An Investigation of the Role of Creb Deubiquitinating Enzyme in the Regulation of Carbon Metabolism in Aspergillus Nidulans

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of the Role of Creb Deubiquitinating Enzyme in the Regulation of Carbon Metabolism in Aspergillus Nidulans An investigation of the role of CreB deubiquitinating enzyme in the regulation of carbon metabolism in Aspergillus nidulans By Md Ashiqul Alam M.Pharm (Pharmaceutical Chemistry) Submitted in total fulfilment of the requirements of the Degree of Doctor of Philosophy Department of Genetics & Evolution School Biological Sciences Faculty of Sciences The University of Adelaide September, 2016 Table of Contents Thesis Abstract i Declaration iii Acknowledgement iv List of Publications v Chapter 1: Introduction and Literature Review 1.1 Introduction 1 1.2 Carbon Catabolite Repression 2 1.3 Carbon catabolite repression in Saccharomyces cerevisiae 2 1.3.1 Mig1P & other repressor 3 1.3.2 Snf1p 7 1.3.3 Snf4p 9 1.3.4 Reg1p & Glc7p 9 1.3.5 Gal83p, Sip1p & Sip2p 10 1.3.6 Ssn6p & Tup1p 10 1.3.7 Glucose Transporters 11 1.3.8 Snf3p & Rgt2p 12 1.3.9 Hxk2p 13 1.3.10 Rgt1p 15 1.4 Carbon catabolite repression in Aspergillus nidulans 16 1.4.1 CreA 16 1.4.2 CreB & CreC 20 1.4.3 CreD 22 1.4.4 AcrB 23 1.4.5 Hexose transporters & signalling pathways 23 1.5 Ubiquitination & Deubiquitination system 26 1.6 Carbon catabolite repression in other filamentous fungi 29 1.7 Carbon catabolite repression: S. cerevisiae vs A. nidulans 32 1.8 Model of CCR mechanism in A. nidulans 33 1.9 Unresolved questions in CCR 34 1.10 A. nidulans as an experimental organism 35 1.11 Aims of the Study 38 Table of Contents Chapter 2: The CreB deubiquitinating enzyme does not directly target 41 the CreA repressor protein in Aspergillus nidulans Supplementary 62 Chapter 3: Proteins interacting with CreA and CreB in the carbon 68 catabolite repression network in Aspergillus nidulans Supplementary 83 Chapter 4: ChIP-seq assay of CreA 87 4.1 Introduction 87 4.2 Materials and Methods 89 4.3 Results 90 4.3.1 ChIP-seq assay of CreA 90 4.3.2 Genome-wide CreA binding patterns in repressing 91 and derepressing conditions 4.3.3 Genome-wide direct target of CreA 97 4.4 Discussion 99 Supplementary attached as soft copy in CD Chapter 5: General Discussion 102 References 112 Thesis Abstract In A. nidulans, carbon catabolite repression is regulated by the global repressor protein CreA which, in the presence of repressing carbon sources, represses those genes that are required to utilize less preferable carbon sources. Mutational analyses suggested that ubiquitination, mediated by CreD together with ubiquitin ligase HulA, and deubiquitination, mediated by the deubiquitinating enzyme CreB, are involved in the regulatory pathway in A. nidulans. However, the molecular mechanisms are still unknown. Previously, partial loss-of-function alleles of creA and creB indicated genetic interaction, and this was extended to analysis of complete loss-of-function alleles. Both morphological and phenotypic analyses of the double null mutant confirmed genetic interactions between the genes. Moreover, RT-qPCR and enzyme assays also validated genetic interactions as the double null mutant showed synergistic effects for transcript levels and enzyme activity. Co-purifications of CreA and CreB expressed from their native promoters were used to determine whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitinating enzyme, and no direct or indirect physical interactions were identified. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. These results open up new questions regarding the molecular mechanism of CreA action, and how the ubiquitinating pathway involving CreB interacts with this regulatory network. To identify any possible protein(s) that may form a bridge between CreA and CreB, independently purified lysates were analysed by mass spectrometry and, for both CreA and CreB, proteins were identified in repressing and derepressing conditions. Orthologues of the co-purified proteins were identified in S. cerevisiae and humans. Functional annotation analysis revealed that proteins that preferentially interact with CreA in repressing conditions include histones and the histone transcription regulator 3, Hir3. Proteins interacting with CreB were involved in cellular transportation and organization. Similar findings were obtained using yeast and human orthologues, although the yeast background