1.
    [Show full text]
  • Reflectometers for Absolute and Relative Reflectance
    sensors Communication Reflectometers for Absolute and Relative Reflectance Measurements in the Mid-IR Region at Vacuum Jinhwa Gene 1 , Min Yong Jeon 1,2 and Sun Do Lim 3,* 1 Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Korea; [email protected] (J.G.); [email protected] (M.Y.J.) 2 Department of Physics, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea 3 Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea * Correspondence: [email protected] Abstract: We demonstrated spectral reflectometers for two types of reflectances, absolute and relative, of diffusely reflecting surfaces in directional-hemispherical geometry. Both are built based on the integrating sphere method with a Fourier-transform infrared spectrometer operating in a vacuum. The third Taylor method is dedicated to the reflectometer for absolute reflectance, by which absolute spectral diffuse reflectance scales of homemade reference plates are realized. With the reflectometer for relative reflectance, we achieved spectral diffuse reflectance scales of various samples including concrete, polystyrene, and salt plates by comparing against the reference standards. We conducted ray-tracing simulations to quantify systematic uncertainties and evaluated the overall standard uncertainty to be 2.18% (k = 1) and 2.99% (k = 1) for the absolute and relative reflectance measurements, respectively. Keywords: mid-infrared; total reflectance; metrology; primary standard; 3rd Taylor method Citation: Gene, J.; Jeon, M.Y.; Lim, S.D. Reflectometers for Absolute and 1. Introduction Relative Reflectance Measurements in Spectral diffuse reflectance in the mid-infrared (MIR) region is now of great interest the Mid-IR Region at Vacuum.
    [Show full text]
  • Analyzing Reflectance Data for Various Black Paints and Coatings
    Analyzing Reflectance Data for Various Black Paints and Coatings Mimi Huynh US Army NVESD UNITED STATES OF AMERICA [email protected] ABSTRACT The US Army NVESD has previously measured the reflectance of a number of different levels of black paints and coatings using various laboratory and field instruments including the SOC-100 hemispherical directional reflectometer (2.0 – 25 µm) and the Perkin Elmer Lambda 1050 (0.39 – 2.5 µm). The measurements include off-the-shelf paint to custom paints and coatings. In this talk, a number of black paints and coatings will be presented along with their reflectivity data, cost per weight analysis, and potential applications. 1.0 OVERVIEW Black paints and coatings find an important role in hyperspectral imaging from the sensor side to the applications side. Black surfaces can enhance sensor performance and calibration performance. On the sensor side, black paints and coatings can be found in the optical coatings, mechanical and enclosure coating. Black paints and coating can be used inside the sensor to block or absorb stray light, preventing it from getting to the detector and affecting the imagery. Stray light can affect the signal-to-noise ratio (SNR) as well introduce unwanted photons at certain wavelengths. Black paints or coatings can also be applied to a baffle or area around the sensor in laboratory calibration with a known light source. This is to ensure that no stray light enter the measurement and calculations. In application, black paints and coatings can be applied to calibration targets from the reflectance bands (VIS- SWIR) and also in the thermal bands (MWIR-LWIR).
    [Show full text]
  • Reflectance IR Spectroscopy, Khoshhesab
    11 Reflectance IR Spectroscopy Zahra Monsef Khoshhesab Payame Noor University Department of Chemistry Iran 1. Introduction Infrared spectroscopy is study of the interaction of radiation with molecular vibrations which can be used for a wide range of sample types either in bulk or in microscopic amounts over a wide range of temperatures and physical states. As was discussed in the previous chapters, an infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy (the energy at which any peak in an absorption spectrum appears corresponds to the frequency of a vibration of a part of a sample molecule). Aside from the conventional IR spectroscopy of measuring light transmitted from the sample, the reflection IR spectroscopy was developed using combination of IR spectroscopy with reflection theories. In the reflection spectroscopy techniques, the absorption properties of a sample can be extracted from the reflected light. Reflectance techniques may be used for samples that are difficult to analyze by the conventional transmittance method. In all, reflectance techniques can be divided into two categories: internal reflection and external reflection. In internal reflection method, interaction of the electromagnetic radiation on the interface between the sample and a medium with a higher refraction index is studied, while external reflectance techniques arise from the radiation reflected from the sample surface. External reflection covers two different types of reflection: specular (regular) reflection and diffuse reflection. The former usually associated with reflection from smooth, polished surfaces like mirror, and the latter associated with the reflection from rough surfaces.
    [Show full text]
  • Direct Insolation Models
    SERI/TR-33S-344 UC CATEGORY: UC-S9,61,62,63 DIRECT INSOLATION MODELS RICHARD BIRD ROLAND L. HULSTROM JANUARY 1980 PREPARED UNDER TASK No. 3623.01 Solar Energy Research Institute 1536 Cole Boulevard Golden. Colorado 80401 A Division of Midwest Research Institute Prepared for the U.S_ Department of Energy Contract No_ EG-77-C-01-4042 , '. Printed in the United States of America Available from: National Technical Information Service U.S. Departm ent of Commerce 5285 Port Royal Road Springfi e1dt VA 22161 Price: Microfiche $3.00 Printed Copy $ 5.25 NOTICE This report was prepared as an account of work sponsored by the United States Govern­ ment. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process dis closed, or represents that its us e would not infringe privately owned rights. S=�I TR-344 FOREWORD This re port documents wo rk pe rforme d by the SERI Energy Resource Assessment Branch for the Division of Solar Energy Technology of the U.S. De pa rtment of Energy. The re po rt compares several simple direct insolation models with a rigorous solar transmission model and describes an improved , simple, direct insolation model. Roland L. Hulstrom , Branch Chief Energy Resource Assessment , \ Approved for: SOLAR ENERGY RE SEARCH INSTITUTE for Research iii S=�I TR-344 TABLE OF CONTENTS 1.0 Introduction •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 2.0 Description of Models •••••••••••• .
