Product Information Sheet for NR-19667

Total Page:16

File Type:pdf, Size:1020Kb

Product Information Sheet for NR-19667 Product Information Sheet for NR-19667 Mycobacterium tuberculosis Gateway® Packaging/Storage: Clone Set, Recombinant in Escherichia NR-19667 was packaged aseptically in a 96-well plate. The product is provided frozen and should be stored at -80°C or coli, Plate 31 colder immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Catalog No. NR-19667 Freeze-thaw cycles should be avoided. This reagent is the tangible property of the U.S. Government. Growth Conditions: For research use only. Not for human use. Media: LB broth or agar containing 50 µg/mL kanamycin Incubation: Contributor: Temperature: 37°C Pathogen Functional Genomics Resource Center at the J. Atmosphere: Aerobic Craig Venter Institute Propagation: 1. Scrape top of frozen well with a pipette tip and streak onto Manufacturer: agar plate. BEI Resources 2. Incubate the plates at 37°C for 18 to 24 hours. Product Description: Citation: Production in the 96-well format has increased risk of cross- Acknowledgment for publications should read “The following contamination between adjacent wells. Individual clones reagent was obtained through BEI Resources, NIAID, NIH: should be purified (e.g. single colony isolation and purification Mycobacterium tuberculosis Gateway® Clone Set, using good microbiological practices) and sequence-verified Recombinant in Escherichia coli, Plate 31, NR-19667.” prior to use. BEI Resources does not confirm or validate individual mutants provided by the contributor. Biosafety Level: 1 Appropriate safety procedures should always be used with this The Mycobacterium tuberculosis (M. tuberculosis), Gateway® material. Laboratory safety is discussed in the following clone set consists of 42 plates which contain 3724 sequence publication: U.S. Department of Health and Human Services, validated clones (3294 M. tuberculosis, strain H37Rv clones Public Health Service, Centers for Disease Control and supplemented with 430 unique open reading frames (ORF) Prevention, and National Institutes of Health. Biosafety in from M. tuberculosis, strain CDC1551) cloned in Escherichia Microbiological and Biomedical Laboratories. 5th ed. coli (E. coli) DH10B-T1 cells. Each ORF was recombined in Washington, DC: U.S. Government Printing Office, 2009; see vector pDONR221 with an ATG start codon and no stop www.cdc.gov/biosafety/publications/bmbl5/index.htm. codon. The sequence was validated by full length sequencing of each entry clone with greater than 1X coverage and a Disclaimers: mutation rate of less than 0.2%. Detailed information about You are authorized to use this product for research use only. each clone is shown in Table 1. It is not intended for human use. Information related to the use of Gateway® Clones can be Use of this product is subject to the terms and conditions of obtained from Invitrogen. Recombination was facilitated the BEI Resources Material Transfer Agreement (MTA). The through an attB substrate (attB-PCR product or a linearized MTA is available on our Web site at www.beiresources.org. attB expression clone) with an attP substrate (pDONR221) to create an attL-containing entry clone. The entry clone While BEI Resources uses reasonable efforts to include contains recombinational cloning sites, attL1 and attL2 to accurate and up-to-date information on this product sheet, facilitate gene transfer into a destination vector, M13 forward neither ATCC® nor the U.S. Government makes any and reverse priming sites for sequencing and a kanamycin warranties or representations as to its accuracy. Citations resistance gene for selection. Please refer to the Invitrogen from scientific literature and patents are provided for ® Gateway Technology Manual for additional details. informational