generated a number of other biological processes involving Mig1p which were not present in the A. nidulans or human background Thesis Abstract Page i analyses. Hir3 was present in repressing conditions for CreA, and in both growth conditions for CreB, suggesting that Hir3, or proteins interacting with Hir3, could be a possible target of CreB. Earlier, genome-wide microarray analysis showed that CreA was involved in the transcriptional regulation of a significant number of genes in A. nidulans, however, this approach cannot show whether the targets are directly or indirectly regulated. To identify the direct targets, and whether CreA binds in derepressing conditions, ChIP-seq analyses were performed. CreA constitutively bound to the promoters of target genes in both growth conditions, indicating that the function of CreA may be controlled on the chromatin by post-translational modifications. A total of 1946 unique targets were identified for both strains in repressing and derepressing conditions including genes that are involved in carbohydrate metabolic/catabolic processes, alcohol biosynthetic processes, secondary metabolism, and sugar and amino acid transporters. Thesis Abstract Page ii Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. (Md Ashiqul Alam) Date: Declaration Page iii Acknowledgements Firstly, I thank and express my gratitude to the Almighty Allah for His blessings and provide me the strength to successfully finish the study. I like to express my deepest gratitude and respect to my principle supervisor Dr. Joan Kelly for her guidance, assistance, and encouragement from the very first day of my PhD till the day of submission. I am grateful for the knowledge and expertise she shared with me during my entire candidature. Her kindness and patience to my silly queries as well as advice on personal matters were remarkable. I am very fortunate to complete my PhD under her supervision and I will be ever grateful to her. I would like to acknowledge my co-supervisor Dr. Michael Lardelli for his guidance and encouragements to start this PhD program. Special thanks to Dr. Chris, Koon Ho Wong and his lab members (Dr. Yingying and Liguo) for the ChIP-seq experiments and bioinformatics analysis. I would like to thank Dr. Robin Lockington for his comments and suggestions on this thesis. I would like to thank all past and present members of Kelly lab, Dr. Jai, Dr. Vivian, and Adrian for all the discussions, advice, and encouragements. I would also like to appreciate past and present members of Lardelli lab, and Zeeshan and Rashid for their generous friendship. I would like to acknowledge the support I have received from all the members of the school including casual work at TSU with two wonderful persons, Karen and Jess, a big thank to them as well. I acknowledge the financial support that I have been provided through a Commonwealth Postgraduate Research Award and the Norman and Patricia Polglase Scholarship. I would like to express my special thanks to my parents, parents-in-laws, brothers and all relatives for their continuous support and inspirations to complete this PhD. Huge thanks to one of my mentors Dr. Miraz Rahman for his guidance and advice from my undergrad to til now. Finally, I would like to thank my wife (Sabin), daughter (Adifaah) and son (Anzar) for their love, encouragements, and support throughout the entire PhD period. Acknowledgement Page iv List of Publications The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Alam M.A., Kamlangdee N. & Kelly, J.M. Current Genetics (2016) DOI: 10.1007/s00294-016-0643-x Proteins interacting with CreA and CreB in the carbon catabolite repression network in Aspergillus nidulans. Alam M.A. & Kelly, J.M. Current Genetics (2016) DOI: 10.1007/s00294-016-0667-2 List of Publications Page v Chapter 1 1. Introduction and Literature Review 1.1 Introduction Eukaryote microorganisms have a complex physiology and metabolism similar to plants and animals and derive their energy from a variety of different substrates. Using this energy, they synthesize DNA, RNA, proteins, polysaccharides, vitamins and other metabolites which are essential for their survival. They show great metabolic diversity and adaptation to different environmental conditions by producing enzymes which are required for the utilization of preferred nutrient sources and by preventing the production of other enzymes which are needed to utilize less preferred nutrient sources.
