Feruloyl : Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Craig Faulds, Wanderley D. dos Santos

To cite this version:

Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, et al.. Feru- loyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive com- pounds. Bioresource Technology, Elsevier, 2019, 278, pp.408-423. ￿10.1016/j.biortech.2019.01.064￿. ￿hal-02627378￿

HAL Id: hal-02627378 https://hal.inrae.fr/hal-02627378 Submitted on 26 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 rdcin f iatv compounds, bioactive of production Biocatalyst esterases: Feruloyl W.D., Santos, dos C.B., Faulds, Oliva, T.R., Mota, D.M., Oliveira, as: article this cite Please 16January2019 January2019 14 12December2018 Accepted Date: Revised Date: Received Date: To appearin: Reference: DOI: PII: Marchiosi, Osvaldo Ferrarese-Filho, Craig B. Faulds, Wanderley Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Seg production ofbioactivecompounds Feruloyl esterases:Biocatalyststoovercomebiomassrecalcitra Review Accepted Manuscript errors maybediscoveredwhichcould affect content,and the l legaldisclaimers al that apply to the journalpertain. production process during the form. Please notethat final review oftheresultingproofbeforeitispublishedinits manu The manuscript. the of version early this providing are we acce been has that manuscript unedited an of file PDF a is This 2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Bioresource Technology https://doi.org/10.1016/j.biortech.2019.01.064 S0960-8524(19)30077-X BITE 20941 Comment citer cedocument: Bioresource Technology

B., Segato, F., Marchiosi, R., Ferrarese-Filho, O., Ferrarese-Filho, R., Marchiosi, F., Segato, B., nce andforthe pted for publication. As a service to our customers our to service a As publication. for pted s to overcome biomass recalcitrance and for the for and recalcitrance biomass overcome to s D. dos Santos (2019), doi: script will undergo copyediting, typesetting, and typesetting, copyediting, undergo will script ato, Rogério https://doi.org/10.1016/j.biortech. Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Saccharification. Keywords derivatives of industrial interest. for as as well lignocellulosebiomass treatments aiming of forproduction bioethanol andother a microorganism’senzymatic wall-degrading plant cell arsenal responsible molecularof weight low phenolic compounds biomass. inplant Feruloylare of esterases part hydroxycinnamate acidandits Ferulic derivativesrepresentoneof most the abundant forms Abstract Av. Colombo, 5790, Zona 7, Jardim Universitário, Bloco I *Corresponding author: 1 France c Brazil b a biotechnologic This to furtherbiotechnological reviewcontributes applications. structural, functional, and according andorganized totheir function, biochemical properties, specificity, content encoding for several esterases. systematically about feruloyl is Information basicknowledgethe and biotechnological recent advancesin genecharacteristics the and valuemolecules. to plant biomass biosynthesisofhigh-added and conversion repurposedimprovement dedicated effortshavebiocatalysts made been identify,createand to requirements,industrial scientificdiscoveries accelerating andcontinuous knowledgetransfer, hydroxycinnamatesStimulated wall-bound by insoluble cytosolic soluble conjugates. and

Aix DepartmentBiochemistry, of State University Maringá, of Maringá, Paraná, Brazil The authorsThe contributedequally DepartmentBiotechnology, of Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for for and recalcitrance toovercome biomass Biocatalysts esterases: Feruloyl - Marseille Université, INRA Dyoni M.Oliveira

Marchiosi

: Biorefinery; al R&D both R&Dhydroxycinnamates al forobtaining from by-products agricultural a , Osvaldo Ferrarese-Filho DMO ( the production of bioactive compounds compounds bioactive of production the a1* Comment citer cedocument: Carbohydrate esterases; Carbohydrate esterases; , Thatiane R. Mota Engineering School of Lorena,

[email protected] UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF)

a , Craig B. Faulds , Craig a1 , 1 1

BiancaOliva - Cell wall; Cell wall; 89, ZIP 87020 ); WDS ( ); WDS University of SãoPaulo, Lorena, SãoPaulo, [email protected] Genome c b , WanderleyD.dos Santos , SegatoFernando - 900, Maringá, Paraná, Brazil

mining; Lignocellulose;

)

for cleaving Here we review , 13009 b , Rogério

Marseille,

a*

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos are able toneutralize free protectingare cell radicals, ( membranes andDNA Information about severalenzymesInformationabout systematicallyorganized is according function,to their in advances comprehensive mining biotechnological and about biochemical characteristics. 2015). ( Carpita, cross-linking and McCann hydroxycinnamate-hemicellulose content composition, lignin and occlusionof the bylignin- cell wall the organization ofcellulosemicrofibrils, hemicellulose polymerization and substitutionpattern, energyi additional architecture and oilinreplace the potential materialraw hasthe toproduce and in nature biofuelsonascalelargeenoughto recalcitrance tohydrolysis, wherefore lignocellulosic biomassmost isthe abundantrenewable FAEs forlignocellulosic biomass keyrole deconstruction has a indecreasing biomass the wall thecell polymers. thebiomass Therefore, cross-linking recalcitrance, application of extensively investigated ( microbialthe biotransformation tovanillinmajor ofFA (a aroma) foodindustry hasbeen guaiacol; offlavor aprecursorforsynthesis compounds,andis also suchasvanillin 4-vinyl antidiabetic effects; andasasunprotectiveand neuroprotective factor.F antimicrobial antibacterial, therapeuticagent,includinganti-inflammatory, properties; as a ( hydroxycinnamic acids to tools catalyzebiosynthetic of esterification esters ofand transesterification bioethanol production, improving the of digestion forage forruminants,as plants and delignifica andsubsequent bioconversion biological tohighaddedaromaticwastes value compounds, applications,with many as:obtaining such FAfrom biotechnological by- agricultural plant walls, cytoplasm FAEs synthetic substrates. arefoundinbacteria,fungiandplants, and capacity ferulicthe to release acid(FA) hydroxycinnamic andother from cell acids plant due architec 1.

to the to the factorsaccessibilityseveral cellulosecrystallinity,and suchas, polymerization, the Introduction This research review des review This research Biomass recalcitrance is mainly wall derivedfromcell composition plant the and acid(FA Ferulic (FAE;Feruloyl esterases EC3.1.1.73)are acidesterasesa subclassofcarboxylic with ture providesof ture lignocellulose convert cellulose abarrier into to fermentable sugars, tion of non-woody plants enzymatic industry, tionfor thepaper plants for of hydrolysis non-woody it mid-term ( is conferred bydifferentis interactions among nputs for their disruption nputsattack fordisruption (M their Comment citer cedocument: ) has applications applications as afooddueantioxidant) has toits preservative and Furuya et al.,Furuya et 2017 Furuya et Furuya et al., 2017 Linh et al.,2017 Linh et cribes fundamental current cribes the knowledge andrecent

; ). FAimportant). isan for factor lignocellulosic ; Gopalan et al., 2 Gopalan etal., Mota 2 2 etal.,2018 cCann and 015 ). its

; Carpita, Thecomplex 2015).

components, requiring Oliveira et al., 2017Oliveira al., et ). A Paiva et et Paiva al., 2013 and its derivatives derivatives and its

). It ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos differ the — ester-linkedcell andFAoccursin Caryophyllalesat bromeliads, ‘core’ wall gingers, covalentl pla sunscreen and ( antioxidant inplants and pharmaceutical products conserving the resonating radical among theirchemical thisa linkages. For itworksas reason, chain by afree reactions releasing radicalispositive, phenylpropanoids freeradical stop peroxidases andotherchain, metabolic( activities toelectron)byUV-light, produced molecule stabilize respiratory afree radical (non-paired phenolic and other compounds, structure FApresentsapolyenic(conjugated) that allows the ( biosynthesis andasfinal ofthepathway products intermediaryboth as metabolites towards formation the during lignin monolignols of phenylpropanoidProduced viathe pathway,FA canbeseen andits ester of CoA,FA-CoA, hydroxy)-3 acid Ferulic inplant 2.1. cell wallsand biomass recalcitrance and peroxidases 5-5’ thatactonFAand (e.g. by specific to produce esters dehydrodimers efficiency( hydrolysis can the ofblock attack cross-linkages reducing , polymers. Such enzymatic withligninor ether-link dimerize withotherFA-arabinoxylan, cross-linkingcell these wall ( other backbone) than andis xylopyranosyl arabinoxylanmore abundant (β-1,4-linked groups hydroxylof of group FAis thearabinosylincluding intheC-5 residue grasses, the esterified tissue, as summarized in ( 2. saccharification of biomass. lignocellulosic andobtainment improved ofhydroxycinnamic acidsfrom by-products agricultural biochemical andstructural evaluation, asbiotechnological aswell applications ofFAEs tothe functional, substrateFAEs andtheir relationship may instrument for powerful further bea mapping We thatthis biochemical believe kinetics, of properties, andspecificity. substrate Oliveira etOliveira Dupree,2019 & Terrett

nt cell walls, FA plays a key role in inter- and may walls,intra-polymer cross-linkage.nt cell It be FAplays also akeyroleininter- ent and high concentrations mg/g andhighconcentrations (>3.5 ent In commelinid monocots— acidisahydroxy Ferulic acid:Ferulic apolyvale y linked to lignin through the ether or ester bonds and esterified to polysaccharides y linked and topolysaccharides theetheroresterbonds esterified toligninthrough -phenyl-2-propenoic acid ( or3-methoxy-4-hydroxy-cinnamicacid al., 2015 al., ). FA). the ester-linkedto arabinosyl residueof is arabinoxylan able to Oliveira etOliveira al., 2015 Comment citer cedocument: ). Table 1

cinnamic systematic acidwiththe name (3-methoxy-4- nt molecule nt molecule .

In the primaryIn the walls of cell commelinidmonocots, a group a group of palms, angiosperms grasses, including

). ). The production of FA cross-linkages is catalyzed ofThe production is FA cross-linkages

cell wall) according wall) cell 3 3 Bento-Silva et al., 2018 Bento-Silva etal., Oliveira etOliveira 2015 al., to the specie, organto the specie, and dos Santos etal., 2008 ). Like). monolignols ). for AstheΔG Fig. 1

A ). ). In ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Staphylococcus aureus microorganisms as such and intestinal disorders with antibioticscan synergistically inthe treatment act ofpathogenic al.,2006 et organismthe ( side against effects (abdominal discomfort), whichlimit treatment the toenhance natural capacity immune defensesand gastrointestinal movement, tract protecting FA hasbeeninvestigated adjunct administrated asan in cancer chemotherapy duetoits ( antimicrobialand its activities with effects and against yeasts bacteria its FAeffectsactivities of protective hasdemonstrated againsttumor factor (TNF) necrosis ( countries insomeadditive amongothers. food For that reason, FAisapopular cholesterol-lowering, anti-inflammatory,carcinogenic, antioxidant,antimicrobial, antiviral, anti-allergic, and to toxicity the variety organism broad properties: andshowinga ofbiomedical anti- mgfrom low 180to165 in its ofFA,which ispresent conjugated and freeforms, having physiological concentration andpharmacokinetics. Generally, given ina meal, ingest people potential ferulic Pharmaceutical of 2.2. andderivatives acid ( bioethanol polysaccharideswall for biomass hydrolases, byto alimitationglycosyl conversion arabinoxylan isthe ofrecalcitranceincrease with of consequent reduction digestibility ofcell acce toarabinoxylanesterified affects wall manysuch cell properties, asadherence, extensibility, al.,2015 et arabinoxylans linking tobyforminglignin complex ( lignin–ferulate–arabinoxylan a because ferulatemaybut also for as act anucleating formationsite andhencethe lignin, of of isimportantarabinoxylaningrasses, arabinoxylan notonly itleadsbecause cross-linked to conversionwall andnegativelyim 1999 8 - -4’-dehydrodiferulic acid) cross-linking vicinal arabinoxylan ( O-4’-dehydrodiferulic acid) cross-linking ssibility andbiodegradability ).

Lignin polymertoefficient Lignin ofbarrier cell plant tissues imposes andferuloylation a Due to the observed properties,Due tothe anextensivefunctions study of biological andrelated The therap Cross-linking ofgrasswall cell especiallythrough components, FAanddiFA Srinivasan et 2007 al., ). Inaddition, increase the of promotedmotility intestinal byFA some inhibits ; Oliveira etal.,Oliveira 2015 Terr ett ett eutic effect and efficacy onsome ofFAas dependent such are properties & Dupree, 2019

and Comment citer cedocument: Escherichia coli, Lysteria Lysteria monocytogenes ; ). Perez-Boada etPerez-Boada 2014 al., .

pacts digestibility ( digestibility pacts An of consequenceof additional diFAcross-linkages

).

Helicobacter pylori 4 4 .

Ponnusamy 2019 etal., ) .

, Pseudomonas aeruginosa Fig. 2 Borges et Borges et al., 2013 ) ( Hatfield & Hatfield & R ). ). Feruloylation

Oliveira Oliveira Badary alph, alph, , ). ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos thera ( of synergistically interacts FA,which with someusedinthetreatment drugs ofdiabetes dismutase These catalase. resultscorrelated and superoxide are withthe antioxidant capacity and glucose thiobarbituric acid-reactivesubstances, increases andalso the of action bymacrophages.produced Diabetic supplementedrats FA with showedin areduction blood Sompong 2017 etal., DNAthe damage improvement( tothe performance due inantioxidant intubation viaintragastric rats increases protection against lipidperoxidation anddecreases (CE1) within the Carbohydrate-Active Enzymes (CAZy Carbohydrate-Active database (CE1) within the in – www.cazy.org), 3. ( andtransferase superoxidedismutase apoptosis and in components, alteration keyantioxidant suchasglutathione, glutathione S- Asparasites. animportantfunction, microfilaricidal activity inducedbyFAculminates in mixed capacities,FA hasinducing in antioxidantmechanisms apoptosis andpro-oxidant ( drugpackages to produce viscositythe ofpolysaccharides to obtain gels,andcanbe it intomaterialsincorporated used preserving oranges,stabilizingsoybeanoil, theoxidation and inhibiting ofbiscuits, increasing natural as a preserves uses,compound diversified foods,soithasvery that including in maize. that,FA Besides showsthat inhibits thegrowth activity microorganisms of andacts dehydrodimers may graminearum Fusarium against beused together insolubilitywall of with dietary compounds,andcanbeusedfibers. incereal FA ( treatment ofmooddisorders in brain promotesneurotransmitter the and vasodilatation that beneficial forthecan be Additional demonstrated has work thatmonoamine FAincreasesthe levels of intestinepancreas, andliver( byreducing inflammationoxidative and stress positive bacteria by changing cellmorphology andmembrane permeability withstreptomycinapplied in consort and Gram- against bothpathogenicGram-negative Nankar et AnimportantNankar al.,2017). function ofFA asprotective, wasobserved showing

peutic onnephropathyaction andprotective effectsbrain, inorganssuch as the kidney, Currently, classified the knownFAEsare the into EsteraseFamilyCarbohydrate 1 Classification FA exhibits FA exhibits decreasinganti-inflammatory thelevels ofcompounds properties,

The phytochemical-antibiotic combinationeffectwhen assays showed asynergistic In foodscience,FAhasmuchdue intrinsiccharacteristics utilization to its cell in the ). ).

of feruloyl esterases and genomeanalysis of feruloylesterases Comment citer cedocument: Silva Silva & Batista, 2017 Chen et 2015 al.,

Saini et al.,Saini et 2012 5 5 ). ). ).

). Theadministration ofWistar). FAin , a fungus accountable for , afungusaccountable disease Paiva et 2013Paiva et al., ( Ren etal., 2017 Shi et Shi et al., 2016

; ). ). ). ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 2004 many threebiochemically characterizedfungal genomes, types of containing FAEsA, (types classification system, subfamilies seven (SF 1to 7) ofcandidate FAEs identified were in theexpanding comprehension of ( knownFAEs ( according to Crepin's classification classification microbial FAEbasedonfungal originis ofthe todescribenot enough it from used byother researchers incharacterizing FAES.their For example, cinnamoyl the thermocellumClostridium ofthesamepart gr andunrelated orsynthetic substrates, enzymeswith different natural methodologies with are informationconfirmed The ofwas andsequences. enzymes ofspecificity the FAEs somethe onaverypresents at smalltime because numberof (2004) it is based disadvantages this relationshipHowever, classificationsystemevolutionary amongmicrobial FAEs. the MSA, Fig.1B – MFA,ferulate methyl specificitheir A,B,similarities into Etypes,similarity correlatedwith and this also C,Dandaputative determ and explained thedifferenttoclassify FAEs. methods used systemelegant base ( ofcomparablelack data activity primary sequence identity. amino acid Nofurthercorrelation established couldbe duetothe albus typecomprises fifth Esub-class.putative This sub-class different from encoded Therefore,FAEs these other. each are enzymes classifiedinthe are enzymes predominantlythese are bacterial inorigin, suggestingfungal that andbacterial previous toanythe kindoftypein fourclassifications.microbial Todate, FAEs belong donot su esterified Differ accordance aminowith its ( sequences andmode acid ofaction ). ).