purposes only. Neither ATCC® nor the U.S. Government warrants that such information has been Plate orientation and viability were confirmed for NR-19667. confirmed to be accurate. Material Provided: This product is sent with the condition that you are responsible Each inoculated well of the 96-well plate contains for its safe storage, handling, use and disposal. ATCC® and approximately 60 µL of culture in Luria Bertani (LB) broth the U.S. Government are not liable for any damages or injuries containing 50 µg/mL kanamycin supplemented with 15% arising from receipt and/or use of this product. While glycerol. reasonable effort is made to ensure authenticity and reliability of materials on deposit, the U.S. Government, ATCC®, their suppliers and contributors to BEI Resources are not liable for BEI Resources E-mail: [email protected] www.beiresources.org Tel: 800-359-7370 Fax: 703-365-2898 © 2011/2012/2013/2016 American Type Culture Collection (ATCC). All rights reserved. NR-19667_14NOV2016 Page 1 of 4 Product Information Sheet for NR-19667 damages arising from the misidentification or References: misrepresentation of products. 1. Cole, S. T., et al. “Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Use Restrictions: Sequence.” Nature 393 (1998): 537-544. PubMed: This material is distributed for internal research, non- 9634230. commercial purposes only. This material, its product or its 2. Camus, J. C., et al. “Re-Annotation of the Genome derivatives may not be distributed to third parties. Except as Sequence of Mycobacterium tuberculosis H37Rv.” performed under a U.S. Government contract, individuals Microbiology 148 (2002): 2967-2973. PubMed: contemplating commercial use of the material, its products or 12368430. its derivatives must contact the contributor to determine if a license is required. U.S. Government contractors may need a ATCC® is a trademark of the American Type Culture license before first commercial sale. Collection. Table 1: Mycobacterium tuberculosis, Gateway® Clones, Plate 31 (ZMTLU)1 Clone Well ORF Locus ID Description (Gene name) Accession Average Depth Position Length Number of Coverage 43313 A01 1111 Rv1112 GTP-dependent nucleic acid-binding protein EngD NP_215628.1 4.720072007 43320 A02 1111 Rv3497c MCE-family protein MCE4C NP_218014.1 4.747074707 43314 A03 1111 Rv1299 peptide chain release factor 1 NP_215815.1 3.936993699 43324 A04 1114 Rv0926c hypothetical protein Rv0926c NP_215441.1 2.859964093 43331 A05 1114 Rv3571 hemoglobine-like protein NP_218088.1 3.961400359 43336 A06 1114 Rv3731 ATP-dependent DNA ligase NP_218248.1 3.946140036 43327 A07 1114 Rv2138 lipoprotein LppL NP_216654.1 4.772890485 43330 A09 1114 Rv3037c hypothetical protein Rv3037c NP_217553.1 4.438061041 43322 A10 1114 Rv0502 hypothetical protein Rv0502 NP_215016.1 4.745960503 43338 A11 1117 Rv0855 fatty-acid-CoA racemase NP_215370.1 4.692927484 D-alpha-D-mannose-1-phosphate 43346 A12 1117 Rv3264c guanylyltransferase MANB (D-alpha-D-heptose-1- YP_177951.1 4.642793196 phosphate guanylyltransferase) 43337 B01 1117 Rv0655 ribonucleotide ABC transporter ATP-binding protein NP_215169.1 4.736794987 43345 B02 1117 Rv3109 molybdenum cofactor biosynthesis protein A YP_177925.1 4.000895255 multifunctional dimethylallyltransferase/farnesyl 43347 B03 1117 Rv3398c YP_177970.1 4.742166517 diphosphate synthetase/ farnesyltranstransferase 43356 B04 1120 Rv1295 threonine synthase NP_215811.1 4.733928571 43354 B05 1120 Rv1143 alpha-methylacyl-CoA racemase NP_215659.1 2.122321429 43357 B06 1120 Rv1607 ionic transporter integral membrane protein chaA NP_216123.1 3.132142857 43353 B07 1120 Rv1063c hypothetical protein Rv1063c NP_215579.1 3.86875 putative f420-dependent glucose-6-phosphate 43350 B08 1120 Rv0132c NP_214646.1 4.11875 dehydrogenase Fgd2 sn-glycerol-3-phosphate transport ATP-binding 