    [Show full text]
  • Lighting: the Principles
    TECHNICAL GUIDE Cross Sector AHDB Fellowship CP 085 Dr Phillip Davis, Stockbridge Technology Centre Lighting: The principles Filmed over 3 weeks at Stockbridge Technology Centre SCAN WITH LAYAR APP 2 TECHNICAL GUIDE Lighting: The principles CONTENTS SECTION ONE LIGHT AND LIGHTING SECTION THREE LEDS IN HORTICULTURE 1.1 What is light? 6 3.1 Crop growth under red and blue LEDs 21 1.2 The natural light environment and its 3.2 The influences of other colours of impact on plant light responses 6 light on crop growth 22 1.3 The measurement of light 6 3.3 End of day, day extension and night interruption lighting 23 1.3.1 Photometric light measurement – lumens and lux 6 3.4 Interlighting 23 1.3.2 Radiometric light measurement – Watts per 3.5 Propagation 24 metre squared or Joules per metre squared 8 3.6 Improving crop quality 24 1.3.3 Photon counts – Moles 8 3.6.1 Improving crop morphology and reducing 1.3.4 Daily light integrals (DLI) 10 the use of plant growth regulators 24 1.4 Conversions between different 3.6.2 Improving pigmentation 25 measurement units 10 3.6.3 Improving flavour and aroma 26 1.5 Assessing light quality 10 3.7 Lighting strategies 26 1.6 Overview of light technologies 10 3.8 Other lighting techniques 27 1.6.1 Incandescent and halogen bulbs 10 3.9 Insect management under LEDs 27 1.6.2 Fluorescent tubes 10 3.10 Plant pathogens and their interactions 1.6.3 High intensity discharge lamps 11 with light 28 1.6.4 Plasma and sulphur lamps 12 3.11 Conclusions 28 1.6.5 LED technology 12 SECTION FOUR OTHER INFORMATION SECTION TWO PLANT LIGHT RESPONSES 4.1 References 30 2.1 Photosynthesis 15 2.2 Light stress – Photoinhibition 15 2.3 Sensing light quality 18 2.4 UVB light responses 18 2.5 Blue and UVA light responses 18 2.6 Green light responses 18 2.7 Red and far-red light responses 19 2.8 Hormones and light 19 3 TECHNICAL GUIDE Lighting: The principles GLOSSARY Cryptochrome A photoreceptor that is sensitive to blue and UVA light.
    [Show full text]
  • Relation of Emittance to Other Optical Properties *
    JOURNAL OF RESEARCH of the National Bureau of Standards-C. Engineering and Instrumentation Vol. 67C, No. 3, July- September 1963 Relation of Emittance to Other Optical Properties * J. C. Richmond (March 4, 19G3) An equation was derived relating t he normal spcctral e mittance of a n optically in homo­ geneous, partially transmitting coating appli ed over an opaque substrate t o t he t hi ckncs and optical properties of t he coating a nd the reflectance of thc substrate at thc coaLin g­ SLI bstrate interface. I. Introduction The 45 0 to 0 0 luminous daylight r efl ectance of a composite specimen com prising a parLiall:\' transparent, spectrally nonselective, ligh t-scattering coating applied to a completely opaque (nontransmitting) substrate, can be computed from the refl ecta.nce of the substrate, the thi ck­ ness of the coaLin g and the refl ectivity and coefficien t of scatter of the coating material. The equaLions derived [01' these condi tions have been found by experience [1 , 2)1 to be of considerable praeLical usefulness, even though sever al factors ar e known to exist in real m aterials that wer e no t consid ered in the derivation . For instance, porcelain enamels an d glossy paints have significant specular refl ectance at lhe coating-air interface, and no r ea'! coating is truly spectrally nonselective. The optical properties of a material vary with wavelength , but in the derivation of Lh e equations refened to above, they ar e consid ered to be independent of wavelength over the rather narrow wavelength band encompassin g visible ligh t.
    [Show full text]
  • The Effects of Physical Parameters on the Absorption Coefficient of Natural Waters
    AN ABSTRACT OF THE THESIS OF W. Scott Pegau for the degree of Doctor of Philosophy in Oceanography presented on February 23, 1996. Title: The Effects of Physical Parameters on the Absorption Coefficient of Natural Waters. Abstract approved: Redacted for privacy J. Ronald V. Zaneveld The absorption coefficient is one of the fundamental parameters used for studies in hydrologic optics. The significance of this parameter makes it important to understand how to properly measure it and how the absorption of components, such as water, depend on physical parameters such as temperature and salinity. A discussion is provided of a majority of the techniques available for measuring the absorption coefficient. Results from a comparison of the techniques indicates that natural variability in the optical properties is an important factor to consider when comparing or reporting measured values of the absorption coefficient. The agreement between methods was found to be best at longer wavelengths where the absorption by water is a significant portion of the total absorption coefficient. In order to test the accuracy of measurements of the absorption coefficient a practical TOP closure equation is developed. Application of the equation to field measurements is limited by our ability to measure the volume scattering function. The dependence of the absorption coefficient of water on temperature and salinity is investigated. It was found that the absorption coefficient in the near infrared portion of the spectrum is strongly dependent on temperature and salinity. In the visible region the only portion with a temperature dependence > 0.00 1 m1/°C is in the neighborhood of 610 nm.
    [Show full text]