L. acidophilus L. acidophilus RaXynB. Nevertheless, members of this sub-class may identifiedbasedonly be RaXynB. members sub-class ontheir Nevertheless, ofthis ent classification systems have been proposed for FAEs. In this article, Inthis wereviewedFAEs. systems classification ent beenproposed for have ined biochemical andfunctional andsequence characteristics similarities ined ( According toCrepin’sAccording classification, FAEssequencesby aminoacid beclassified can The Crepi As a further refinement for FAEs classification, Benoit and coworkers provided an As afurther FAEsclassification, refinementfor andcoworkers Benoit classification, to According Crepin’s phylogenetic the analysisthatsome alsosuggests bstrates, andbstrates, amino homology, sequence whichalso the indicates acid ty forsynthetic substrates containing hydroxycinnamic(methylmethyl esters ), ability t ), ability n’s classification system is based in n’spreviously based thecorrelation classification system between is oup – e.g.PeFaeAfrom– oup d on the phylogenic analysis genomic phylogenicanalysis the of sequences knownfungal d on F46 the is classified into putative E,indicating functionaltype thatthe Comment citer cedocument: o FAdehydrodimers release (especially, 5,5’-diFA, p -coumarate – MpCA, methyl caffeate-coumarate– MpCA,methyl XynZ, Ruminococcus

Kim 2015 &Baik, Crepin 2004 etal., Pleurotus eryngii Pleurotus 6 6 Benoit etal.,Benoit 2008 sp. RspXyn1, ).

Orpinomyces

).

and AnFaeAfrom This classification hasbeen Lombard al.,2014 et R. flavefaciens MCA, and methyl sinapate – methylMCA, and sinapate ). ). Based onBenoit’s

sp. OspFaeA, Fig. 2

RfXynE and A. niger Crepin al., et ) from

acquired acquired ) . .

R.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos heterologously expressed andcharacterizedWhile soon. some fungi, as such genes thus farencoding have beenidentified in fungi,whichwill allowmoreFAEs tobe FAE- amultiplicity genes.Multiple predicted organisms ofputativeenzyme-encoding contain bacterial demonstrating groupingboth thelimitationsandfungalFAEs in together. latest proposedtogether classification,In this are withan 13sub-families unclassified group, consideringfungal FAEs bothphylogeny( andsubstrate specificity actual FAEs. corresponding biochemicalwithout confirmingdata that thesesequences do correspondto only and soasequence-based proteases classification ,and is difficult to predict identity proteases,FAEs ahighsequence withother serine share asacetylesterases, such a applying combination of with prediction tools experimental data. fromThe 12proposed amino werederived families sequence. therespective validated acid composition, proteinstructure, secondary andphysicochemical composition descriptors and plant 2011 al., valuemolecules throughhigh-added ( esterification andtransesterification reactions ofcapability onabonds acting ester cleaving large range and synthesizing of substrates for the andplant.Theclassification 12whichhave bacteria resultedin families, distinct classificationnovel system,– forfirst time grouping the from FAEskingdoms three subfamily 2,while verydistant 7is from other allthe subfamilies. the includes FAE genefrom from genes The these haddataset FAE same access authors to. for almost is subfamily true contains 1that re is characterization of AtFaeDfrom anovel subfamilies, upgrade this classification inthe last system with able the was identification and five into performedphylogenetic that divided analysis fungal FAEs a membersCE1 family of ( CE1 familyof CAZydatabase according classification, grouped to only this in 5and6are somefrom sub-families FAEs Members genus the of thoseB andC), classified excluding esterases previouslyas type Dandall bacterial FAEs. stricted FAEsfrom genes to With of microbial expansion genome the it has sequencing, beenrevealed that for Recently, andthe ofdeVries haveproposedanotherclassification groups Hildén proposing a Udatha and extendedtheby coworkers further classification ofFAEs ). ). origin collected were andclustered groupsinto distinct basedon amino acid In thisclassificationsystem, FAE-relatedsequences 365 putative offungi, bacteria A. fumigatus, A.niger, oryzae Aspergillus Comment citer cedocument: Talaromyces Udatha al., More et 2011). recently, samethe groups research A. niger

areSubfamily 6and7. present 7 in thesubfamily 1,3,4,5,

, A. terreus

A. oryzae stipitatus and 7 7 A. nidul

( as a member as a andis closely related to and Dilokpimol al.,2016 et A. terreus ans . subfamilyHowever, this also

based onbased primary the Unfortunately withthis, Dilokpimol 2016 al., et ). Trichoderma

However,

Udatha et fungi, fungi, ). ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Auricularia subglabra Furthermore, 37putative FAEs identified in basidiomycetes were the foresterasewell-disposed expression),theirsubstratespecificity and was determined. structural analysis and three sequences cloned and expressed in subfamilies classification.of Udatha’s the These modeled sequences were subsequently for Thirt at 50°C( at b on the – temperature – 10.0) and 75°C).Based 9.9), optimum(20 points (3.0 – isoelectric pH(3.0 – characteristics significant ofFAEsvariation (18.5 show inmolecular weight biochemicaland values, properties kinect summarized as in microbial sources. Microbial FAEsfrom present broad differentsources a of range preferences, points, andoptimumisoelectric conditions beencharacterized have reaction from Williamson, 1991 toidentifystrategy eligible candidatesfor fungalFAEencodinggenes recently, confirmedMore Dilokpimol coworkers and ofthegenomemining ability the characterization are essential determine ofamicrobe to toproduce ability multiple the FAEs. and others, could included. be and Similarly, gene cloning followed byprotein expression enzymes, as related astannases,accurate, pseudogenes acetyl andnon-FAE esterases, such 2016 A. niger were identifiedgenomes the in such ofseveral ascomycetes as Trichoderma ofproportion amino negative ( acids medians, molecularkDa( frequently have a mass FAEs of36 to contribute functional tofurther studies ( mass,molecular optimum pHandisoelectricpoint temperature, for better understanding and 4. esterase activitypossessed ( biotechnological applications, bydemonstrating 20outofthat 27putative fungal FAEs reesei,

). Asthese). authors out,pointed however, agenome predictionnot is always sequence een FAEs predicted whereidentified inthe genome of

do not FAE-encoding contain ( sequences

Since theirfirst( Since identification in1991 in the 1980s andpurification Biochemical properties ofmicrobial FAEs , 16 in iochemical ofcharacterized properties FAEs ( Fig.

genus do contain putativegenus docontain ( genome FAEs intheir 3 Chaetomium globosum B ), and pHat6.5( ), and ), more80FAEs), than with differentmolecular masses, substrate

and Comment citer cedocument: mol al.,2018 et Agaricus Agaricus bisporus Dilokpi Fig. 3C Fig.

Fig. 3 Fig. , and11in ), and ), and haveacidicthey p D Fig.3 ).

var

8 8 ) Martinez etal.,2008 . Fusarium graminearum Fusarium bisporus According andAccording frequencies to relative ). ).

Table2 , and predicted encodinggenes FAE A. oryzae A. Table2 Fig. 3 Fig. ), weorganizedthe data for A. flavus Dilokpimol al.,2016 et Pichia pastoris Pichia I

A values suggesting ahigh . Thebiochemical belonging six to ), optimum temperature Moniliophthora roreri ), other), species in the for related for related with 16genes,29in

( Dilokpimol al., et Faulds &

210 kDa), system(a

). ). ,

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos chain chain the estersFAEs.conclusion as ledto such This long- that forferulic acid FAEs,nonpolar ( acid ferulic esters 2017 al., number(5) aliphaticthe ( the chain; andofsugarresidues phenolic linked the to acid bond the ring; (4) thepresencebetween absenceester and or phenolic in the of unsaturation methoxyl (2) the number groups; ofsubstitutions phenolic on the ring; (3) thedistance substrate, such in the as: (1) type of phenolic onthe substitutions ring, ashydroxylor 2017 α-L-arabinofuranosyl]-(1→3)- ( and 4-nitrophenylglycosides substratesmonoferuloylated natural such as FAX (2- includingsubstrates methyl ethylofhydroxycinnamates and esters beenevaluatedas have ( substrates synthetic methodsSeveral determination havebeendeveloped forFAEactivity withnaturaland al.,2012 et and chargecatalyst, forms Aspneutralizes the ( that catalytic onHisduringthe process suggesting a clear importanceofpH asageneral dependence acts by FAEs, acid-base His ( proteases,serine acovalent esterases,involving lipasesandother acyl-enzyme intermediate 2012 al., His residuesareveryimportantof formaintaining Asp and activitythe of FAEs 5. ferulates.Adecreasein alkyl out carried to if evaluate microbial ofhydrolyzing FAEsarecapable naturally occurring different classes(AnFaeA, CtFae andRoFae) onnonpolar MtFaeB, hydroxycinnamic suchasFA, acids orglutamic(Asp) acid consistingtriad ofaserine(Ser), histidine (His) andacarboxylic acid, mainly acid aspartic trans al.,Uraji et 2018

; -feruloyl)-β-L-arabinofuranosyl]-D-xylopyranose) andFAXX-feruloyl)-β-L-arabinofuranosyl]-D-xylopyranose) ( n Topakas e -alkyl are ferulates poor very substrates. FAEs acommonfundamental display mechanism havingat their acatalytic An important proof The kineticvalues, As described Heterologous expression of FAEs by microbial systems and protein engineering and systems Heterologousby microbial ofFAEsengineering expression protein ). Insense, ). this theFAE-catalyzed similarreactionvery is action tothe hydrolytic of

) .

t al.,2012a ). Aswe). in presented Schär al.,2016 et Ramos-de- above, each FAE has its own specificity, releasingabove, each FAE ownspecificity, hasits specific .

Comment citer cedocument: In theclassical , protonationnetthe statesorthe charges -of-principle demonstratedthat nonpolar FAEs hydrolyze can K ). m K ,

O k m la cat -β-D-xylopyranosyl-(1→4)-D-xylopyranose) ( -β-D-xylopyranosyl-(1→4)-D-xylopyranose) and -Peña & -Peña

and

p ) k . Asystem -coumaric, sinapicor caffeic from acids esters. their cat k Fig. 3 Fig. cat

is correlated with decreased with is correlated substrate polarity for Contreras-Esquivel, 2016 Contreras-Esquivel, / K m C

( 9 9 Table2 , FAEs are optimally, FAEs atpH6.5, are active

atic evaluationatic ofFAEs from oftheactivity ) are differencesaffected) are bystructural ). Numerous). model n O- -alkyl ferulates was [5 - O -( trans Hunt et al., ( Udatha et Udatha

O -feruloyl)- - Hunt et [5 Udatha - O n - -

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos coli isolated coworkers FAEthe genemicroflora from ofacow’srumencloned into (RuFae2), thermostability of AuFaeA by iterative saturation mutagenesis of Ser33 and Asn92 thermostability ofAuFaeA by iterative saturation mutagenesis ofSer33 andAsn92 significantly thermostabilitycontribute the to ofAuFaeA. same This improved group the ( sequence disulfide bridgeextra in, protein bridge the to, each orbyeliminating disulfidenative effect fractionchromatography, ofpurifiedenzyme whichresultedinahigh ( immobil in well-expressed XynZ from which resultedasmall in of fraction enzymepurified On showingactivity. otherhand, the was extract conce denatured and had tobe byaffinitythe the purified andafter refolding, chromatography, insolubleas an fraction ( and Superdex75column)purification (DEAE,( steps Butyl-S intocloned andexpressed a pSD80vector in two FAEs myxobacterium fromthe coli from AnFaeA isolated ( system expression for proteinstructural analysis) issuitable engineering high-throughput and cDNAthe fromcells, ofAcFae An example advantages disadvantageand disadvantages. using ofthe C735 (41.9%identity) and sequence relatedacid closely to the ofbacterialprimary FAEs structures from enzymes si in delineate purifyc) production;ande) role ofparticularaminothe residues; d)increase acid relationships; stability, protease resistance, pHstability;b) and understand structure-function in order toa)makesuitable for applicationsindustrial by them thermal increasing their Zhang et al.,Zhang et 2012

, and expressed in active form( P. pastoris s of disulfide bridgess ofdisulfide onthe thermostability offrom AuFaeA Increasing Increasing the repertoireWu ofclonedFAEs, colleagueswith performed and studies Using a Most well well heterologoushosts Most characterized in FAEs beencloned and expressed have ized metalized ionaffinity chromatography, followed by a size exclusion Yin etal.,2015a C. thermocellum C. thermocellum ngle stepngle yieldandspecificwith high activity (for example, an P. pastoris , and ntrated enzyme andthe chromatography, bygel filtration waspurified E. coli ; Zhang A. niger

A. niger A. Comment citer cedocument: Damásio al.,2013 et BL21 (DE3) as a soluble fraction and purified by two steps — BL21 (DE3) first, asoluble fraction as andby purified two steps

GS115 expression system, Yin and coworkers investigatedGS115the andcoworkers expression system,Yin ). Theexperimental). confirmed results bridges disulfide the that & Wu, 2011 L. johnsonii (containing domainsxylanase to corresponding andFAE) was expression systems. . Theenzyme successfully cloned expressedand in been has A. clavatus Wong 2013 etal.,

Sorangium cellulosumSorangium

). Previous studies have Previous). studies predominantlyfocused on (47% identity). The

was cloned into pET28a vector overexpressed and E. coli ). The). inclusionbodiescontaining theprotein 10

). Theenzyme). amino hadthe RuFae2 as asoluble fraction, followed bythree ,

ScFae1 andScFae2,whichwere E. coli E. coli Wu al.,2012 et A. usamii A. usamii expression has system E. coli Mandelli et et Mandelli al., 2014 E. coli BL21 (DE3) introducing an ). Wong). and Prevotella oris Prevotella

based ( Yin et al., Yin etal., E. ). ). E.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos AnFaeA, it was shown that the OH the andAnFaeA, wasshownthat it OCH phenolic ring ofthehydroxycinnamates withthe withintheactiveof residues site FAEs.Fo th improvem re 2012 al., ( phase substrates the siteopen conformationinto active accommodatethe FA-type in to aqueous enzymelipase, the FAE suggesting significant activity, obtained that the mutant adopted an mutationa Phe toIle ona wascorresponding residue in constructed aswell( as been foundforlipases, influencing its optimum pH substratethe naphthyl discriminationchain ashas towards ofesters, esterase long-acyl this especially a Pheormutation,Tyr to Ile the changed hydrophobicity of hence the and region from of Mutationsinthelid/flapofspecificity thisesterase. region AwFaeA with smaller residues suchasvalineor resulted serine broadeningofthe in a substrate as binding, measured by active siteofAnFaeA investigated, itwasshown was these that residuesare involved in ( Tyr80 improvem ofmin °C (39.8inWT), a 198 half-life 50correspondingto the 3.96-fold at °C, Inaddition,the correspond to shown 20°Cand25 higherthan that wild-type. bythe an increase in optimal the temperatures 60°C(mutant to M6), M4) and 65°C(mutant which ( improved bytworoundsofmutagenesis random ( fromefficiently bran wheat low thermostabilitydisplays temperaturesat 50°C higher than to butwasable release FA bond disulphide andageneral increase hydrophobicity of in protein. the mainlysubstitutions, with associated dimer the interface, theleading to formation of anew 50 °Cwas i ofdirectedtwo rounds evolution,AnFaeA. thermostability After the ofthemutated EstF27 at enzyme 2015b sidues in AnFaeA, four being surface exposed and eight being surfaceeight and the being sidues inAnFaeA, exposed in inner partofthefour ermostable at 32minwild-type 50 of than °C with ahalf-life 82min. longer ). The study revealed that revealedproduced Thestudy that best). the variant Ser33E/Asn92-4 Andersen et 2002al., The substrate specificity interactionof thesubstitutions between FAEonthe involves Directed evolution Directed was ( applied to improvethermostability the of AnFaeA The EstF27 isolated fromThe EstF27isolated metagenomics asoil overexpressed and in library Faulds al., et 2005 , were i , were )

and dimeric the ( EstF27from metagenomics asoil library ent compared to the wild-type. Further, was bestSer33Further, the variant Ser33-6 wild-type. compared the to ent ent of FA release from wheat bran was obtained as a result of six ofFAwas bran releasefroment obtained as aresultof wheat mproved over 3000-fold, and a 1.9-fold higher 3000-fold, catalytic anda1.9-fold efficiency anda2-fold mproved over dentified directedafter evolution tobebeneficial to the thermostability of Comment citer cedocument: K ). W ). m , but also the specificity,replacement as the , butalso Trp260 ofTyr80and ). ). Sang etal.,2011 hen the importance ofthepolarandaromatic residues inhen the the

3 ). F ).