43359 B09 1120 Rv2832c NP_217348.1 4.727678571 protein ABC transporter UGPC 43358 B10 1120 Rv2262c hypothetical protein Rv2262c NP_216778.1 4.73125 nicotinate-nucleotide--dimethylbenzimidazole 43363 B11 1123 Rv2207 NP_216723.1 4.750667854 phosphoribosyltransferase 43362 B12 1123 Rv0209 hypothetical protein Rv0209 NP_214723.1 3.960819234 43374 C01 1126 Rv3138 pyruvate formate lyase activating protein PflA NP_217654.1 4.431616341 43370 C02 1126 Rv1009 resuscitation-promoting factor rpfB NP_215525.1 4.719360568 43372 C03 1126 Rv1178 N-succinyldiaminopimelate aminotransferase NP_215694.1 4.414742451 43373 C04 1126 Rv2538c 3-dehydroquinate synthase NP_217054.1 4.379218472 43379 C05 1129 Rv2064 cobalamin biosynthesis protein CobG NP_216580.1 4.715677591 transmembrane cytochrome C oxidase subunit II 43380 C06 1129 Rv2200c NP_216716.1 4.389725421 CtaC 43377 C07 1129 Rv1933c acyl-CoA dehydrogenase FADE18 NP_216449.1 4.729849424 43384 C08 1132 Rv0809 phosphoribosylaminoimidazole synthetase NP_215324.1 4.71819788 43383 C09 1132 Rv0797 IS1547 transposase NP_215312.1 2.479681979 BEI Resources E-mail: [email protected] www.beiresources.org Tel: 800-359-7370 Fax: 703-365-2898 © 2011/2012/2013/2016 American Type Culture Collection (ATCC). All rights reserved. NR-19667_14NOV2016 Page 2 of 4 Product Information Sheet for NR-19667 Clone Well ORF Locus ID Description (Gene name) Accession Average Depth Position Length Number of Coverage type I restriction/modification system specificity 43388 C10 1132 Rv2761c NP_217277.1 4.696996466 determinant HsdS 43385 C11 1132 Rv2228c bifunctional RNase H/acid phosphatase NP_216744.1 4.720848057 43395 C12 1135 Rv3313c adenosine deaminase NP_217830.1 3.856387665 43391 D01 1135 Rv0029 hypothetical protein Rv0029 NP_214543.1 4.672246696 43392 D02 1135 Rv1765c transposase YP_177652.1 4.626431718 43397 D03 1135 Rv3629c hypothetical protein Rv3629c NP_218146.1 4.678414097 43399 D04 1138 Rv0192 hypothetical
Recommended publications
  • Comparative Transcriptome Analysis of Waterlogging-Sensitive
    Article Comparative Transcriptome Analysis of Waterlogging-Sensitive and Tolerant Zombi Pea (Vigna Vexillata) Reveals Energy Conservation and Root Plasticity Controlling Waterlogging Tolerance Pimprapai Butsayawarapat 1, Piyada Juntawong 1,2,3*, Ornusa Khamsuk 4 and Prakit Somta 5 1 Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand 2 Center for Advanced Studies in Tropical Natural Resources, National Research University -Kasetsart University, Bangkok 10900, Thailand 3 Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand 4 Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand 5 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand *Correspondence: [email protected]; Tel.: +66-02-562-5555 Received: 22 June 2019; Accepted: 31 July 2019; Published: 2 August 2019 Abstract: Vigna vexillata (zombi pea) is an underutilized legume crop considered to be a potential gene source in breeding for abiotic stress tolerance. This study focuses on the molecular characterization of mechanisms controlling waterlogging tolerance using two zombi pea varieties with contrasting waterlogging tolerance. Morphological examination revealed that in contrast to the sensitive variety, the tolerant variety was able to grow, maintain chlorophyll, form lateral roots, and develop aerenchyma in hypocotyl and taproots under waterlogging. To find the mechanism controlling waterlogging tolerance in zombi pea, comparative transcriptome analysis was performed using roots subjected to short-term waterlogging. Functional analysis indicated that glycolysis and fermentative genes were strongly upregulated in the sensitive variety, but not in the tolerant one. In contrast, the genes involved in auxin-regulated lateral root initiation and formation were expressed only in the tolerant variety.