Recommended publications
  • Evaluating Feruloyl Esterase—Xylanase Synergism For
    agronomy Article Evaluating Feruloyl Esterase—Xylanase Synergism for Hydroxycinnamic Acid and Xylo-Oligosaccharide Production from Untreated, Hydrothermally Pre-Treated and Dilute-Acid Pre-Treated Corn Cobs Lithalethu Mkabayi 1 , Samkelo Malgas 1 , Brendan S. Wilhelmi 2 and Brett I. Pletschke 1,* 1 Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140, South Africa; [email protected] (L.M.); [email protected] (S.M.) 2 Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape 6140, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-46-6038081 Received: 4 April 2020; Accepted: 30 April 2020; Published: 13 May 2020 Abstract: Agricultural residues are considered the most promising option as a renewable feedstock for biofuel and high valued-added chemical production due to their availability and low cost. The efficient enzymatic hydrolysis of agricultural residues into value-added products such as sugars and hydroxycinnamic acids is a challenge because of the recalcitrant properties of the native biomass. Development of synergistic enzyme cocktails is required to overcome biomass residue recalcitrance, and achieve high yields of potential value-added products. In this study, the synergistic action of two termite metagenome-derived feruloyl esterases (FAE5 and FAE6), and an endo-xylanase (Xyn11) from Thermomyces lanuginosus, was optimized using 0.5% (w/v) insoluble wheat arabinoxylan (a model substrate) and then applied to 1% (w/v) corn cobs for the efficient production of xylo-oligosaccharides (XOS) and hydroxycinnamic acids. The enzyme combination of 66% Xyn11 and 33% FAE5 or FAE6 (protein loading) produced the highest amounts of XOS, ferulic acid, and p-coumaric acid from untreated, hydrothermal, and acid pre-treated corn cobs.
    [Show full text]
  • ERK Phosphorylation of MED14 in Promoter Complexes During Mitogen-Induced Gene Activation by Elk-1 Matthew D
    Published online 17 September 2013 Nucleic Acids Research, 2013, Vol. 41, No. 22 10241–10253 doi:10.1093/nar/gkt837 ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1 Matthew D. Galbraith1,2, Janice Saxton1,LiLi1, Samuel J. Shelton1,3, Hongmei Zhang1,4, Joaquin M. Espinosa2 and Peter E. Shaw1,* 1School of Biomedical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH, UK, 2Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA, 3Department of Neurology, Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 90089, USA and 4Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China Received March 22, 2013; Revised August 21, 2013; Accepted August 28, 2013 ABSTRACT INTRODUCTION The ETS domain transcription factor Elk-1 stimu- The specific and temporal co-ordination of gene expres- lates expression of immediate early genes (IEGs) in sion is a fundamental process of cell-based life with response to mitogens. These events require phos- patterns of gene expression controlling proliferation, dif- phorylation of Elk-1 by extracellular signal-regulated ferentiation and cell death. Immediate early gene (IEG) expression has revealed how crucial regulatory events kinase (ERK) and phosphorylation-dependent inter- revolve around the interface between pathway-specific action of Elk-1 with co-activators, including histone transcription factors and components of the transcription acetyltransferases and the Mediator complex. Elk-1 machinery, involving a plethora of protein interactions also recruits ERK to the promoters of its target and modifications (1,2).
    [Show full text]
  • "Hsp70 Chaperones"
    Hsp70 Chaperones Advanced article Elizabeth A Craig, University of Wisconsin, Madison, Wisconsin, USA Article Contents . Introduction Jaroslaw Marszalek, University of Gdansk, Gdansk, Poland . Hsp70:Client Protein Interaction Cycle . Proliferation of Hsp70 and J-protein Genes . Function and Evolution of Mitochondrial Hsp70 Systems . Conclusions: Versatility of Hsp70 System Allows for Adaptation to New Functions Online posting date: 15th March 2011 Via their interaction with client proteins, Hsp70 molecu- stress. In some cases they also facilitate transfer of client lar chaperone machines function in a variety of cellular proteins to proteolytic systems, particularly when refolding processes, including protein folding, translocation of into the native state is unachievable. See also: Chaperones, proteins across membranes and assembly/disassembly of Chaperonin and Heat-Shock Proteins The ability of Hsp70 chaperones to be involved in such protein complexes. Such machines are composed of a core diverse cellular functions, whereas relying on a single bio- Hsp70, as well as a J-protein and a nucleotide exchange chemical activity, an adenosine triphosphate (ATP)- factor as co-chaperones. These co-factors regulate the dependent client binding and release cycle, is remarkable. cycle of adenosine triphosphate (ATP) hydrolysis and Here, to illustrate the molecular mechanisms and evo- nucleotide exchange, which is critical for Hsp70’s inter- lutionary history behind the specialisation of Hsp70 sys- action with client proteins. Cellular compartments often tems we focus on mitochondrial Hsp70 systems, as they contain multiple Hsp70s, J-proteins and nucleotide exemplify two major strategies of Hsp70 specialisation: exchange factors. The capabilities of Hsp70s to carry out (i) amplification and diversification of HSP70 genes and diverse cellular functions can result from either special- (ii) multiplication and specialisation of genes encoding isation of an Hsp70 or by interaction of a multifunctional their J-proteins co-chaperones (Figure 1).