11 of FA interact FA interact hydroxylof groups with the urthermore, EstF27 haditsthermostability Cao etal., 2015 Koseki et Koseki et al., 2005 ). The mutations promoted Themutations ). Thermomyces lanuginosa Cao et 2015 al.,

a amino acid A. awamori T m

value of44.5 value ). When). a

Zhang E. coli E. coli ) . Twelve , et et r

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos from of for (HTS) MtFae1a applied screening wassuccessfully the generationmutants of30,000 esters bearing short-chain acyl residues ( residues bearing acyl esters short-chain closedopened or site,whileFAEs active first haveonlythe configuration. al.,2004 et of( neofunctionalization fungal FAEs from lipases ancestral followingbelieved that afunctionalshift aduplication event forthe was responsible modules ofC.thermocellum catalyticor change function applications. forbiotechnological ofThe structures twoFAE the improveclasses ofFAEs limited. rather information is important Structural one if to decides understanding oftheresiduesinvolved specific in substrate interactions forthedifferent 6. activity enzymethan wild-type the ( higherHigh thatof wild-type. 1.9-fold optimalis about of65 temperature °C values wild-type(21.2%).Thekinetic alsowith the increased; the water- ( lanuginosa conformationclosed the in structures ofAnFaeAfrom ar based ferulatedehydrodimerssynthetic ( five motif ina active-site site. to substrate-binding plasticity the sheet. lipases,ofA lid,analogousthe to confines activesitethe cavitywithaloopthat confers formsThis foldis called and activesitealso the the cleft TIM-barrel at the carboxy-terminal al.,2001 Schubot et activitdays, the stabilityassessed.After25°C ofwild-type M6wasat storage andmutant storage also for 150 Fig. 4D-F Fig.

 M. -helices twoadditional and insoluble esters, releasing long-chain fatty esters, insoluble whereasreleasing long-chain acids, esterases onwater-soluble act

Only a few crystal structures ofFAEscrystal Only afew havebeentodate,whichmakes solved our Some andstructures have sequences FAEs related tolipases, showing the same serine Three-dimensional structures ound sequence Itisound identity tolipases crystal sequence where structurewasunavailable. thermophila, ). are Lipases lipolytic carboxyl ester hydrolases ability tohydrolyzewith the ). Ontheotherhand,unlike FAEs,twoconformational states lipasesshow with an in open its conformation linkedwith the catalytic respective substrates inthe cleft y ofM6 remained(100%), whereas constant onlyresidual activity remained ), each fold ), displayingcanonical α/β the eight-strand of lipases/esterases. 

followed with screeningforfollowed with their variants selecting higher the with /  Comment citer cedocument: - fold, of-hydrolase consists nine which

XynY  Fig. 4A-C Fig. -strands ofenzymes-strands indicative ofhydrolyzing capable and XynZ were the first to be solved the ( and XynZwere first to besolved

Varriale al.,et Varriale 2018

Romano al.,2015 et ). Many FAE models beenMany FAEhave ). constructed 12 A. ) )

niger Levasseur al.,et 2006 ).

with a lipasewith a from  -sheet -sheet core surrounded by

k cat / K m value ofM6atits value Prates et Prates et al., 2001 Fig. 4 Fig. -throughput

shows the shows the

; T. McAuley

;

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos sugar moieties sugar toFA esterified performance inthe catalytic ofAnFaeA andimportance ofthepositionlength the ofthe of ester-linkage andcomposition the sugar- 2004 functions in andfunctions recognition, signaling of thermostability enzymes. enzymes Secreted are modification engineering with is efforts. a post-translational Glycosylation biological key point in thermal for the protein stabilityofglycoproteins, representing apromising target suchconditions asextreme andtemperature. pH Glycosylation been haslong identified asa 7. ( pocket oftheenzymecenter oftheAoFaeB, is lidcovered bythe which forming substrate the  involved in liddomain ( stabilization (Asp272, Asp275,Ala277,279andIle281),which far are from active siteand the ( triad regions identifiedthat are as catalytic domains containingthe Ser-His-Asp Pr structure, nolid suchproteins display significant structural similaritiesto inthe any protein site,catalytic andismore closely related to tannases than lipases ( AoFaeB thatthisestera indicated ( specificity domain smallwith a activesite,postulated the cap-like whichis to over influence substrate structure weremodels oftheMtFae1 constructed,andthis esterase resembled alipase-type tightpolymersarabinoxylan bindingto morethe anda phenolic Structural specific, ring. residues thecarbohydrate,binding and perhaps reflecting the heterogeneity ofthe carbohydrates inthe structures crystal suggests a loose betweeninteraction enzyme the of hasneverbeen Thislack crystallization studies visualization visualized. ofthe used ofthe To date,the carbohydratepart FA-arabinoxylooligosaccharides inco- 2014 al., dashed circle ofAnFaeAthat ( Fig. 5B andFig. D /

otein Dataotein Bank  -hydrolase aninterface fold, andin these between domains andthe lid domain, theactive ; McAuley et et 2004McAuley al., It is desirable that isdesirablethat in It enzymes used industrial processes resist non-physiological The three-dimensional structureofAoFaeB from The classical catalytic The classical catalytic atthetriad coreoftheactive of sites these twoesterases and Identification sites ofglycosylation ) . The domain lid contains acalcium andcoordinated by water fiveamino acids ion Topakas et al.,2012b Topakas et ) and ) and lidthe domain whichcoverstheactivesite ( ).

Fig. 4 Fig. ( Suzuki et al.,2014Suzuki et ) Comment citer cedocument: were identifiedhydrophobic( the binding in pocket ; Uraji et Uraji et 2018 al., se exists motifse dimer, exists asa atthe novelCS-D-HC a contains ). ). While MtFae1 resembles lipases,theWhile of MtFae1 resembles structure

solid circle insolid 5 Fig. ).

). In biochemical). addition, studies displayed the 13 A. oryzae A ). Thecatalytic domain shows Fig. 5 blue5 Fig. region Fig. 4 Fig.

is composed two of ( ). Presenting a unique Faulds etal.,2005Faulds Hermoso et Fig.

) ( Suzuki et Suzuki et A. oryzae 5 A al., al., ). ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos glycosylation ( glycosylation temperature (melting point coli of52 °C)recovered byinclusion bodies andrefoldedwithout 1997 carbohydrate additional attached theresidues to AnFaeB has18 ra ( structure glycosylation inits SDS- proteins, showing ap protein band of35TheAnFaeAand kDa. purifiedthe protein endo-β- treated with ( 46 and49potential potential AtFaeA from enzymedeglycosylated 60kDa bySDS-PAGE. presents removed thepurified using PsEst1 from endo-β- sequenceacid of analysis fourpotential PsEst1 reveals mass,molecular which was 59.4kDa,asshownin sapidus ( residue or one(generally groupofaserine threonine tothree mannose totheβ-hydroxyl residues) amide residue, group ofanasparagine while mass molecular the estimatedhigher than 6kDacalculatedmolecular bySDS-PAGE mass of protein linkedglycosylation pattern toAsn79. Themature n glycosylated, non native, refolded, AnFaeA. thermalof — molecular stability The forms four AnFaeA of chaesterase inan thus an regionstabilizes theopenconfiguration, conferring theesterase this 'lid' of genera often covalently Zhang et al.,Zhang et 2015 iger iger ises the question ofthe of actualises the importance in thermal of glycosylation the stability ; PA (melting temperature point of56 more AnFaeA °C)is heat resistant than in produced McAuley et McAuley lly attaches abranchedlly asingle mannose or The cr The of investigation In an theeffect ofglycosylation on protein mass,interestingly, PsEst1 band presents aprotein inSDS-PAGEthanthetheoretical 10kDahigher GE indicates anapparentGE indicates molecularmass ahigh of36dueto amount kDa, of Zhang al.,2015 et N -glycosylation sites and53 potential N racter rather( racter lipaseactivity aninterfacial-active than -glycosylation site -glycosylation withthehighratioin AnFaeAcoupled in ofpolar residues ystallographic structure ofAnFaeAformystallographic native inits afungal revealed Benoit etBenoit 2006a al., N N -glycosylated —was evaluated, -glycosylated demonstrating AnFaeA that produced in -glycosylation sites and the electron-density indicatedno maps sites region -glycosylation electron-density and the this in 2004al., -linked and ). SDS-PAGEbands). of 40 protein AtFaeAaround and37kDa, have O I -glycosylation of sites of 3.3andmolecular mass of28proteins. kDaforboth However,the Comment citer cedocument: ). ). ).

de al., Vries et 1997 O -linked to glycosidessites. -linked to atspecific ). ).

N -acetylglucosaminidase amajor Hresultedin A. tubingensis A. flavus O 14 -glycosylation attaches-glycosylation carbohydrate the O N- N -glycosylation sites,which ismore the -glycosylation than ; -acetylglucosaminidase H,the N acetylglucosamine residue ( acetylglucosamine residue Table3 Faulds Faulds -acetylglucosamine residue -acetylglucosamine residue tothe β- AfFaeA and AnFaeA, respectively AfFaeA respectively andAnFaeA, N

-glycosylation sites-glycosylation that after being AtFaeA

& Williamson, 1994 NcFae-I of

( ). Theamino etal.,2016). Kelle enzymes are veryacidic enzymes are Hermoso al.,2004 et N. crassa N A. terreus -glycosylation de Vries al., et ). Theenzyme).

contains a

has two

N ). This P. - A. E.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Xaa–Thr/Ser sequons, whichXaa–Thr/Ser sequons, arecharacterized foundglycosylation wasperformed sites analysis presence out.This of onthe Asn– based massmolecular andsuggested enzymesthe may be glycosylated dueto the potential N- deglycosylation1 withthe ( treatment ofmassreduction molecular fromto 32kDaforPpFaeAandfrom 35 62to60kDaforPcFae- properties ofproperties from AwFaeA flap biochemical located inthe oligosaccharides region madeto possible clarify it from ( enzymes Aspergilli Af and ) (2013 coworkers from PpFaeA andPcFae-1 2004 mass molecular of60 kDabySDS-PAGE analysis massesmolecular of74kDaand65kDa,respectively. DeglycosylatedAnFaeBhasa kDa, respectively. Nevertheless, proteinsyielding the native glycosylated, proteins are with 2006 al., fromAwFaeA A.awamori thatreported respectively ( AoFaeC sequences, Thirteen andtenpotential had arelative molecular bothmass that 55kDa,suggesting enzymes of are N After on SDS-PAGE. mass 61and75kDa, of respectively, glycosylation influence molecularon the mass ( value mass ofdeglycosylated the double molecular enzyme of ApFaeshowedabout48% andthe nidulans of Agreatprerequisite forextent of N-glycosylation. wasinthestudies glycosylation observed maintaining ( molecularof the weight 30 kDa AnFaeA notshow andAnFaeB,itdid adecrease inmolecularmass deglycosylation, after cont kDa ( amolecularmasswhich revealed of35.04 29.2 kDa,the FaeA fromFaeA Ru ain 521 ain and massesand 530aminoacids calculated molecular of55.5kDaand55.34 ) mbold et al. (2003 mbold etal.

. The A studydescribing novelfrom a feruloyl esterase

) an ).

N A. oryzae -linked glycosylation motif (Asn79-Tyr-Thr) was of sequence FAEs-linked glycosylationmotif(Asn79-Tyr-Thr) foundinthe d ApFae(from N N A. flavus -glycosylation is important forthethermostability isimportant -glycosylation and protein foldingof the -glycosylation wasconfirmedspectrometry, ionization-mass byelectrospray

enzymes, apparent an AoFaeBandAoFaeC, relative have molecular Topakas and Topakas and MtFae1 from Comment citer cedocument: ) ) and Benoit etBenoit al.,2006a N P.purpurogenum , similar A. pullulans -glycosylation recognition sites present are in AoFaeBthe and A. awamori ) of esterasesShin and) feruloyl AN1772.2(from Chen(2007 Koseki et2009 al., to resultsforan the reported FAE of coworkers (2012b didnotconfirm) coworkers glycosylation the of

Oleas etOleas al., 2017 ). The AN1772.2 glycosylated containedmore). TheAN1772.2glycosylated than

expressed in

M. thermophila, M. thermophila,

and Dilokpimol 2017 al., et ). Underst ). 15

as anoligosacchari Crepin et et Crepin al., 2003a P. chrysogenum ( Crepin 2003b et al., ) . Previously,Koseki andcolleagues also P. pastoris. Table 3 ; anding role of the Sakamoto etal., 2005 A. niger but compared with theoretical it the -deglycosylation, both proteins both -deglycosylation, ).

, AnFaeC,unlike that found , respectively, The analysis ofremoved de anda acceptor )

). Incontra ). . AnFaeB andTsFaeC ; A. niger A. Garcia

N N -linked -linked -glycosylated. ).

-Conesa et al.,et -Conesa

st, the showed slight Zhang

( Koseki et

and A. N -

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos sugar beetpulp.sugar AnFaeBrel reaction the of76,releases FA, 40,71and73%of byapplyinga grain 2018 forfurther hydrolysismore accessible byxylanaseandother degrading enzymes theturn, removal of from xylooligosaccharides FAresidues feruloylated makes again them Then,xylooligosaccharides. may onthese FAE act feruloylated compounds torelease FA. In xylanase partare to required solubilize ofthecell structurewall feruloylated byforming short ( oligosaccharides ofa and elephant Thecleavage grass. yields linear xylan shortferuloylated backbone hulls, beetpulp, sugarcanesugar oat bagasse, coastal jojobabermudagrass, straw, meal, wheat as bran, brewer’s (orbarley)products, spentmaize grain,wheat corn stalk, maize bran, fiber, walls. FAEscell by- were applied torelease FAanddiFAfrom agro-industrial numerous 8. wild-typeAsn79. in the discriminationsubstrate and contribute to stabilizationthe its oftheflapin openconformation were mutantthe valueswere Ala79 and efficientThe . wildtypeshoweda ( crosslinks.down xylan-lignin with AnFaeAcompared 8%with maize to AnFaeB autoclaved bran. from on effects these biomasses. hand,40% substantial other not show On the of FAisreleased marc, 73% respectively and 34% and of aci st ) etal. (2006b Benoit respectively, incomparison ( the total with released (TRA) inalkali AwFaeAglycosylated wild-type withAla79replaced or Gln79 hadlower activitythan glycosylationlinked recognition mutagenesis sites demonstrated that bysite-directed Asn79 Koseki et Koseki et al., 2006

ds, such ds, such as FA, ). K

m Monomers and dimers of FA are important structural componentsstructural Monomers ofcomplex plant anddimers FAareimportant of Faulds and coworkers were able andcoworkers were to Faulds release hydroxycinnamic from acids spent brewers' Somemicrobial FAEs dehydrodimers release can and,therefore, potentially break FA plantReleasing cell walls from and FAdehydrodimers

0.28 mM 0.28 and Oliveira al., et 2016 p ). Both mutant Bothrate ). enzymes a decreaseinhydrolysis significant exhibited -coumaric, and caffeic acids from coffee pulp, maize bran, apple caffeic from-coumaric, acids and marc pulp,maize coffee and bran, Humicola insolens udied the ability torelease ofAnFaeAandAnFaeB hydroxycinnamic k Comment citer cedocument: cat / K eases 100% 83% and ofcaffeic from acid pulpand coffee apple m

P. fluorescens P. fluorescens 73 s K m 0.66 mM 0.66 and - 1

mM ). Specificcell ). commercial enzymecontainingFAEactivity, cocktail

-1 p -coumaric acid, respectively,-coumaric while AnFaeA does . These data suggest that the glycanthat the suggest . Thesedata chains affect Pf 16 XylD andAnFaeA, alone concertwith a or in K k cat m of 0.26 mM and mM and of 0.26 p / K -coumaric, 5,5’-diFA and8- -coumaric, wall degrading enzymes as such m

145

s - 1 mM -1, -1, Faulds et al., 2004 Faulds etal., k and mutantGln79values cat / K m of 588 O (

Long et al., et Long s -4’-diFA, -4’-diFA,

- 1 mM ).