    [Show full text]
  • Product Sheet Info
    Master Clone List for NR-19274 Mycobacterium tuberculosis Gateway® Clone Set, Recombinant in Escherichia coli, Plates 1-42 Catalog No. NR-19274 Table 1: Mycobacterium tuberculosis, Gateway® Clones, Plate 1 (ZMTDA), NR-19637 Clone Well ORF Locus ID Description (Gene name) Accession Average Depth Position Length Number of Coverage 71201 A01 124 Rv1572c hypothetical protein Rv1572c NP_216088.2 2 71005 A02 151 Rv3461c 50S ribosomal protein L36 (rpmJ) NP_217978.1 2 71053 A03 181 Rv3924c 50S ribosomal protein L34 (rpmH) 2 71013 A04 184 Rv2452c hypothetical protein Rv2452c NP_216968.1 2 71167 A05 193 Rv0657c hypothetical protein Rv0657c NP_215171.1 2.69948187 71177 A06 211 Rv0666 hypothetical protein Rv0666 NP_215180.1 2 71225 A07 214 Rv1693 hypothetical protein Rv1693 NP_216209.1 2 71073 A08 217 Rv2099c PE family protein (PE21) 2 70874 A09 220 Rv0810c hypothetical protein Rv0810c NP_215325.1 2 70913 A10 223 Rv2371 PE-PGRS family protein (PE_PGRS40) YP_177875.1 2 71141 A11 229 Rv2806 hypothetical protein Rv2806 NP_217322.1 2 71121 A12 235 Rv1113 hypothetical protein Rv1113 NP_215629.1 1.99574468 71181 B01 241 Rv3648c cold shock protein A (cspA) NP_218165.1 2 70937 B02 244 Rv0763c ferredoxin NP_215277.1 2 70966 B03 247 Rv1054 integrase NP_215570.2 1.27530364 71145 B04 253 Rv2377c putative protein MbtH (mbtH) NP_216893.1 2 70861 B05 253 Rv2830c hypothetical protein Rv2830c NP_217346.1 2 70853 B06 253 Rv3221c anti-sigma factor YP_177945.1 2 71210 B07 256 Rv1893 hypothetical protein Rv1893 NP_216409.1 2 71062 B08 259 Rv0378 glycine rich protein
    [Show full text]
  • Terpene Production in the Peel of Sweet Orange Fruits
    Genetics and Molecular Biology, 30, 3 (suppl), 841-847 (2007) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Terpene production in the peel of sweet orange fruits Marco A. Takita1,2, Irving J. Berger1, Ana Carolina Basílio-Palmieri1, Kleber M. Borges1, Juliana M. de Souza1 and Maria L.N.P. Targon1 1Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil. 2Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas, Campinas, SP, Brazil. Abstract Terpenoids constitute the largest and most diverse class of natural products. They are important factors for aroma and flavor, and their synthesis is basically done from two compounds: isopentenyl diphosphate and dimethylallyl diphosphate. Isopentenyl diphosphate is synthesized through two different pathways, one that occurs in the cyto- plasm and one in the plastid. With the sequencing of ESTs from citrus, we were able to perform in silico analyses on the pathways that lead to the synthesis of terpenes as well as on the terpene synthases present in sweet orange. Moreover, expression analysis using real-time qPCR was performed to verify the expression pattern of a terpene synthase in plants. The results show that all the pathways for isopentenyl diphosphate are present in citrus and a high expression of terpene synthases seems to have an important role in the constitution of the essential oils of cit- rus. Key words: EST, fruit, terpenoids, orange, essential oil. Received: September 21, 2006; Accepted: July 13, 2007. Introduction ecological, providing defense against herbivores or patho- Citriculture plays a fundamental role in Brazilian ag- gens, attracting animals that disperse pollen and seeds, or ribusiness.
    [Show full text]
  • (DDT)-Resistant Drosophila
    Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila J. H. F. Pedra†‡, L. M. McIntyre§, M. E. Scharf¶, and Barry R. Pittendrigh†‡ʈ †Department of Entomology, ‡Molecular Plant Resistance and Nematode Team, and ¶Center for Urban and Industrial Pest Management, Department of Entomology, Purdue University, West Lafayette, IN 47907-1158; and §Computational Genomics, Department of Agronomy, 1150 Lilly Hall of Science, Purdue University, West Lafayette, IN 47905 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved March 22, 2004 (received for review January 26, 2004) Genome-wide microarray analysis (Affymetrix array) was used (i)to a specific P450 enzyme (Cyp6g1). Daborn et al. (16) used determine whether only one gene, the cytochrome P450 enzyme custom-made microarrays comprised of all known members of Cyp6g1, is differentially transcribed in dichlorodiphenyltrichloroeth- Drosophila cytochrome P450 genes and metabolic enzymes such ane (DDT)-resistant vs. -susceptible Drosophila; and (ii) to profile as esterases and GSTs in addition to housekeeping genes. common genes differentially transcribed across a DDT-resistant field Overexpression of Cyp6g1 in transgenic Drosophila showed only isolate [Rst(2)DDTWisconsin] and a laboratory DDT-selected population slight increases in resistance, suggesting that there is much more [Rst(2)DDT91-R]. Statistical analysis (ANOVA model) identified 158 to resistance than a single gene. probe sets that were differentially transcribed among Rst(2)DDT91-R, To date, no genome-wide expression profile has been evaluated Rst(2)DDTWisconsin, and the DDT-susceptible genotype Canton-S (P < to investigate the extent to which gene transcription varies between 0.01).