    [Show full text]
  • Advances in Chitin/Chitosan Characterization and Applications
    Advances in Chitin/Chitosan Characterization and Applications Edited by Marguerite Rinaudo and Francisco M. Goycoolea Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Advances in Chitin/Chitosan Characterization and Applications Advances in Chitin/Chitosan Characterization and Applications Special Issue Editors Marguerite Rinaudo Francisco M. Goycoolea MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Marguerite Rinaudo Francisco M. Goycoolea University of Grenoble Alpes University of Leeds France UK Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Polymers (ISSN 2073-4360) from 2017 to 2018 (available at: https://www.mdpi.com/journal/polymers/ special issues/chitin chitosan) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-802-2 (Pbk) ISBN 978-3-03897-803-9 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... ix Preface to ”Advances in Chitin/Chitosan Characterization and Applications” .........
    [Show full text]
  • UC Riverside UC Riverside Previously Published Works
    UC Riverside UC Riverside Previously Published Works Title Analysis of the Candida albicans Phosphoproteome. Permalink https://escholarship.org/uc/item/0663w2hr Journal Eukaryotic cell, 14(5) ISSN 1535-9778 Authors Willger, SD Liu, Z Olarte, RA et al. Publication Date 2015-05-01 DOI 10.1128/ec.00011-15 License https://creativecommons.org/licenses/by-nc-sa/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Analysis of the Candida albicans Phosphoproteome S. D. Willger,a Z. Liu,b R. A. Olarte,c M. E. Adamo,d J. E. Stajich,c L. C. Myers,b A. N. Kettenbach,b,d D. A. Hogana Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAa; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USAb; Department of Plant Pathology and Microbiology, University of California, Riverside, California, USAc; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USAd Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm forma- tion, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that pro- tein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins.
    [Show full text]
  • Feruloyl Esterases: Biocatalysts to Overcome Biomass Recalcitrance and for the Production of Bioactive Compounds Dyoni M
    Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Craig Faulds, Wanderley D. dos Santos To cite this version: Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, et al.. Feru- loyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive com- pounds. Bioresource Technology, Elsevier, 2019, 278, pp.408-423. 10.1016/j.biortech.2019.01.064. hal-02627378 HAL Id: hal-02627378 https://hal.inrae.fr/hal-02627378 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Accepted Manuscript Review Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Craig
    [Show full text]
  • Discovery of an Alternate Metabolic Pathway for Urea Synthesis in Adult Aedes Aegypti Mosquitoes
    Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes Patricia Y. Scaraffia*†‡, Guanhong Tan§, Jun Isoe*†, Vicki H. Wysocki*§, Michael A. Wells*†, and Roger L. Miesfeld*† Departments of §Chemistry and *Biochemistry and Molecular Biophysics and †Center for Insect Science, University of Arizona, Tucson, AZ 85721-0088 Edited by Anthony A. James, University of California, Irvine, CA, and approved December 4, 2007 (received for review August 27, 2007) We demonstrate the presence of an alternate metabolic pathway We previously reported that mosquitoes dispose of toxic for urea synthesis in Aedes aegypti mosquitoes that converts uric ammonia through glutamine (Gln) and proline (Pro) synthesis, acid to urea via an amphibian-like uricolytic pathway. For these along with excretion of ammonia, uric acid, and urea (20). By studies, female mosquitoes were fed a sucrose solution containing using labeled isotopes and mass spectrometry techniques (21), 15 15 15 15 15 NH4Cl, [5- N]-glutamine, [ N]-proline, allantoin, or allantoic we have recently determined how the N from NH4Cl is acid. At 24 h after feeding, the feces were collected and analyzed incorporated into the amide side chain of Gln, and then into Pro, in a mass spectrometer. Specific enzyme inhibitors confirmed that in Ae. aegypti (22). In the present article we demonstrate that the 15 15 15 mosquitoes incorporate N from NH4Cl into [5- N]-glutamine nitrogen of the amide group of Gln contributes to uric acid and use the 15N of the amide group of glutamine to produce synthesis in mosquitoes and, surprisingly, that uric acid can be 15 labeled uric acid.