-1 ,

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos conditions, such as enzyme loading in the reaction mixture ( suchconditions, asenzyme reaction the mixture in loading specific properties dependent onthe also enzymes ofthe experimental other substrate, and the ( incooperate other'supon each action asubstrate ( biomasslignocellulosic tobiofuel essential fortheefficient of hemicellulose conversion and cost-effective sugars is cellulolytic enzymes withhemicellulases synergy andauxiliaryenzymes. in of Theutilization 9. wascompletely10h. FA buttheEstF27 after denatured mutantthe oftheTRAfromwheat bran. 21.6% At65°C,themutant 36.8%of released TRA hydrolyze wheatfor10mutant to bran 17.7% 40°C.TheEstF27wasableto release hat and stud detailed acidFA andp-coumaric (2015 Caoetal. conductedfrom bagasse,) a sugarcane respectively. 15hof after incubation. AcFaeIn turn, and exhibited only 37% 7%efficiency for releasing up releases extractableto 85%ofthealkaline ( wheat arabinoxylan clavatus ( (2.8%),andcaffeicacid sinapic acid (3.7%) (2.9%), different releases amounts ofHCA,when comparedTRA: with FA(2.1%), 2006 familywhereas 10xylanases (GH10)releasing more diFA are ( effectiveat Glycosidefamily hydrolase released. 11xylanases (GH11) aremore releasing efficient at FA, employedhave been toimprove biomass because disrupt they degradation the lignin- ( rhamnogalacturonases xylanases, arabinanases, mannanases, galactanases, polygalacturonases, and anddebranching enzymes, synergistic relationshipsstrong as with endo-hydrolases such 2006 ( from to AnFaeA grain able releaseandwheat brewers' is spent 5-5′-diFA bran 5- xylanase, release

). ) . The type of xylanases used . Thetype used ofxylanases inwithFAEs thesynergy affects level and form ofFA

The maximum bioconversionoflignocellulosic material the requires action ofefficient FaeLac from The degree The degree of orsynergism oftwomeasuresmore synergy ability the or enzymes to betweenSynergism andhemicellulases FAEs

is able to is ableto release FAand y using EstF27 from the soil metagenomics EstF27soil thermostable y using and EstF27 from library the 5′ Lactobacillus acidophilusLactobacillus Damásio al., 2013 et -diFA and8- Comment citer cedocument: ; etMandalari al.,2008 p -4’-diFA from andwheat cell barley ( O-4’-diFA walls Braga 2014 et; al., -coumaric acid from biomass acid insoluble-coumaric and sugarcane

). Theenzymatic). of hydrolysis wheatarabinoxylan p 17 Segato et al., 2014 -coumaric acid and 2-fold more-coumaric acid FAthanTRA, and2-fold K1 Dyk &Pletschke, 2012

hydrolyzes brewers'spentgrainand Szwajgier et 2010al., Li et Li et al., 2014

Jia etal.,2015 ; Xue et al., 2017 Xue etal., ).

). Thesynergism is ). ). AcFaef ). Faulds etFaulds al., p

FAEs exhibit FAEs exhibit -coumaric acid Faulds etal., See Fig. 2

). ). FAEs rom A. ).

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos reaction time ( time reaction ( amountthe compared ofFA AnFaeBalone with released concomitantthough the incubationof AnFaeA notresult in andAnFaeBdo anincrementin arabinofuran insoluble arabinoxylan ( arabinoxylan insoluble inc lanuginosus ruminicola al. (2011 Liet enzyme) blends. cellulolytic–xylanolytic enzymes, the enhancing effectiveness ofthecellulasexylanase and ( fungithe The application ofblends of96% bran.release FAfromtriticale ofenzymes by produced with5.3U/mlincubated of wheat bran, appl galactosidase enzymes (both from olipectin demonstrating substratewheat arabinoxylan, specificityAnFaeBa clear of feruloylated for 2002 b substrates, AnFaeAinvolved inandWilliamson, andAnFaeBare the xylan 1996). degradation of pectin AnFaeB re when isaddedthe 24-foldmorexylanase in incubation. FAfrom wheat bran AnFaeA released mixtus withFaeIII.(1.5) activitiesthe ofthethree FAEs 2to40%, displaying thehighestdegree between ofsynergy FaeIII In turn,bothcellulase and 17%, while FaeII and reduced by34%. xylanase enhancedit frommaize in6hofincubation 38°C.Likewise, cob at FaeIelevated cellulase activity by ( FA bran releasing fromtriticale bemore andappearedto ScFae2 purified efficientapplied in triticalebranhydrolysis. ( respectivesubstrates to their cellulose-hemicellulose network,accessibility increasing the of andhemicellulases cellulases Gottschalk Gottschalk et ).

AnFaeB increased Topakas and coworkers observed the maximal release ofTopakas and theFA(33%ofTRA) from coworkers maximalobserved release by AnFaeA xylanase. released plus FA isefficiently preparation bran from awheat The addition ofRuFae2 mixturesofendoxylanase GH10 reaction in from gosaccharides. and β- gosaccharides. The incubation ofwith arabinofuranosidase AnFaeB T. reesei leased 1% FA from sugar-beet pulp,while additionofarabinanasethe and leased 1%FAfrom sugar-beet FaeIII. and from to H1, FaeI,FaeII Theadditionof FaeII xylanase FaeI ut they haveut they preferencesfor polysaccharides opposite ( these osidase (Kroonand osidase in themixture reaction improved release of the FAto12% al.,2010 Topakas et al., 2004 Topakas etal.,

reased 37% 27%, and respectively, amount the released ofreducing sugars is mo ying 0.4U/g of 6.7 and -fold release from the ofFA and2.7-fold wheat- fromwheat bran st A.

) Comment citer cedocument: active towards sugar-beet pectin, whereas sugar-beet AnFaeApectin, active towards ismo . Wong et

A. awamori awamori T. viride T. viride Debeire etal.,2012 reported production ofthree the FAEs from M. thermophila Wu al.,2012 et al., 2013 A. niger A.

). ). efficiently hydrolyzed steam-pretreatedhydrolyzed sugarcanebagasse efficiently

xylanase demonstratedxylanase that 3hofresulted hydrolysis in a E. coli

produced FAE,synergisticallyproduced with whichacts ). ). ) - increases the hydrolysis of sugar-beet pectin, increases hydrolysis of the sugar-beet expressed Zhang et al. al. (2015Zhang et 18

). Theexperim ). Mt ).

Fae with 500 U/g xylanase within Fae with 1hof500 U/gxylanase S. cellulosum de Vries et de et Vries al., 2002 ) ) ents with0.45U/mlents ofScFae2 conducted a thorough study conducted athorough study

ScFae1 and ScFae2 were ScFae1 andScFae2were de Vries etal.,de Vries Cellulosilyticum Cellulosilyticum ).

st Cellvibrio

active in active in T.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 10. mixtures ofcocktails, that accurately complexity reflect the of plantcell walls. investigationsFuture shouldtherefore uponmore center complexenzymatic cocktails, or efficient biomass. degradationof manner,contributingtothe complementary plant diverse phenomenon indicates that FAEmay different substrates isoenzymes target ina debranching differently enzymesrespond towards feruloylated polysaccharides. the This AtFaeD from treatmentfrom wheatarabinoxylan wassuccessfullyimprovedwith 30%with the by27%to together( incubated xylanase followed pre-treatedwith was sequentially the withAtFaeDthan enzymes co- moresubstrateThe releasing ofFAefficient from was whenthe wheatarabinoxylan 11-fold co 2017 ( enzyme addition yieldfrom300 U,andxylooligosaccharide almost 0to optimum inthe doubled levelof was FA released from greatly of enhanced theactivity 70%as 16.8%to AnXyn11A increased applicoworkers wheatbranforco-production Wuin hydrolyzing of the FAandxylooligosaccharides, and TRA, theenzymes ahighdegreeofsynergy, 5.1. show concentration treatment ofFA.Although the xylanase releasedonly withAcFaeplus 7.7%of ahighcontaining releasedfrombagasse,anagricultural sugarcane residue (1.97-fold) al.,2016 et commercial preparationxylanase on at30 sugarcane bagasse hydrolysis °C for 24h theour researchgroupevaluated synergistic effect ofAcFae from Recently, ofproduction them along particle ofcorncobwith the size and increased stalk. corn higherfrom than sugars producedstalk, about fromcorn andthe is reducing 2-fold corncob (20,40,mesh)sizes The content of 80,100 ofcornstalk and corncob for 50°C. 1hat hydrolase rhamnogalacturonan and rhamnogalacturonan acetyl esterase notshowwheat bran, but did effect cooperative withendopolygalacturonase, xylanase ( AtFaeAusing from -incubation treatment with FAE and xylanase to release FA from lignocellulosic substrates. -incubation treatment withFAEandxylanase to FAfrom release substrates. lignocellulosic

).

The groupsSeveral arecurrentlyworking tounderstand why precisely and FAEs Evaluating thesimult Immobilization and influence of organic co-solvents onthe and Immobilization influence oforganicco-solvents FAE activity T.

). The treatment resulted in asignificant increase in amount the ofreducing sugars proof-of-principle was proof-of-principle able todemonstrate the differential effect ofsequential or lanuginosus A. terreus ed AnFaeA and (0to1000U)simultaneously, (100U)andAnXyn11A the Wu al.,2017 et Mäkelä etal.,2018 A. terreus Comment citer cedocument:

and and ) releases FAand commercial xylanase. aneous cooperation andxylanaseGH11(AnXyn11A) ofAnFaeA

with xylanasefrom ) . On otherhand, the AnFaeCfrom

).

Besides, p -coumaric acid from -coumaric acid wheatarabinoxylan and 19

the productionthe ofxylooligosaccharides A. niger

to hydrolyze different particle A. clavatus A. niger ( Dilokpimol et al., Dilokpimol al., et

in synergy with and a

( Oliveira Oliveira

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos coated magnetic Fe coated therapeutic onsilica- biosensor as as well applications. Soybean immobilized peroxidase ( increase inactivitycompared FAE, to putative a2-fold free enzyme PhEst,with the 52.4% ofits initial activity fortherelease ofFA 5cycles fromwheatbran after insoluble increase inan optimal from temperature 45 ability to to poreability adjust the ofthe size material to the dimensions oftheenzyme ofinterest. su large ( oxidation hydroxycinnamates, with compounds application inhibitorsas antioxidants and ofLDL- (CLEAs)immobilized enzymeaggregates the ascross-linked usedin of and synthesis alkyl antioxidants. new generate used to bioactive compounds, potential with higher monomeric than FAas andproduction could be byperoxidases also pulpand mills,paper phenolic acids cross-linked forproposed remediation environmental from ofeffluents wine distilleries,oil olive ( obtained withonly 57% thefree peroxidase al.,2015 et ( can esterase differentadopt orientations within the pores, silica which byinfluenced surface distribution the charge around activepocket, the site indicating that the ( with the shown tobecorrelated pH,withaoneunit shift in theoptimal transesterification pH Mes 2018). maxim be immobilizationhave to enzyme, carefullyindividually foreach designedsince the thermophila immobilizedMonocomponent FAEshavebeen onmagnetic Fe biomedical applications. for Theimmobilization ofFAE studied hasbeen suchapplications. compoundsandplatformbioactive development the chemicals, andin ofnanomaterials for Immobilized reducingcosts. reuse, enzymes forthe beused can ). et2011). wasproposedthatsuchParracino It al., immobilized biocatalystscouldbe used for Thörn et Thörn et al., 2013 Thörn et al., 2011 um activity and enzyme stability can vary in different FAE preparations can vary al.,(Zerva et in different andenzymeFAE activity preparations um stability AnFaeA esterase-containinghave cocktails andferuloyl successfully enzyme been Immobilization ofImmobilization FoFaeCfrom In industry, In industry, immobilization isoftenemployed to stabilize enzymes facilitatetheir and

rface area Vafiadi etal., 2008a ). Fe Supermagnetic oporous asenzyme used due materials supports to their havebeen immobilization

and T. wortmanni , allowing enzyme high theirhigh loading, mechanical stability,andthe ) ; 3

Thörn al.,2013 et . Other factors. Other caninfluence theinteraction theirproposed ofFAEswith O 4

nanoparticles removes ofFAmix areaction from 99% to compared Comment citer cedocument: using CLEAmethodology demonstrated that conditionsfor ; 3 O Vafi 4 @Au core-shell nanoparticles used were @Au core-shell toimmobilize

adi etal.,2008badi ) . Accessibility to . Accessibility active the site oftheFAE was F. oxysporum o C to55 Silva al., et 2016 20 o ) C andtemperature stability, retaining .

on a mesoporous silica supportwas silica on amesoporous Immobilization FAEs ofeight from ). W ). 3 O de novo 4 hile this systemhile was

nanoparticles, leading to are pH-dependent synthesis of

( He a

M. M.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos FAEs against v/v)concentrations of enhancedand DMSO(<20% hydrolytic broadenedof the capacity the hydrolysisthe byphysicalsilica adsorptionresults mesoporousin transesterification lower efficiency, since 2017 preparations( development inthe for ofbiocatalysts esterification reactions activity.their demonstratessuitability Thisstudy of immobilized the crude enzyme 24 h.Rinsing toremovefrom withsolvent water immobilizedthe enzymes improved further initial activity reusability wasobservedina experiment reaction nine each after cycles, lasting ratio washigherhydrolysis whenusingimmobilized addition,over90% enzymes.In of the Although thebutyl highest yields ferulate areobtainedwith the freeenzyme, synthesis- the offerulatesynthesis butyl through oftransesterification methyl with ferulate 1-butanol. diameteron pore size.The andprotein immobilized enzymes successfully were Using cr particlessilica porediameters ( with varying from6.6 nm to10.9nm M. thermophila, dependent,FAEsstructure with morebeingstable. the -like ( in rearrangement.side canbeused liquids (IL) and Ionic reactions forbothhydrolytic synthetic controlandutilizationofthe FAE. animmobilized chargedpositively surface at low surface charge density and canhigh ionicstrength maximize lignocellulose components. Astudy by deconstruction orchanging byalteringsolubility ofsubstrates the solubility the of caninteraction beweakenedorstrengthened withbuffer strength ionic byregulated electrostatic ina such forceswaythat betweenprotein the andthe surface, of itself. Theadsorption AnFaeA was charged surface ontoa simulated and showntobe isinteracting it with,whether it is an immobilization support biomassor the lignocellulosic can materialesterase hydrophobicity,be affectedcrystallinity bythe and charge surface ofthe orcanalterthesubstrate, specificity adsorption of FAE.Thephysical the stability ofthe Zeuner etZeuner al.,2011 volving FAEs,volving butsomebeenshownFAEs tobemore unstable have in others ILsthan ). ).

The immobilizationof and four MtFaeA2,MtFaeB1, from FAEs,MtFaeA1, MtFaeB2 The immobilizationof a commercially feruloyl available on esterase,E-FAERU, The addition co-solvents oforganic canexpandtheFAEs use inlignocellulose ude enzyme enrichment preparations, ofimmobilized infunction FAEs wasobserved model includingacetylated compounds, compounds, possibly through an active

reaction reaction by is preferred regardless E-FAERU, of itisfreeor whether

was studied andoptimized adsorption onto physical via mesoporousvarious ). Stabilityin ). ILs was linked to bothaniondependentandenzyme being Comment citer cedocument:

Faulds et al. etal. Faulds 21

(2011 ) ) demonstrated that low Hüttner et 2017 et al., Hüttner

(

Liu al.,2015 et Hüttner etal.,Hüttner used for the

) . A ). ). to -

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos and diferuloyl glycerol and diferuloyl glycerol ( (DFG) lower 0.1% are than materials FGsfromseparate raw since natural themonoferuloyl contents of glycerol (MFG) ( drug industries functionsbiological asnatural UV and lightfilters antioxidantsthe chemical, in and food, higherpresent solubility than derivativesin water ofFA, freeFA.Natural FG present many (FGs) consistofFAwhich toglycerol,naturally esterified foundinplants, a compound ( byproducts lipophilic in results and sugars. In turn,thealteration ofFA esterification via with aliphatic alcohols solubilityimprove ofFA water the bylinking it to hydrophilic glycerol compounds, suchas ( withtriacylglycerolstransesterification been reportedmodification of that FAthroughesterification with aliphatic alcohols or lowsolubility andstability inhydrophobicmedia, overcomeis its to limitation, this it has food and processing corresponding for other industries obstacle application of FAinoil-based FAcannotsince directly used be as donor the in transesterification majorreactions. A transesterification morecomplicatedreactions than reactions, are esterification expensive and industrialwidespread potential dueto antioxidant applications, their Forindustrial properties. modify propertiesused to thephysical hydroxycinnamic ofFAvarious with and acids, ofvariety food( andpharmaceutical applications es the or solvents to low-aqueous produce may andtransesterification esterification innon- catalyze ( antitumor, antiviral agents antimicrobial, andanti-inflammatory 2012 conditions, reaction low consumption( energy and highenantioselectivity efficiencychemicalcatalytic methods, enzymaticin mild ofFGs synthesis high involves 6 biotechnological approaches for the biosynthesis of ferulate isderivatives summarized in 11. cannotberegarded and enzyme-specific asreflecting thegeneral behavior ofFAEs. ( immobilized .