    [Show full text]
  • Synthesis of ATP Derivatives of Compounds
    Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases. Potential relationship with the effect of bisphosphonates on osteoclasts Maria A. Günther Sillero, Anabel de Diego, Janeth E.F. Tavares, Joana A.D. Catanho Da Silva, Francisco J. Pérez-Zúñiga, Antonio Sillero To cite this version: Maria A. Günther Sillero, Anabel de Diego, Janeth E.F. Tavares, Joana A.D. Catanho Da Silva, Fran- cisco J. Pérez-Zúñiga, et al.. Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases. Potential relationship with the effect of bisphosphonates on osteoclasts. Biochemical Pharmacology, Elsevier, 2009, 78 (4), pp.335. 10.1016/j.bcp.2009.04.028. hal-00493523 HAL Id: hal-00493523 https://hal.archives-ouvertes.fr/hal-00493523 Submitted on 19 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Synthesis of ATP derivatives of compounds of the mevalonate pathway (isopentenyl di- and triphosphate; geranyl di- and triphosphate, farnesyl di- and triphosphate, and dimethylallyl diphosphate) catalyzed by T4 RNA ligase, T4 DNA ligase and other ligases.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Farnesyltransferase Inhibitor R115777 Inhibits Cell Growth and Induces
    Farnesyltransferase inhibitor R115777 inhibits cell growth and induces apoptosis in mantle cell lymphoma Rolland Delphine 1 , Camara-Clayette Valérie 2 , Barbarat Aurélie 3 , Salles Gilles 3 , Coiffier Bertrand 3 , Ribrag Vincent 2 , Thieblemont Catherine 4 * 1 GIN, Grenoble Institut des Neurosciences INSERM : U836, CEA, Université Joseph Fourier - Grenoble I, CHU Grenoble, UJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR 2 Département de Médecine Institut Gustave Roussy, Villejuif,FR 3 Service d'Hématologie Hospices civils de Lyon, CHU Lyon, Université Lyon 1, Equipe d'Accueil 3737, Pierre Benite, 69495,FR 4 Service d'onco-hématologie AP-HP, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris,FR * Correspondence should be adressed to: Catherine Thieblemont <[email protected]> Abstract The cytotoxic activity of the farnesyltranseferase inhibitor R115777 was evaluated in cell lines representative of mantle cell lymphoma (MCL). Cell growth, proliferation, and apoptosis were analyzed in four human MCL cell lines (Granta, NCEB, REC, and UPN1) in presence of R115777, alone or in combination with vincristin, doxorubicin, bortezomib, cisplatin and cytarabine. Inhibition of farnesylation was determined by the appearance of prelamin A. The antitumor activity of R115777, administered p.o. at 100, 250 and 500mg/kg, was determined in vivo in nude mice xenografted with UPN1 cells. R115777 inhibited the growth of MCL cell lines in vitro with inhibitory concentrations ranging between 2 and 15nM. A fifty percent decrease of cell viability was observed at concentrations comprised between 0.08 and 17μM. Apoptosis, evaluated by annexin V and activated caspase 3 staining, was induced in all cell lines, in 40 to 71% of the cells depending on the cell lines.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • The in Vitro Characterization of Heterologously Expressed Enzymes to Inform in Vivo Biofuel Production Optimization
    The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization By David E. Garcia A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jay D. Keasling, Co-chair Professor David E. Wemmer, Co-chair Professor Carlos J. Bustamante Professor Adam P. Arkin Spring 2013 ©David E. Garcia, 2013 All rights reserved ABSTRACT The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization by David E. Garcia Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jay D. Keasling, Co-Chair Professor David E. Wemmer, Co-Chair The mevalonate pathway is of critical importance to cellular function as it is the conduit for the production of terpenoids, hormones, and steroids. These molecules are also valuable on an industrial scale because they are used as antibiotics, flavoring agents, and fragrances, examples of which are clerocidin, cinnamon, and sandalwood, respectively. Because the biosynthetic route for the production of these compounds is the deoxyxylulose 5-phosphate pathway in E. coli, by engineering the heterologous mevalonate pathway into E. coli the native forms of pathway regulation were overcome to successfully create a bio-industrial route for the production of artemisinin, an antimalarial drug. Advanced biofuels can also be biosynthesized via the mevalonate pathway with some minor alterations to the final enzymatic conversions. However, the toxicity of intermediates and products, as well as regulation internal to the pathway, limited our ability to increase production.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: J. Michael Cherry Eurie Hong Benjamin Vincent Cynthia Krieger An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Rama Balakrishnan Ron Caspi Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. YeastCyc: Saccharomyces cerevisiae S288c Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]