    [Show full text]
  • UMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells
    UMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells Rong Hu1, Wing Lam1, Chih-Hung Hsu1,2, Yung-Chi Cheng* 1 Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America, 2 Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China Abstract Background: Human UMP/CMP kinase was identified based on its enzymatic activity in vitro. The role of this protein is considered critical for the maintenance of pyrimidine nucleotide pool profile and for the metabolism of pyrimidine analogs in cells, based on the in vitro study of partially purified enzyme and recombinant protein. However, no detailed study has yet addressed the role of this protein in nucleotide metabolism in cells. Methodology/Principal Findings: Two stable cell lines in which UMP/CMP kinase (mRNA: AF087865, EC 2.7.4.14) can be either up-regulated or down-regulated were developed using Tet-On Gene Expression Systems. The amount and enzymatic activity of UMP/CMP kinase extracted from these two cell lines can be induced up by 500% or down by 95–98%. The ribonucleotides of endogenous pyrimidine as well as the metabolism of exogenous natural pyrimidine nucleosides and their analogs were not susceptible to the altered amount of UMP/CMP kinase in these two stable RKO cell lines. The level of incorporation of pyrimidine nucleoside analogs, such as gemcitabine (dFdC) and troxacitabine (L-OddC), into cellular DNA and their potency in inhibiting cell growth were not significantly altered by up-regulation or down-regulation of UMP/CMP kinase expression in cells.
    [Show full text]
  • 1471-2164-15-164.Pdf
    Meinhardt et al. BMC Genomics 2014, 15:164 http://www.biomedcentral.com/1471-2164/15/164 RESEARCH ARTICLE Open Access Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases Lyndel W Meinhardt1*, Gustavo Gilson Lacerda Costa2, Daniela PT Thomazella3, Paulo José PL Teixeira3, Marcelo Falsarella Carazzolle2, Stephan C Schuster4, John E Carlson5, Mark J Guiltinan6, Piotr Mieczkowski7, Andrew Farmer8, Thiruvarangan Ramaraj8, Jayne Crozier9, Robert E Davis10, Jonathan Shao10, Rachel L Melnick1, Gonçalo AG Pereira3 and Bryan A Bailey1 Abstract Background: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp. Results: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases.
    [Show full text]
  • Identification and Analysis of Single-Nucleotide Polymorphisms in the Gemcitabine Pharmacologic Pathway
    The Pharmacogenomics Journal (2004) 4, 307–314 & 2004 Nature Publishing Group All rights reserved 1470-269X/04 $30.00 www.nature.com/tpj ORIGINAL ARTICLE Identification and analysis of single-nucleotide polymorphisms in the gemcitabine pharmacologic pathway AK Fukunaga1 ABSTRACT 2 Significant variability in the antitumor efficacy and systemic toxicity of S Marsh gemcitabine has been observed in cancer patients. However, there are 1 DJ Murry currently no tools for prospective identification of patients at risk for TD Hurley3 untoward events. This study has identified and validated single-nucleotide HL McLeod2 polymorphisms (SNP) in genes involved in gemcitabine metabolism and transport. Database mining was conducted to identify SNPs in 14 genes 1Department of Clinical Pharmacy and Pharmacy involved in gemcitabine metabolism. Pyrosequencing was utilized to Practice, Purdue University, W. Lafayette, IN, determine the SNP allele frequencies in genomic DNA from European and 2 USA; Departments of Medicine, Genetics, and African populations (n ¼ 190). A total of 14 genetic variants (including 12 Molecular Biology and Pharmacology, Washington University School of Medicine and SNPs) were identified in eight of the gemcitabine metabolic pathway genes. the Siteman Cancer Center, St Louis, MO, USA; The majority of the database variants were observed in population samples. 3Department of Biochemistry and Molecular Nine of the 14 (64%) polymorphisms analyzed have allele frequencies that Biology, Indiana University School of Medicine, were found to be significantly different between the European and African Indianapolis, IN, USA populations (Po0.05). This study provides the first step to identify markers Correspondence: for predicting variability in gemcitabine response and toxicity. Dr HL McLeod, Washington University The Pharmacogenomics Journal (2004) 4, 307–314.