). ). terified compounds with novel physicochemical characteristics, expanding theira use in terified compounds novelphysicochemical with characteristics,

Feruloyl andphenolicesterFeruloyl esters sugars have functions,important biological as There has been remarkable progress in synthesizing many hasbeenremarkable progressinsynthesizingThere compounds feruloylated to

Synthesis of Synthesis Bonzom al.,2018 et Compton 2012 al., et esters-products by esterification activity esters-products byesterificationactivity Kikugawa al.,2012 et Comment citer cedocument: ). ). demonstratesThis result enzymethat immobilization is

). How ). Vafiadi al.,2008b et ever, it hasbeen it reportedthat isdifficultever, it to ; 22 Kikugawa et al.,2016 Kikugawa et Nieter al.,Nieter et 2016 Sun &Chen, 2015 ).

Current knowledgeCurrent of Paiva et2013 al., ). ). ). Feruloylglycerols). Esterification can be ). I ). n comparison to Compton et al.,

). ). FAEs Fig.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos ferulate, v ferulate, n-butyl ferulate bytransesterificationvinyl using ferulate, and 5-O-feruloyl-L-arabinose ( ferulate microemulsionsprenol in detergentless derivative, forming prenyl novelferuloylated a for42464, weretested theirability to the catalyze ofvinyl transesterification with ferulate andMtFaeB1, from M.thermophila MtFaeB2 LC with transesterification fructosegalactose,glucose, and substances related identified were via ( donor andgalactose) disaccharides ( for applied transferuloylation ofdifferent monosaccharides ( interna pastoris mg/ml). solubility (>980mg/ml)sticky liquid whosewater dramatically is higher than ofFA that (0.69 isa NMR andelectrospray ionization massspectrometry Feruloyl diglycerol-1 analysis. al.,2012 et FAEusing puri synthesized byesterificationofFA FAderivatives withcoworkers water-soluble diglycerol min ( DMSOand 5% 30 atpH4.0,50°Cfor oligosaccharides ( and mono- used have been synthetic for as tools esterification the of hydroxycinnamic acids to polyols, demonstrationfirst ofenzymatic of feruloylation carbohydrates.Inadditional studies, FAEs feruloylated fromby MtFaeC L-arabinose 12. thermophila Est1 majorandtheminor2-FG. fromthe being product productbeing 1-FG ( 2006 ( glycosideasFA esters,various FAesters using donors 2006 Zeng et al.,Zeng et 2014

-MS asthecorresponding-MS feruloylated Fivesaccharides. FAEs, MtFaeA2, MtFaeA1, ) Commercial). enzyme are able preparations toperform transesterifications ofFA to . AnFaeA is able . AnFaeAferulate isable to synthesize in 1-glycerol a mixture FA,85%glycerol of1% l hydroxyl group of glycerol (2-FG) or at one of the terminal hydroxyl groups (1-FG) orat l hydroxylgroup oneoftheterminal of groups (1-FG) (2-FG) glycerol hydroxyl Kelle 2016 etal., Zeng andcoworkers conducted astudy AoFaeA using Future perspectives An important proof

either feruloylto produce two the glycerol esterisomers, at the with bondoccurring Antonopoulou et al., Antonopoulou etal., inyl caffeate, fatty alcohols and carbohydrates as acyl donors (Varriale al.,et inyl alcohols 2018). caffeate,fatty andcarbohydrates (Varriale as acyl donors ). The major product wasdetermined by reaction γ-feruloyl-α,α′-diglycerol tobe

were able were able to prenylferulate,caffeate, catalyze glyceryl prenyl caffeate, glyceryl fied froma commercial enzyme produced by preparation ). Themaximum). esterification 60.3%at contentyield reached water of 20%, Comment citer cedocument: ). Fort -of-principle milestone wasachievedwith synthesisthe of Tsuchiyama al.,2006 et D- 2017 unately, there newunately,During there is a development front. onthis sucrose, )

. The wild-type and evolved variants of andevolvedThe wild-type variants MtFae1afrom D -lactose, M. thermophila Tsuchiyama al.,2006 et

23 C1 andMtFae1a from D -maltose) methyl using as ferulate aFA ; Vaf Kelle 2016 etal.,

iadi et al.,2007 et iadi ( Topakas etal., 2005 D

-glucose, -glucose, from A. oryzae A. oryzae ). Ki ). M. thermophila M. thermophila D A. niger -fructose, -fructose, ; kugawa ; Tsuchiyama etal., Tsuchiyama Vafiadi et al., P. sapidus expressed in ), which), isthe

( and

Kikugawa D - ATCC

was P. M.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Científico e e Científico Acknowledgments finechemicals,in the and chemical industry. releasedderivatives from areemployed lignocellulose as pharmaceuticalfood as agents, to catalyze added-value subsequent aromaticbioconversion compounds, tohigh andasbiosynthetic tools waste and applied forobtainingFAfromFAEs extensively are agriculturalby-products biotechnological applications Evaluation ofFAEs. of recentscientific the literature shows that valorization 13. industries. increasingly applications, extensive up opening finechemicalnew pathsforthe andfuel materials hydroxycinnamate-derived andstructure, expected chemicals find are to properties. of With approaches emergence molecular the to selectively plantcellalter wall characterization allowsfor unraveling the ofpowerfulFAEs withhitherto unknown novel todiscover strategy andheterologous FAEencodinggenes, expression andbiochemical developments highlighted have exceptional potential in employing genome the mining such completingor even couldpromise. digestion, hold well the via carefully controlled expression incellwalls ofCAZymes forthe purpose ofinitiating complexitythe ofplant cell walls.Thereupon, recent concepts forFAEs producing inplants, complex accurately cocktails containing enzymatic FAE,ormixturesreflect ofcocktails, that andrenewable chemicals.alternative fuelsand Future investigations should centermore upon to conversion goals biofuel,helpingto production of achieve the setforcost-effective enzymes, and xylanases as improves arabinofuranosidases, lignocellulosic biomas increasinglignin, thecell wall's resistance to hydrolysis.FAE employment accessory with

This work was supported by grants fromThis workwassupportedgrants ConselhoNacionaldeDesenvolvimento by the Conclusion Conclusion mostEven though produced characterized have and studies FAEs, recent This review This review plant wall,In the FApolysaccharides cell to component isanessential cross-linking

esterification ofand transesterification ofhydroxycinnamic esters FAand acids. , Tecnológico (CNPq), Coordenação de deNível(CNPq), Aperfeiçoamento Coordenação Tecnológico dePessoal highlighting presents presents Comment citer cedocument:

the recent advances biochemicalproperties,the in the and biodiversity a critical assessment various strategies comparing forFAE

24

s

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Conflic numberscontract 2014/18714 Superior (CAPES) andFundaçãodeAmparo doEstado deSão àPesquisa Paulo(FAPESP, The authors The authors nocompetinghave declared that interests exist. t of interest t ofinterest Comment citer cedocument: -2 and 2017/00525-0). and-2 2017/00525-0).

25

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 4. 3. 17. 16. 14. 13. 12. 11. 10. 8. 7. 6. 2. 15. 9. 5. 1. References

in rats. in ingastric emptying delay of inhibition cisplatin-induced motility: gastrointestinal acidon ferulic effectsof invivo and In vitro 2006. Hamada, M.A., F.M. Sherief, A.S., O.A., Awad, Badary, Biotechnol. Microbiol. esterases from feruloyl by performed prenyl ferulate novel of synthesis Optimized P. 2017. Christakopoulos, U., Rova, M., Ralli, D., Kletsas, A., Papadopoulou, Faraco, P.,V., G., Cerullo, Jutten, Leonov, L., I., Antonopoulou, 135. Neurospora crassa Neurospora esterase from typeBferuloyl A non-modular I. 2003a. Connerton, C., Faulds, V., Crepin, derivatives. glycerol feruloyl properties of Antioxidant 2012. K.O. Evans, J.A., Laszlo, D.L., Compton, of samples fecal esterases from derived feruloyl novel two of and characterization biochemical Expression 2012. K.T. Sampath, Jose, V.L., C., Palanivel, S.S., Santosh, K., Kumar, D.P., Vijayarani, A., Thulasi, M., Chandrasekharaiah, Chem. Structural Underlying Basis. the and Evolution byDirected Esterase EstF27 of Feruloyl Thermostability the Enhancing Y.H.Liu, 2015. W., Xie, R., Chen, L.C., Cao, hydrolysis. bagasse sugarcane improves on-site produced xylanase and esterase feruloyl of Addition 2014. C.S. Farinas, J., Pradella, D.A.A., Lima,Paixão, D., P.D.S., Delabona, Braga, C.M.P., bacteria. pathogenic acidsagainst gallic ferulicand of action mode of and Antibacterial activity 2013. M. Simões, M.J., Saavedra, Ferreira, C., A., Borges, Biochem. transesterification. and hydrolysis in characterization and silicaparticles mesoporous in Feruloyl esteraseimmobilization 2018. L. Gustafsson, Olsson, H., L., Schild, Bonzom, C., cell walls. maizeacid in ferulic of analysis and Relevance, structure 2018. M.R. Bronze, M.C.V., Patto, A., Bento-Silva, by-products. fromagro-industrial compounds thephenolic release for of esterases atool Feruloyl as 2006b. M. Asther, M., Asther, J.-C., Sigoillot, L., Lesage-Meessen, N., Rakotomanomana, N., Marnet, D., Navarro, I., Benoit, diversity. biochemical and prevalence, classification on esterasesbased feruloyl fungal of potential and Biotechnological applications 2008. R.P. de Vries, R.J., Bleichrodt, E.G., Danchin, I., Benoit, derivatives. feruloyl of syntheses sustainable efficient and esterasesfrom feruloyl of novel Screening P. 2019. Christakopoulos, Rova,U., A., Piechot, P., L.,Jutten, Iancu, I., Antonopoulou, 417-27. 9. 500(1), 134- serotonergic and norepinergic systems. norepinergic and serotonergic of involvement acid: effects ferulic of Antidepressant-like Y. Xu, 2015. Pan, J., L., Cao, C., X.,Pang, Yu, Xie,X., Q., Li,J., Yan, L., Ruan, N., Zhang, G., C.,Li, Zhang, D., Lin, J., Chen, J. Bacteriol. thermocellum the of esteraseactivity Feruloyl 2000. L. X.,Ljungdahl, Li, I., Kataeva, D., Blum, esteraseA. feruloyl recombinant of thermal stability inthe andfoldingglycosylation protein of importance Respective 2006a. C. Bignon, M., Asther, I., Gimbert, G., Parsiegla, Marmuse,L., E., Record, Sulzenbacher, G., M., Asther, I., Benoit, Biointerfaces . lipases and in fungal ferulic on acidesteraseactivity Studies 2002. S.A. Patkar, Borch, K., C., Hjort, Lassen, J., A., S.F., Vind, Svendsen, A., Andersen,

, World J. Gastroenterol. World 33. 8225- 63(37), , Biotechnol. Lett. Biotechnol. 19(1), 1. Bioresour. Technol. Ind. Crops Prod. Crops Ind. , , 182(5), 1346- cellulosome can be attributed to previously unknown domains of XynY and XynZ. XynZ. and domainsXynY unknown of previously to attributed can be cellulosome

(1), 47-55. 26(1), exhibits concentration-dependent substrate inhibition. inhibition. substrate concentration-dependent exhibits Comment citer cedocument: , 101

Food Chem. Food , 51. (8), 3213-3226. 3213-3226. (8), (3), 387-96. 30(3), , 221. 217- 36(1),

, , 12 170 Carbohydr. Res. Carbohydr.

(33), (33), 5363- , 316-324. , Myceliophthora thermophil Myceliophthora 246 Metab. Brain Dis. Brain Metab. , 360-378. , 360-378. Talaromyces wortmannii wortmannii Talaromyces 26

7.

Rusa unicolor Rusa

, 341 FEBS Lett. FEBS (11), 1820-1827. 1820-1827. (11), , Enzyme. Microb. Technol. Enzyme. 36. 129- 30(1), Microb. Drug Resist. Drug Microb. and , 580 a in microemulsions. microemulsions. a in Equus burchelli Equus for the development the of for (25), 5815-21. 5815-21. (25), Colloids Surf. B Surf.B Colloids

Biochem. J. J. Agric. Food Food J. Agric. , Clostridium Clostridium . 19(4), 2 Gene ,

BMC , 120, 124- Appl. 370(2), , 56 - 65.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 27. 24. 23. 22. 35. 30. 26. 25. 21. 20. 19. 34. 33. 32. 31. 29. 28. 18.

fungus fungus the esterase from aferuloyl of characterization and Purification 2003. A.M. McKay, J., Donaghy, applications. industrial and properties, classification, phylogenetic esterases: updated feruloyl fungal of Diversity 2016. R.P. de Vries, K.S., Hilden, I., Benoit-Gelber, M.V., Aguilar-Pontes, M.R., Mäkelä, A., Dilokpimol, from esterase patterns aferuloyl of Product 2012. V. Phalip, Jeltsch,J.-M., P., Khoune, Debeire, P., aromatic thecompounds. in presenceof induced andisspecifically degradation andxylan pectin in feruloyl esterase involved asecond encodes The 2002. J. Visser, P.A., Kester,H.C.M., vanKuyk, R.P., de Vries, characterization of a feruloyl esterase, FaeC. esterase, aferuloyl of characterization Technol. Bioresour. Aspergillus niger Aspergillus from AnFaeA, esterase, aferuloyl of substrate specificity of determinants the Probing 2005. Hermoso,J.A. J., Sanz-Aparicio, Juge,N., F., Gonzalez, Husband, R., R., Molina, C.B., Faulds, from esterase aferuloyl of Characterization R. 2013. Munoz, B., de Las Rivas, J.M., Mancheno, I., Reveron, M., Esteban-Torres, subfamilies. uncharacterized including basedenzymediscovery mining genome of validation esterases: Functional feruloyl Fungal 2018. Vries,R.P. de V., Faraco, K.S., Hilden, R., A.,Verhaert, Piechot, P., Jutten, J.L.A., H.,Bras, Hinkka, L., G.,Gidijala, Cerullo, M., Zhou, S., Varriale, M.R., Mäkelä, A., Dilokpimol, of esterasefamily gene the feruloyl Expanding K.S.2017. Hilden, R.P., Di wall polysaccharides. and faeAfrom genes The Hombergh,Visser,J.1997. J., den van G., Williamson, C., Faulds, Heuvel,R., P., den van C.,Kroon, Poulsen, B., Michelsen, R.P., de Vries, to Biomass- F.M. 2013. Squina, W.D., Santos, dos Neto, M.O., A.Z., Mercadante, F., Segato, V.H., D.A.A., Paixao, Salvador, Almeida,R.F., de J., F., Cota, Mandelli, A.P., Citadini, L.B., Brenelli, C.M.P., Braga, A.R.L., Damásio, esterases. feruloyl the microbial of classification I.F. Functional 2004. Connerton, C.B., Faulds, V.F., Crepin, Microbio 79(17), 5130- clavatus Aspergillus and glycosyl hydrolases from hydrolases glycosyl and esterases feruloyl by wheat and bran grain from brewer's acidrelease dimericferulic and mono- and Arabinoxylan K.W. 2004. G., R.,Waldron, Bisignano, LoCurto, G., Mandalari, C.B., Faulds, Biotechnol. cereal arabinoxylan. acids from phenolic release of esterase the in feruloyl a and family and 11 10 hydrolasefamily glycoside between xylanases from Synergy 2006. K. Waldron, P., Christakopoulos, G., R.B.,Bisignano, Curto, Lo G., Mandalari, C.B., Faulds, cellulose. microcrystalline from(FAE-III) esterase acid aferulic of characterization and Purification Williamson, 1994. G. C., Faulds, fromesterase acid (ferulic) methoxycinnamic of 4-hydroxy-3- purificationandcharacterization The Williamson,1991. G. C., Faulds, synergy. and conversion enzymes, affecting factors - between enzymes cooperation andsynergistic hydrolysis enzymatic using bioconversion lignocellulose Areview of 2012. B.I. Pletschke, J.S.V., Dyk, troublemaker. allelochemical an Ferulicacid: 2008. O. Ferrarese-Filho, M.L.L., Ferrarese, Santos, W.D., dos Purif. Expr. Protein stipitatus the of characterization and Production I. 2003b. Connerton, C., Faulds, V., Crepin, lokpimol, A., Mäkelä, M.R., Mansouri, S., Belova, O., Waterstraat, M., Bunzel, M., de Vries, de Vries, Bunzel,M., M., Belova,Waterstraat, O., S., Mansouri, M.R., Mäkelä, A., lokpimol, Aspergillus tubingensis Aspergillus Aspergillus nidulans Aspergillus Penicillium expansum l. feruloyl esterase FAEC in FAEC in esteraseferuloyl , , 137 71 Biotechnol. Adv. Biotechnol. 6. Funct. Plant Biotechnol. Plant Sci. Funct. 9. 622- (5),

(10), 2339- Aspergillus niger Aspergillus . FEBS J. FEBS Appl. Microbiol. Biotechnol. Microbiol. Appl. , , . Comment citer cedocument: 119, 425-428. (2), 176-84. 29(2), 176-84. Appl. Biotechnol. Appl. Microbiol. Appl. Environ. Microbiol. Environ. Appl.

on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. bran. from wheat feruloyl-arabino-xylo-oligosaccharides large on , 45. Microbiology Biotechnol. Biofuels Biotechnol. encode ferulic acid esterases involved in degradation of complex cell complex of cell indegradation involved acidesterases ferulic encode 71. 272(17), 4362- N. Biotechnol. Humicola insolens Humicola .

, J. Appl. Microbiol. J. Appl. 80. 30(6), 1458- : Specificity for the phenolic moiety and binding to to andbinding moiety for the phenolic : Specificity

Pichia pastoris Pichia , 140(4), 779-7 , Lactobacillus plantarum Lactobacillus , 2 , 9-14. 41, 9-14. N. Biotechnol. 27 -bio-products application of feruloyl esterase feruloyl from of application -bio-products , 47-

Streptomyces olivochromogenes Streptomyces

, , , 63 . Biochem.J. 9 (12), 4638–4644. 63(12),4638–4644. , Appl. Microbiol.Biotechnol. Appl. , , 231. 55. 83 (6), 647- (15), 6759- 97(15), : identification of the nucleophilic serine. serine. nucleophilic the of : identification (6), 718-726. (6),718-726.

87.

, 52. , (Pt B), 200-209. 37(Pt B),200-209. , 377-86. 363, 377-86.

67.

Aspergillus niger Aspergillus . Appl. Environ. Microbiol. Environ. Appl. Aspergillus niger Appl. Microbiol. Appl. Microbiol. Aspergillus niger Aspergillus . , J. Gen. J. Gen. (5), 644-50. 644-50. 64(5), Talaromyces Talaromyces

faeB gene faeB gene by by

,

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 38. 54. 49. 45. 44. 43. 42. 41. 40. 39. 37. 55. 53. 52. 51. 50. 48. 47. 46. 36.

studies of the the enzyme. ofrecombinant studies esterase from feruloyl of Expression 2010. Y.H. Ju, Lee,C.K., T., Koskei, Lee,J.C., H.A., Hamad, A.E., Fazary, Enzym. Biochem. pectinase. of source a commercial from forms two of characterisation partial from esterases feruloyl of abilities transesterification the improve rinsing solvent silicaand mesoporous on Immobilisation 2017. L. Olsson, A., Palmqvist, L., Iancu, Gomes, S., M.Z.V., Hüttner, in grass walls. formation intramolecular dehydro-diferulate of feasibilty the 1999.Modelling J. Ralph, R.D., Hatfield, by produced acidesterase ferulic and β-glucosidase xylanases, Cellulases, 2010. E.P.S. Oliveira,Bon, R.A., L.M.F., Gottschalk, biomass. of biorefining for enzyme A versatile esterases: feruloyl of aspects scientific and technological on Review 2015. K.M. Nampoothiri, G., Saucedo-Castaneda, L.V., Rodriguez-Duran, N., Gopalan, bran. acidfromferulic wheat esterase from aferuloyl of expression Cloning, 2013. Q.F. Pang, J.Q., C.D., Wang, Wu,Tang, M.C., H.M., Zhang, X., Y.Y., Yin, Gong, bacterium rumen from the esterase(Est1E) feruloyl apromiscuous of characterization functional and Structural 2010. V.L. G.T.,Arcus, W.J.,Attwood, Kelly, M., Till, S.G., Villas-Boas, D.C., Goldstone, of esterasesystem feruloyl The P.2004. Kroon, C., Faulds, I., Connerton, Cummings, N., G., Williamson, A., Goldson, Crepin, V., M., Garcia-Conesa, esterase from feruloyl anovel of Biochemical2016. D.characterization Chen, Zhang, M., S., Wang, L., Gao, enzymes.immobilized using of vanillin production 2017. Biotechnological K. Kino, M., Kuroiwa, T., Furuya, from Ferulicacid esterase 1993. G. Williamson, C.B., Faulds, convergence in feruloyl esterase family. esterase feruloyl family. in convergence of sugarcane bagasse. hydrolysis specificity. substrate a broad enzyme, with a novel TsFaeC, esterases, including feruloyl discrete three hydrolysis of bagasse. hydrolysis the during synergism xylanase cellulase the and methods of on pretreatment Effectof N. 2015. Kamiya, H., Ichinose, Tanaka, T., Noda,S., Y., Mori, Y., Takasugi, G.A.L., Gonçalves, Jia, L., esterase from feruloyl ahalotolerant of Biochemical characterization 2016. V.S. Tanksale, Haritos, A., C.J., Hunt, docking. molecular and esters hydroxycinnamate methyl arabinose and by ferulic acid esterases of into binding substrate Insights Haritos, 2017. V.S. P., U., Christakopoulos, Rova, A., Tanksale, I., Antonopoulou, C.J., Hunt, Afrom esterase feruloyl of structure crystal The C.B. 2004. Faulds, R., Gonzalez, N., Juge, R., Molina, J., Sanz-Aparicio, Hermoso, J.A., ferulic acid. of production in potential its and magnetic nanoparticles esteraseson feruloyl of Immobilization X.2015. Liu, S., Zhang, He, F., dadantii esterases in twoferuloyl of Identification N. 2011. Hugouvieux-Cotte-Pattat, S., Hassan, Pyrolysis 1984. J. Haverkamp, R.D., Hartley, laccase. interfering presence the of in frombasidiomycetes cinnamoylesterases and feruloyl- of Detection 2013. R.G. Linke, Berger, D., P., Haase-Aschoff, esterases. feruloyl of specificity andsubstrate activity the on co-solvents organic Influenceof 2011. A.T. Martinez, M., Perez-Boada, C.B., Faulds, Appl. Microbiol. Biotechnol. Microbiol. Appl. Bacteriol. cell walls. plant Myceliophthora thermophila Myceliophthora , , S388-S394. 133, S388-S394. 3937 and induction of the major feruloyl esterase and of pectate by ferulic acid. acid. ferulic by esterase of pectate lyases and the feruloyl of major induction 3937 and , Bioresour. Technol. Bioresour. , , 349–359. 17, 349–359. 193 J. Biotechnol. Penicillium piceum Penicillium (4), 963-70. 963-70. (4), J. Sci. Food Agric Food J. Sci. Butyrivibrio proteoclasticus Butyrivibrio Comment citer cedocument: Aspergillus awamori Aspergillus Actinomyces Actinomyces Bioresour. Technol. Bioresour. J. Biotechnol. J. Sci. Food Agric. Food Sci. J. , (3), 227-41. 108(3), 227-41. , , J. Ind. Microbiol. Biotechnol. Microbiol. J. Ind. 100 193 and its application in biomass bioconversion. biomass in bioconversion. application its and Biochem. Eng. J. Eng. Biochem. Trichoderma (4), 1777-87. 1777-87. (4), .

, 534- . , Bioresour. Technol.

spp.: refolding and activity following thermal deactivation. thermal deactivation. following andactivity refolding spp.: Int. J. Biol. Macromol. J. Biol. Int. 35(1), 14 , Aspergillus usamii Aspergillus 243 44. J. Mol. Biol. J. Mol. , 25- ,

in in 185 , Aspergillus niger niger Aspergillus 79, 425-427. ‐ 28 -20. . J. Biosci. Bioeng. J. Biosci. 28. Escherichia coli Escherichia Proteins and and , 158- mass spectrometry of the phenolic constituents of constituents phenolic ofthe mass spectrometry

Sci. Sci. Rep.

, Aspergillus Aspergillus 51 , 164. (1 Bioresour. Technol Bioresour. (3), 495-506. 338(3), 495-506. , , 78. 72- -2), 69. 78(6), 1457- 239 E001 and its applicability in generating generating in and its applicability E001

, , , Bioresour. Technol. Bioresour. 7 Talaromyces stipitatus Talaromyces 46 , 57-65. 41. 40(12), 1433- (1), 17315. 17315. (1), suggests evolutive functional functional suggests evolutive Aspergillus niger Aspergillus (4), 440- (4), : Characterization and crystal crystal and : Characterization act synergistically in the the in act synergistically , 120

4. 330- (3), 4.

, 102 Biotechnol. Appl. Biotechnol.

7. (8), 4962-

, : Purification and and : Purification J. Mol. Catal., B B Catal., J. Mol. 130 : production of of : production 8. , 231-

Dickeya Dickeya

J.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 69. 68. 72. 71. 70. 67. 64. 73. 66. 65. 63. 62. 61. 60. 59. 58. 74. 57. 56.

acid from rice straw in mild alkaline solution. solution. alkaline mild strawin rice acid from ferulic acidand p-coumaric esterified of 2017. Releasekinetics A. Fujita, Sakoda, H., T.N., Linh, technologies. pretreatment from different resulting sugarcane bagasse hydrolyzing on pectinase and cellulase, xylanase, 2014. SynergismZ. of Liu, Y., W., Gong, Xiao, J., C., Lin, Xiong, H., P.,Liu, Zhou, J., Li, 6141- act synergistically to hydrolyze esterified polysaccharides. polysaccharides. esterified to hydrolyze act synergistically carbohydrate-active enzymes database (CAZy) in in 2013. (CAZy) database enzymes carbohydrate-active The Henrissat, P.M., 2014. B. Coutinho, E., Drula, H., Ramulu, Golaconda Lombard, V., 63. 31(39), 10751- and ionicstrength. density surface charge of effects surfaces: oncharged adsorption esterase feruloyl of study simulation Molecular J.2015. Zhou, G., Yu, Peng, J., C., Liu, Biotechnol. basidiomycete the Anesterase from 2013. R.G. Berger, Bunzel, M., H., Zorn, Nimtz, M., Matthes,D., R., Linke, esterases Threeferuloyl in Dong,2011. Y., X. S., Luo, Cai, J., Li, biorefinery. in application potential of acidesterases ferulic The H. 2012. Gruppen, Schols, H.A., Hinz, S.W., M.M., Appeldoorn, L., Pouvreau, S., Kühnel, Bioprocess Biosyst. Eng. Biosyst. Bioprocess the with swollenin catalysis. niger of two expression Heterologous Ding, S. 2018. M., Xu, D., Ding, H., L.,Zhao, Long, Biotechnol. Microbiol. the associating tool achimericof Production enzyme 2006. E. Record, M., Asther, T., F.,Nakari-Setala, Monot, M., Andberg, D., Navarro, M., Saloheimo, A., Levasseur, esterasefrom Bgene feruloyl the of expression 2004. Homologous E. Record, M., Asther,I., M., Benoit, A., Levasseur, of oligosaccharides N-linked S., 2006. K. Hashizume, Yamane, Fushinobu, T., Y., Handa, Takahashi,K., T., Koseki, dependence. pH and discrimination esterase from aferuloyl of analysis Mutational 2005. H. Matsuzawa, Iwano, Hashizume,K., H., K., S.,Iefuji, Fushinobu, Takahashi,K., T., Koseki, 689-96. 83(4), from AoFaeC, and esterases, AoFaeB feruloyl distinct two of Characterization Y.2009. Shiono, T., Murayama, S., Seki, A., Hori, T., Koseki, acidophilus Lactobacillus esterasefrom cinnamoyl novel recombinant of Properties 2015. S.-H. Baik, Kim, J.-H., aggregation. of inhibition amyloid-β dysmnesia and through cell death neuronal amyloid-β-induced improve acidderivatives ferulic 2016. Water-soluble T. Sakamoto, H., Nakajima,H., T., Ihara, Ida, H., Tsutsuki, M., Kikugawa, Biotechnol. an of esterification diglycerols by feruloyl water-soluble highly Synthesisof 2012. T. Sakamoto, Kai, K., M., Tsuchiyama, M., Kikugawa, Protein Expr. Purif. Expr. Protein Enzym. Biochem. Appl. Biotechnol. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal of division the terreusfacilitates Aspergillus esterase aferuloyl of from Characterization 2018. K. Hildén, R.P., de Vries, J., Kuuskeri, S.M., Koskela, A., Dilokpimol, M.R., Mäkelä, esterase from of aferuloyl production Heterologous 2016. D.,Berger,R.G. Linke, K., Zelena, U., Krings, A., Nieter, Kelle, S., by areAcylated Lignins Monocotyledon Commelinid 2018. Harris, J., P.J. Ralph, Smith, D., B.G., Padmakshan, H.C., Free, S.D., Karlen, feruloyl esterasesin feruloyl 7. ,

116, 9-15. Biosci. Biotechnol. Biochem. Biotechnol. Biosci. , , 97 95 Pleurotus sapidus Pleurotus (16), 7241-51. 7241-51. (16), (3), 615-22. 615-22. (3),

Aspergillus niger niger Aspergillus Aspergillus awamori awamori Aspergillus , Comment citer cedocument: (1), 126-33. 37(1), 126-33. , 80. 73(4), 872- Chrysosporium lucknowense lucknowense Chrysosporium , Trichoderma reesei Trichoderma F46 isolated from human intestinal bacterium. bacterium. fromisolated intestinal F46 human 41 Bioresour. Technol. Bioresour. , (5), 593-601. 593-601. (5), (6), 852-862. 63(6), 852-862. Aspergillus niger niger Aspergillus hydrolyzes feruloylated saccharides. saccharides. feruloylated hydrolyzes

Biochim. Biophys. Acta Biochim. EnzymeMicrob. Technol. feruloyl esterase A for release of ferulic acid. acid. ferulic of release esteraseAfor feruloyl Biosci. Biotechnol. Biochem. Biosci.Biotechnol.

Pleurotus sapidus Pleurotus , 70(10), 2476- p feruloyl esterase are important for thermostability and thermostability for important esterase are feruloyl -Coumarate. -Coumarate. Aspergillus niger Aspergillus 29 for the production of ferulic acid from wheat bran. fromwheat bran. of ferulicacid production the for Bioresour. Technol. Aspergillus oryzae Aspergillus , and characterization of the recombinant enzyme. the of recombinant enzyme. and characterization 155, 258-265. Aspergillus awamori Aspergillus C1: purification, characterization and their and characterization purification, C1: 80. Plant Physiol., Physiol., Plant synthesizing feruloyl-saccharide esters. esters. feruloyl-saccharide synthesizing Nucleic Acids Res Nucleic Acids

Appl. Environ. Microbiol. Environ. Appl. , feruloyl esterase. feruloyl 1722 , 50 (1), 77- . 8. (2), 200- , , , Cellulosilyticum ruminicola ruminicola Cellulosilyticum Appl. Microbiol. Biotechnol. Microbiol. Appl. (3), 547-553. 80(3), 547-553. 232 Appl. Microbiol. Microbiol. Appl. 177 , 192-203. , 192-203. 85. J. Mol. Catal., B Catal., J. Mol. , , 513- Trichoderma reesei Trichoderma involved in substrate in involved . 42.