    [Show full text]
  • Chaperonin Function: Folding by Forced Unfolding
    R EPORTS (1985); N. Romani et al., ibid. 169, 1169 (1989); C. migrated was measured with the clonotypic antibody 26. J. G. Cyster, J. Exp. Med. 189, 447 (1999). Heufler et al., ibid. 176, 1221 (1992). to TCR KJ1-26 (28). Overnight incubation of day 2 27. G. G. MacPherson, C. D. Jenkins, M. J. Stein, C. Ed- 23. R. Bonecchi et al., ibid. 187, 129 (1998). draining lymph node cells (at 107 cells/ml) in medium wards, J. Immunol. 154, 1317 (1995). 24. Anti-OVA (DO11.10) T cell receptor (TCR) transgenic containing interleukin-2 (IL-2) (4 ng/ml) increased 28. K. Haskins et al., J. Exp. Med. 157, 1149 (1983). 1 lymph node cells (5 3 106 cells) were transferred to the sensitivity of activated KJ1-26 cells to MDC 29. We thank R. Locksley, S. Luther, K. Reif, and A. Weiss for comments on the manuscript; M. Ansel for help BALB/c mice that were immunized 1 day later with (14). Therefore, IL-2–cultured cells were used in ex- with the in vivo transfer experiments; and C. 100-mg OVA in Freund’s complete adjuvant (25). periments to detect chemokine production by puri- McArthur for cell sorting. Supported in part by NIH fied lymph node DCs and stromal cells. Draining (pool of brachial, axillary, and inguinal) and grant AI-40098, the Pew Foundation (J.G.C.), and the nondraining (mesenteric) lymph node cells were iso- 25. E. R. Kearney, K. A. Pape, D. Y. Loh, M. K. Jenkins, American Lung Association (H.L.T.). lated 1 to 5 days later and used in MDC chemotaxis Immunity 1, 327 (1994); K.
    [Show full text]
  • Nfletffillfl Sm of Nuelieotfl Dles
    Nfletffillflsm of Nuelieotfl dles ucleotides \f consistof a nitrogenousbase, a | \ pentose and a phosphate. The pentose sugaris D-ribosein ribonucleotidesof RNAwhile in deoxyribonucleotides(deoxynucleotides) of i Aspariaie--'N.,,,t .J . DNA, the sugaris 2-deoxyD-ribose. Nucleotides t participate in almost all the biochemical processes/either directly or indirectly.They are the structuralcomponents of nucleicacids (DNA, Y RNA), coenzymes, and are involved in tne Glutamine regulationof severalmetabolic reactions. Fig. 17.1 : The sources of individuat atoms in purine ring. (Note : Same colours are used in the syntheticpathway Fig. lZ.2). n T. C4, C5 and N7 are contributedby glycine. Many compoundscontribute to the purine ring of the nucleotides(Fig.t7.l). 5. C6 directly comes from COr. 1. purine N1 of is derivedfrom amino group It should be rememberedthat purine bases of aspartate. are not synthesizedas such,but they are formed as ribonucleotides. The purines 2. C2 and Cs arise from formate of N10- are built upon a formyl THF. pre-existing ribose S-phosphate. Liver is the major site for purine nucleotide synthesis. 3. N3 and N9 are obtainedfrom amide group Erythrocytes,polymorphonuclear leukocytes and of glutamine. brain cannot producepurines. 388 BIOCHEMISTF|Y m-gg-o-=_ |l Formylglycinamide ribosyl S-phosphate Kn H) Glutam H \-Y OH +ATt OH OH Glutame cl-D-Ribose-S-phosphate + ADP orr-l t'1 PRPPsYnthetase ,N o"t*'] \cH + Hrcl-itl HN:C-- O EO-qn2-O.- H -NH l./ \l KH H) I u \.]_j^/ r,\-iEl-/^\-td Ribose5-P II Formylglycinamidineribosyl-s-phosphate
    [Show full text]