Appl. Microbiol. Microbiol. Appl. 521. Appl. Appl. Langmuir

, Aspergillus Aspergillus 77(17),

,

H1 ,

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 87. 85. 80. 79. 78. 76. 75. 91. 90. 89. 88. 86. 84. 83. 82. 81. 77.

on industrial food processing by-products. by-products. processing industrial food on commune commune esterases from Feruloyl 2016. R.G. Berger, D., Linke, S., Kelle, Nieter, A., therapy. as anti-diabetic metformin and acid ferulic of drug Combination combination: Hybrid 2017. D. P., M, Prabhakar, R., Nankar, Biotechnol. Microbiol. niger Aspergillus from esterase Structureaferuloyl of 2004. K. S., A.,Wilson, Patkar, K., Svendsen, McAuley, products. their of some and vegetables, potatoes, Phenolic acidsin 2007. J., Hellström, P., Mattila, content. variedlignin for selected of sugarcane clones and enzymatic digestibility composition Chemical2011. A.M.F. Milagres, Ferraz, A., W., Carvalho, M.H.P., Barbosa, D.C.F., Baffa, D.B., Gurpilhares, F., Masarin, 553-60. hydrolysis. enzymatic bagasse via compoundsfromsugarcane antioxidant and xylooligosaccharides of production Simultaneous 2014. Squina, F.M. A.Z., Mercadante, G.J.M., Rocha, Ruller, R., Z.B., L.D.,Hoffmam, Wolf, R., Goldbeck, R.F., Almeida, L.B., Brenelli, F., Mandelli, xylanasesby esterasesand feruloyl of Production 2008. Faulds, C.B. K.W., Waldron, R.B., Curto, Lo G., Bisignano, G., Mandalari, 1224- database. (CAZy) enzymes the 1 of carbohydrate-active family Esterase Carbohydrate enzymes from lho, O., Squina, F.M., dos Santos, dos F.M., Squina, O., Filho, Ferrarese- R., Marchiosi, M.S., Buckeridge, A.P., de Souza, D.A.A., Paixão, Almeida,R.F., A., Finger-Teixeira, T.R., Mota, V.H., Salvador, D.M., Oliveira, hydrolysis. to recalcitrance grasslignocellulose in component key a acid: 2015. Ferulic Santos, W.D. dos O., Ferrarese-Filho, R., Marchiosi, R.A., Mitchell, H.B., Molinari,F.C., Moreira-Vilar, V.H., Salvador, T.R., Mota, A., Finger-Teixeira, D.M., Oliveira, in: Bioenergy. for Implications Plants: in Phenolic Compounds 2017. Santos, W.D. dos Marchiosi,R., O., Ferrarese-Filho, A.R., Lima, Soares, R.B., G.E., Barreto, Freitas, D.L., A., Finger-Teixeira, D.M., Oliveira, purpurogenum fungus lignocellulolytic the by secreted esterases three novel of characterization and purification expression, Heterologous J. 2017. Eyzaguirre, R., Sepulveda, E., Oleas, Callegari, G., esterase from feruloyl A type halotolerant A 2014. R.G. Berger, D., Nimtz, M., Linke, P., Haase-Aschoff, Nieter, A., esterasefrom feruloyl C type alkalitolerant an of expression functional and characterization 2008. P. Cloning, E.,Christakopoulos, M.,Topakas, Moukouli, enzymaticand deconstruction. wall composition Plantcell W.D. 2018. dosSantos, O., Ferrarese-Filho, R., Marchiosi, D.M., Oliveira, T.R., Mota, Lett. japonicus Cellvibrio esterase from acid Novelbacterialferulic R.R. 2011. H.D., Chen, Shin, S.D., McClendon, property. conversion-specific and multi-factor, multi-scale, a Biomass recalcitrance: 2015. N.C. Carpita, M.C., McCann, fungus biomass-degrading the of analysis and sequencing Genome 2008. T.S. Brettin, M., Ward, N., Dunn-Coleman, E.M., Rubin, Lucas,S.M., Rokhsar,D.S., P., Richardson, Xie,G., C.R., Kuske, Bruce, D., C., Detter, M.A., Nelson, R., Barabote, C.L., J., Yao, A., Schoch, N., Westerholm-Parvinen, Thayer, A., Terry, M., Schmoll, Salamov, A.A., B., Putnam, Robbertse, B., N., Nelson, M., Misra, S., J.K., Merino, Magnuson, Leon, A.L., de L.F., Larrondo, I., Ho, C.S., Han, C.P., Kubicek, M., Jackson, Harris, P., I.V., Grigoriev, E.G., D.,Danchin, Cullen, P.M., Coutinho, O., Chertkov, J., Chapman, S.E., Baker, M., Arvas, M., Saloheimo, B., Henrissat, Berka, R.M., D., Martinez, 52. 39- Cham, pp. Sugarcane from , 54. 33(1), 47- 32.

Microbial Biotechnol. Microbial J. Food Compost. Anal., Compost. J. Food to treat food industry side-streams. side-streams. industry treatfood to Ind.Prod. Crops when grown on sugar beet pulp. pulp. sugarbeet on grown when , (Eds.) M.S. Buckeridge, A.P. de Souza, Springer International Publishing. Publishing. International Springer Souza, de A.P. Buckeridge, M.S. , (Eds.) .

Acta Crystallogr. D Biol. Crystallogr. DBiol. Crystallogr. Acta

and its application in ferulic acid release and xylan hydrolysis. xylan release acid and ferulic in itsand application Comment citer cedocument: Pleurotus eryngii Pleurotus , (2), 245-254. 79(2), 245-254. Trichoderma reesei Trichoderma , Bot, J Exp 52 Advances of Basic Science for Second Generation Bioethanol Bioethanol Generation Second for Science Basic of Advances , , 770-775. , 770-775. 11 Biotechnol. Biofuels, Biofuels, Biotechnol.

20(3 (5), 869-880. (5), 869-880. Talaromyces stipitatus Talaromyces stipitatus -4), 152- . Phytomedicine 18. 4109- 66(14), Fungal Biol. Fungal Bioresour. Technol. Bioresour. 30 Bioresour. Technol. Bioresour. (syn. (syn. 160. Carbohydr. Res. Carbohydr. AIMS Bioeng. AIMS

Hypocreajecorina , , 118(3), 348- 4 13. 37, 10- , (1), 55. (1),

D60 and Fusarium oxysporum Fusarium , 878-87. Humicola grisea , , 99 5 , , (1), 63- 443-444

Plant Biotechnol. J. Plant Biotechnol. (11), 5130-5133. 5130-5133. (11), 220 57. , 38-

). 77. Nat. Biotechnol. Nat. , 42-48. 46. Schizophyllum Schizophyllum

var. thermoidea . Appl. Appl. Biotechnol. Biotechnol. Penicillium

, 13

, (9), (9), 26 (5),

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 102. 101. 96. 92. 108. 105. 104. 103. 100. 99. 98. 97. 95. 94. 93. 110. 109. 107. 106.

Penicillium chrysogenum Penicillium of Supernatant the Using Culture Pulp Beet Acidfrom Ferulic Sugar of Extraction Efficient H. 2005. Kawasaki, M., Tsuchiyama, Y., Sunagawa, T., Kato, S., Nishimura, T., Sakamoto, from acid ferulic Effect of 2012. S.P. Babu, Sinha B.C., Pal, N., Mukherjee, D., Kumar, A., Nayak, Gayen,P., Saini, recognition. substrate into xylanasefrom of 10B module esterase feruloyl the of structure The 2001. G. Ferreira, Davies, C., L., S., Fontes, N., Charnock, Tarbouriech, Prates, J., the field. in application pharmaceutical potential molecules with derivatives and acid 2013. Ferulic F.M. Squina, Santos, W.D., R.,dos Goldbeck, L.B., Paiva, biochemical approaches. approaches. biochemical 167, 469- possible mechanism of action. action. of mechanism possible ferulicagainst acid of Antimicrobialactivity Xia, X. 2016. L., Cui, R., Jia,Dong, X., Chen, Z., Liu, Zheng,Z., Y., K., Song, M., Yang, Y., Sun, X., Zhang, C., Shi, from Z xylanase cellulosomal the of domain esterase feruloyl the of specificity substrate the basis for Structural B. 2001. Rose, J.,Wang, L., Ljungdahl, A., F., Shah, D., Kataeva,Blum, I., Schubot, Feruloyl Esterases. by Ferulates Alkyl n- Nonpolar Hydrolysis of 2016. L. Nystrom, C.B., Faulds, E., Topakas, I., Sprecher, A., Schär, Biotechnol. Microbiol. Library. Metagenomic Soil a Esterase aNovelfrom of Feruloyl Characterization and Overexpression MolecularCloning, 2011. Y.H. Liu, Li,X.P., Hu, S.L., G., Sang, pullulans Aureobasidium by Lignocellulose Degradation in Esterase Involved a Feruloyl of Properties and Purification 2003. B.A. Prior, K.H., Robra, G., Gubitz, M., M., P.,Mastihubova, Gudelj, K., Biely, Rumbold, biocatalysts. as stereoselective Esterases 2015. F. Molinari, C., Mda, Oliveira de T., Sousa Fonseca, de M.C., Mattos, de F., Bonomi, D., Romano, andinvivo. vitro mechanisms in antioxidantandanti-apoptotic via injury cerebralischemia/reperfusion-induced against effects neuroprotective Ferulic acidexerts H.2017. Z.,Yang, Yang, Li,Y., Y., Li, R., Zhang, Z., Ren, a review. detection, esterase activity Ramos-de potential. biorefinery and reactions fermentation pretreatments, structure, lignin review A on 2019. Kumar, G. S.W., Chang, Saratale, R.G., Banu, J.R., S., Shobana, J., Dharmaraja, D.D., V.K., Nguyen, Ponnusamy, purpureum grass Elephant( of degradation Enzymatic C.B. 2014. Faulds, A.T., Martinez, Gutierrez, A., del J.C., Rio, M.P., P., Forquin-Gomez, A.,Prinsen, Prieto, M., Perez-Boada, Nanoparticles. Superparamagnetic of Characterization and Spectroscopic Biofunctional Medicine: in Devices Biomedical Nanoscale Towards 2011. S.B. Petersen, J., Rafaelsen, M.T., Neves-Petersen, A.K., Gennaro, di G.P., Gajula, A., Parracino, 411. bagasse. from esterase Feruloyl 2016. W.D. applicability. applicability. from esterase feruloyl B Atype Chen, 2007. R.R. H.D., Shin, proliferatum Fusarium esterasefrom feruloyl B atype of characterization and Production 2006. R.R. Chen, H.-D., Shin, by Aspergilli. Deconstruction Holocellulose of Review Genomics Prade, 2014. R.A. F.M., Squina, Lucas, R.C., Damasio, de A.R.L., F., Segato, pastries. dough esterasefrom D acid type ferulic A 2018. L., R.G. Berger, D., Popper, J.L., Thiesing, Copa-Patino, A.K., Scheu, Nieter,A., K., Schulz,

Clostridium thermocellum Clostridium AIMS Bioeng. AIMS 75. -la ) stems: influence of the pith and bark in the total hydrolysis. in hydrolysis. the bark total pith and the of ) stems: influence

- Pe Appl. Microbiol. Biotechnol. Microbiol. Appl. Appl. Microbiol. Biotechnol. Microbiol. Appl. ña, A.M., Contreras-Esquivel, J.C. 2016. Methods and substrates for feruloyl feruloyl for substrates Methods and 2016. J.C. Contreras-Esquivel, A.M., ña, Comment citer cedocument: Bioresour. Technol. , , NRRL 26517. 26517. NRRL (4), 196-203. 20(4), 196-203. 4 . Parasitol. Int. Parasitol. . (1), 1-11. (1), 1-11. Hibiscus mutabilis mutabilis Hibiscus Appl. Environ. Microbiol. Environ. Appl. Structure J. Appl. Glycosci. J. Appl. Foodborne Pathog. Dis. Pathog. Foodborne . Biochemistry Int. J. Med. Int. Mol.

Aspergillus clavatus clavatus Aspergillus , J. Mol. Catal., BEnzym. Catal., Mol. J. 9 Enzyme Microb. Technol. EnzymeMicrob. (12), 1183-90. 1183-90. (12), J. Agric. Food. Food. Chem. Agric. J. , (4), 520-531. 520-531. 61(4), Streptomyces werraensis Streptomyces , , 271 73 , , 31 (2), 115-120. 52(2), 102 on filarial parasite on filarial 30. 1323- (6), , , 462- (42), 12524-12532. 12524-12532. 40(42), Microbiol. Mol.Rev. Biol. Microbiol. (3), 1269-1279. (3), 1269-1279. Biotechnol. Adv. Biotechnol. , (5), 1444-1456. 1444-1456. 40(5), , 472. Clostridium thermocellum Clostridium (9), 5622-5626. 5622-5626. 69(9), J. Fluoresc. , improves xylan hydrolysis of sugarcane hydrolysis sugarcane of xylan improves 13(4).

, , Aspergillus nidulans Aspergillus (45), 8549-8554. 8549-8554. 64(45), 130 , Braz. J. Pharm. Sci. J.Pharm. Braz. Setaria cervi Setaria 38 , 74- , , affects the volume of wheat wheat of affects volume the Cronobacter sakazakii Cronobacter (5), 547-65. 33(5), (3 (2), 663-672. 663-672. 21(2), -4), 478-485. 478-485. -4), 87. Bioresour. Technol. ,

78(4), 588- : Molecular and and Molecular : Pennisetum Pennisetum provides insights insights provides J. Mol. J. Mol. with broad pH pH broad with

, 613. 49(3), 395- and and

,

:

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 127. 119. 114. 129. 128. 125. 123. 120. 118. 117. 116. 115. 126. 124. 122. 121. 113. 112. 111.

classification scheme for feruloyl esterases. feruloyl for scheme classification anovel builds basisfor the modeling pharmacophore with analysis computational based descriptor- of G. interplay 2011. The L., Panagiotou, Olsson, I., Kouskoumvekaki, D.B., Udatha, yield. transesterification improved to leads materials mesoporous esterasesin feruloyl of Immobilization 2011. L. Olsson, H., C.,Gustafsson, Thörn, Property. Its Antioxidant Through Potential FerulicTherapeutic Acid: 2007. V.P. Menon, A.R., Sudheer, M., Srinivasan, 121-131. Production of Ferulic Acid from Agricultural Biomass. Biomass. fromAgricultural Acid of Ferulic Production Esterases from Feruloyl and Characterized Identified Newly ofTwo Application 2014. T. Hatanaka, K., Harazono, Y., Arima, Inoue, J., Uraji, M., e39473. Esterase from Families Feruloyl of Characteristics Structural Distant Common and Olsson, 2012. G., L. Panagiotou, V., Mapelli, D.B.R.K.G., Udatha, Subj. Gen. ester synthesis. acid(sugar) use anditsphenolic for characterization, purification, esterase (StFaeC): C feruloyl 2005. P. Christakopoulos, H., Stamatis, C., E., Vafiadi, Topakas, fungus from thermophilic the esterase(StFAE-A) feruloyl B atype of characterization and Purification 2004. P. P., Christakopoulos, Biely, Stamatis, E., H., Topakas, changes. structure–activity its silica and mesoporous on esterase-C feruloyl of efficacy immobilization pH-dependent the Understanding 2013. L. Olsson, E., P.,Topakas, H.,Christakopoulos, Zhou, D.B.R.K.G., C.,Udatha, Thörn, cellwalls. secondary plant hemicelluloses in and between lignin interactions Covalent 2019. P. Dupree, O.M., Terrett, Grain. Spent Brewer's Acids from Esterase from Acid Ferulic a Novel of The Use 2010. M. Bancarzewska, M., Z.,Niedźwiadek, Targoński, A., Waśko, D., Szwajgier, 82(10), 2857- triad. nearacatalytic bond tannase adisulfide the tofamily: esterase belonging feruloyl a of structure Crystal S. 2014. Fushinobu, T., Koseki, T., Wakagi, T., Arakawa, C., Yamada, M., Samejima, Igarashi, K., Ishida,T., R., Thangudu, Hori,Kawamoto, K., K., A., Suzuki, [BMIM]PF6. in transesterification by glycerol diferuloyl and glycerol monoferuloyl of synthesis Kinetics enzymatic of S.,2015. Chen, X. Sun, 44. 33- Biotechnol. Microbiol. Appl. acid with polyols using a ferulic acid esterase from aferulicfrom acidesterase using polyols acid with ferulic of Esterification 2006. H. S.,Kawasaki, Murata, Fujita, T., T., Sakamoto, M., Tsuchiyama, esterasefrom aferuloyl of characterization and Purification P.2003. Christakopoulos, B.J., Macris, D., P., Kekos, Biely, E., Stamatis, H., Topakas, thermophila Myceliophthora fungus thermophilic from the esterase aferuloyl of structural modelling and characterization Expression, P. 2012b. Christakopoulos, M.,Dimarogona, M., E., Moukouli, Topakas, thermophila. Myceliophthora fungus thermophilic from the esterase aferuloyl of structural modelling and characterization Expression, P. 2012a. Christakopoulos, M.,Dimarogona, M., E., Moukouli, Topakas, pancreatic in β-cells. apoptosis DNAdamage, and glycation, protein methylglyoxal-induced Ferulicprevents acid 2017. S. Adisakwattana, H., W., Cheng, Sompong, removal. for pollutant biocatalyst recoverable magnetically a particles: magnetic silica-coated peroxidase on of soybean Immobilization T.C.2016. Ramalho, L.C.A., Oliveira, A.D., Correa, T.S., Tavares, F.G.E., Nogueira, J.A., Torres, M.C., Silva, Saf. Food Sci. Rev.Food Compr. Benefits. Health Potential and Occurrence, Structures, Their on AReview Moiety: Feruloyl Bearinga Compounds Occurring Naturally Acidand Batista, Ferulic 2017. E.O., R. Silva, esterification of phenolic acids in ternary water–organic solvent mixtures. mixtures. solvent water–organic ternary acids in phenolic of esterification

, 1760 67. Enzyme Microb. Technol. Microb. Enzyme (7), 1071-1079. (7), 1071-1079.

Comment citer cedocument: Curr. Opin. Biotechnol. Opin. Curr. J. Clin. Biochem.Nutr. J. Clin. , . Appl. Microbiol. Biotechnol. Microbiol. Appl. 63 Appl. Microbiol. Biotechnol. Microbiol. Appl. , 686-690. , 686-690. ,

16 J. I. Brewing J. I. La (4), 580- ctobacillus acidophilus acidophilus ctobacillus J. Mol. Catal., B Enzym. B Catal., J. Mol. , 36(5), 729-7 Biotechnol. Adv. Biotechnol. , 32 616. 56, 97- Biochem. Eng. J. Eng. Biochem. , , (3), 293-303. 116(3), 293-303. , 92-100. 40, 92-100.

Aspergillus niger Aspergillus J. Mol. Catal., B Enzym. J. Catal., Mol. Streptomyces Streptomyces 104. 36. PLoS One PLoS

, , RSC Adv.,6 RSC 94, 399. (2), 399-411. 94(2), 399-411. Fusarium oxysporum Fusarium , Aspergillus oryzae Aspergillus 29 K1 for the Release of Phenolic Phenolic Releasefor of K1 the , (1), 94-110. (1), 94-110. , 97 Sporotrichum thermophile Sporotrichum , 93 9 sp. in the Enzymatic the in sp. , 25-31. , 25-31. (8), e104584. e104584. (8), , , . J. Physiol. Biochem. Biochem. J. Physiol. 65 Biochim. Biophys. Acta, Acta, Biophys. Biochim. Sporotrichum thermophile Sporotrichum (87), 83856-83863. 83856-83863. (87), - 72. J. Biotechnol.

, 72 . (1), 57- (1), PLoS One PLoS catalyzing catalyzing

Proteins , 64. 102 , 73 , type

7 (1), (1) (6), (6), , , .

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 143. 141. 140. 139. 138. 137. 136. 135. 148. 147. 146. 142. 134. 133. 132. 145. 144. 131. 130.

Produced by the Four Lactobacillus Species: Lactobacillus bytheFour Produced Esterases Feruloyl of Characterization 2017. J. Kong, T., Guo, S., Zhang, H., He, Z., Xu, esterase. feruloyl and recombinant xylanase by bran xylooligosaccharides from wheat and of ferulicacid production co- High efficiency M.2017. Long, Mao, L., J., L.,Gan, Liu, G., Luo, H.,Y., Xue, Li, H., Wu, endoxylanases. with synergism in characterization enzyme metagenome and microbial from rumen gene esterase feruloyl of Cloning anovel 2013. M.J. Zidwick, H., Liao, V.J., Chan, D.W., Wong, Biotechnol. enzyme biomass in key degradation. esterase:a Feruloyl 2006. D.W. Wong, giganteus Panus mushroom edible esterase fromthe Feruloyl 2014. Ng,T.B. F.,H., Du, Ma,Wang, Z., L., Wang, 290-A), 295. 93(Pt mushroomthe esterasefrom Anacidic T.B. feruloyl Ng, Wang, H., 2016. L., Meng, M., Zhu, Li, Z., L., Wang, 228. Texture. in Role Possible their and Betavulgaris Cell Wallsof the in Dehydrodimers Ferulic Acid J.P. 1999. L.,Adrian, Parker A., Mary, Ng, , K.W., Waldron synthesis. from esterase MtFae1a the feruloyl of Evolution 2018. V. Faraco, Fontes, C., Bras, J.L.A., Piechot,A., P., Jutten, R., Faure, T., Tron, U., Rova, P., Christakopoulos, I., Antonopoulou, G., Cerullo, Varriale, S., fermentum thermostability of a type A feruloyl esterase, AuFaeA, from esterase, AuFaeA, A feruloyl atype of thermostability the Improvementin 2015b. M.C. Wu, Y., Gu, Wu,Q., D., C.J.,Hu, Wang, J.F., Li, X., Yin, from Esterase Feruloyl a A of Type Thermostability the to DisulfideBridges of Contribution M.C. 2015a. T.D.,Wu, He, Zhu, J.F., Y., D.,Li, Hu, X., Yin, tannase with activity. library metagenomic soil esterase a from Anovel feruloyl 2013. Y.H. Liu, W., A.X.,Cao, Shen, Q.L., Chen, J., Yao, biomass. acids fromgrass phenolic esterasesaccess to Newferuloyl P.C. 2012. Lau, H., Leisch, Grosse, S., K., Abokitse, M., Wu, L-arabinobiose. of feruloylation esterase-catalyzed Regioselective 2006. Christakopoulos,P. E., Topakas, C., Vafiadi, Enzym. ferulates.alkyl of toproduction application their and enzyme aggregates cross-linked of multipurpose Preparation 2008b. Christakopoulos,P. E., Topakas, C., Vafiadi, Biotechnol. LDL-oxidation. effectson inhibitory their hydroxycinnamatesbutyl and of synthesis Enzymatic P.2008a. Christakopoulos, C.B., Faulds, A., Alissandratos, E., Topakas, C., Vafiadi, saturation mutagenesis. mutagenesis. saturation e0126864. Mol. Catal., BEnzym. Catal., Mol. esterase from feruloyl anovelthermostable of cloning gene and characteristics Biochemical P. 2013. Zhang, Z.-Q., Jiang, H.-B., Xu, Zhou, P., Yan, Q.-J., L., Tang, S.-Q., Yang, 216. saccharification. during straw acidsfrom rice phenolic release of the cellulases on different Effectsof Li, J. 2017. M.-T., Gao, J., X.,Hu, Chen, X., Wang, Y., Xue, Lett. Biotechnol. agent. anti-mycobacterial a potential as d-arabinose feruloyl of synthesis Chemoenzymatic 2007. P. Christakopoulos, Besra,G.S., L.J., Alderwick, E., Topakas, C., Vafiadi, of Loop 2018. T., Hatanaka, T. Inoue, K., Ogawa, K., Wan, Arima,J., E., Mizohata, Tamura, H., Uraji, M., Catalyzing the Release of Ferulic Acid from Biomass. from Acid Ferulic Biomass. theReleaseof Catalyzing

, (1), 35-41. 54(1), 35-41. Appl. Microbiol. Biotechnol. Microbiol. Appl. , Isolated from Ensiled Corn Stover. Stover. Corn from Ensiled , Isolated , , 133 133 Streptomyces Streptomyces Lactarius hatsudake: Lactarius J. Ind. Microbiol. Biotechnol. Microbiol. J. Ind. (2), 87-112. 87-112. (2), (4), 497-504. 497-504. (4), : a potential dietary supplement. dietary : apotential , (11), 1771-1774. 1771-1774. 29(11),

Comment citer cedocument: Biochem. Eng. Eng. Biochem. , , 328-336. 97, 328-336. Myceliophthora thermophila Myceliophthora Ap pl. Microbiol. Biotechnol. Microbiol. pl. Feruloyl Esterase Plays an Important Role in the Enzyme's the in Important Role an EsteraseFeruloyl Plays Carbohydr. Res., 341 Carbohydr.

Appl. Biochem. Biotechnol. Biochem. Appl. A potential animal feed supplement. animal supplement. A potential feed J. , , 120 (12), 5185-5196. 5185-5196. 102(12), J. Mol. Catal., B Enzym. Catal., J. Mol. 48. , 41- L. amylovorus, L. acidophilus, farciminisL. acidophilus, L. amylovorus, L. 33 , 40(3 Front. Microbiol. Front. J. Agric. Food Chem. Food J. Agric. -4), 287-

towards improved catalysts for antioxidants antioxidants for catalysts towards improved , 56. 99(23), 10047- (12), 1992-1997. 1992-1997. (12), Appl. Environ. Microbiol. Environ. Appl. Aspergillus usamii Aspergillus 95. Aspergillus usamii Aspergillus , J. Sci. Food Agric., Agric., Food J. Sci.

168 , Bioresour. Technol. Bioresour. 8 , 94 , (1), 129-43. 129-43. (1), 95 , 1. , 55-61.

62(31), 7822- J. Mol. Catal., B Catal., J. Mol.

Int. J. Biol. Macromol. J. Biol. Int. Appl. Biochem. Biochem. Appl. . PLoS One PLoS by iterative by iterative Chaetomium Chaetomium , , 84(3). 74(2), 221-

J. , 7. 234, 208-

, and and 10(5), sp. sp. L. J. ,

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 154. 155. 152. 151. 150. 153. 149.

of a feruloyl esterase Afrom aferuloyl of andcharacterization purification Expression, Yu, 2013. G.H. L., Wang, H.C., Zhai, S.B., Zhang, pharmacokinetic properties of ferulic acid: A review. Areview. acid: ferulic of properties pharmacokinetic and intake dietary sources, Chemistry,natural 2008. M.H. Moghadasian, Z., Zhao, Purif. esterase Afrom feruloyl of Expression 2015. Hu,Y.S. J.P., H.C., Cai, Zhai, Liu, Y., L., Wang, S.B., Zhang, thermostability of feruloyl esterase feruloyl Afrom of thermostability increased for responsible aminoof acid residues Identification 2011. Z.-L. Wu, S.-B., Zhang, 147. A from esterase of feruloyl thermostability the improvesignificantly 2012. Multiple aminoacid substitutions Z.-L. Wu, X.-Q., Pei, S.-B., Zhang, systems. liquid esterasesionic in feruloyl theof thermalon anion stability the of solvent capacity bonding hydrogen the of Dependency 2011. A.S. Meyer, A., Riisager, A.J., O.N., Kunov-Kruse, vanBuu, T., Stahlberg, B., Zeuner, Bioresour. Technol. Bioresour. Mol. Catal., BEnzym. Catal., Mol. esterasefrom feruloyl novel a Expressionof 2014. Q.-F. Pang, Zhu,T.-D., Feng,F., T., Yu, M.-C., Wu, Yin,X., Y., Zeng,

, 115 7. , 153- Aspergillus terreus Aspergillus

, Comment citer cedocument: (2), 2093-2096. 102(2), 2093-2096. , 110 , 140-146. , 140-146. Aspergillus oryzae Aspergillus Aspergillus flavus Aspergillus

and its application in biomass degradation. biomassdegradation. in application its and Green Aspergillus niger niger Aspergillus 34 Aspergillus niger Aspergillus . in in Chem. Protein Expr. Purif. Expr. Protein Pichia pastoris Pichia Food Chem. Food , 1557. 13(6), 1550- using the PoPMuSiC algorithm. thePoPMuSiC using . Bioresour. Technol. Bioresour. with esterification activity. esterification with ,,

109 , 92 (4), 691- (1), 36-

Protein Expr. Protein 40. 702.

, 117, 140- J.

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos feruloylated derivatives. Figure 5. configuration depth (BandE).Cleft from (CandF). andlipase AnFaeA cleftcatalytic substrate from withthe open andlipase,isinthe bothAnFaeA which Figure 4. numberofn isthe analysis. ofcharacterizedenzymes calculations. forthe used excluded optimum andisoelectricpoint Outlier presented (C), (D). Table values in 2were pH Frequencies molecularofmassesmonomers) for (kDa optimum (B), (A), temperature 6. Figure representation (C)andsurface molecular (D). circle) (A). Monomer ofAoFaeB,showingthelid cleft(B),cartoon andcatalytic position Ser203, His457andAsp417triad(dashedcircle) andthecalcium the position lid ionat (solid (A toC)andalipase from lanuginosa Thermomyces Figure 3. diFA. 8-5’ diFA, andvii) vi)5-5’ diFAdiFA, iv)8-8’ form,diFA benzofuranform,aryltetralin diFA, 8-8’ v)8-O-4’ iii) dehydrodimers. arabinosyl i)FAesterifiedto residue ofaction andthe site ofFAE, 8-5’ ii) Figure 2. (B). esters Figure 1. Figure captions

Biotechnological approaches and affording forFAEproduction applications Structure of Crystallographic structure offrom AnFaeA Histogram of andnormal biochemical of distribution properties microbial FAEs. Schematic ester-linked FAand with ofarabinoxylan representation Chemical ofhydroxycinnamic structures andhydroxycinnamate (A) methyl acids Aspergillus oryzaeAspergillus Comment citer cedocument:

AoFaeB (PDB entry 3WMT). The active site with AoFaeBThe activesitewith (PDBentry3WMT). 35

(PDB entry 1EIN)(D(PDB The entry toE). Aspergillus niger Aspergillus

(PDB 1UZA) entry

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction monocots Commelinid Group plants Non Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos - commelinid

Table 1.

–, not–, defined ornot mentioned. Amount of Maize ( Maize family Species, Solanaceae ( Tomato ( Broccoli Brassicaceae Whit ( Soybean ( Spinach ( Sugarbeet ( Beetroot ( Onion canariensis islandpalmCanary date ( Commelinaceae ginger Blue ( Restionaceae Rush Tassel cord ( ( Pineapple Zingiberaceae lily Ginger ( grass Nile ( ( Rice ( Barley ( Sugarcane ryegrass Perennial ( e cabbage( e Oryzasativa Allium cepa maysZea Hordeumvulgare Lycopersicum esculentum Spinacia Brassicaoleraceae Glycinemax Betavulgaris ferulic acid in different biomass sources. acidindifferent biomassferulic sources.

Ananas comosus Beta vulgaris ), Arecaceae ), Cyperus papyrus Saccharumofficinarum Hedychiumgardnerianum

Dichorisandrathyrsiflora

Comment citer cedocument:

Brassica ), Poaceae ), Baloskion tetraphylBaloskion ), Poaceae ), oleraceae ), Alliaceae ), Lollium

),Fabaceae ), Amaranthaceae ),

), Amaranthaceae ), Phoenix oleraceae ),Poaceae

), Bromeliaceae ), perenne ), Cyperaceae ), ),Amaranthaceae

), Brassicaceae

), ), ), Poaceae ), ), ),

), Poaceae ), lum ), ), ),

),

36

Stem Stem Grain Stem bagasse Culm Shoot bladeLeaf Stem Bran Grain tissue or Organ – – – – – Root Root Bulb Leaf Stem Stem coreFruit

3.43 3.18 to 0.143 0.091 3.51 to 17.0 8.0 6.03 3.86 6.27 to 33.0 26.1 20.66 FAof (mg Concentration 0.0029 0.041 0.0027 0.12 0.074 4.59 6.93 0.007 0.17 1.07 2.27 6.84

/

g)

( ( ( 1984 ( ( 1984 ( 1984 ( 1984 ( ( 1984 ( Reference ( ( ( ( ( ( ( ( ( ( ( ( Karlen etal.,Karlen 2018 etal.,Karlen 2018 Moghadasian, and 2008 Zhao andHaverkamp,Hartley et Masarin al.,2011 andHaverkamp,Hartley andHaverkamp,Hartley andHaverkamp,Hartley Zhao andHaverkamp,Hartley Mattila and Hellström, Mattila and 2007 Hellström, Mattila and 2007 Hellström, Mattila and 2007 Hellström, Mattila and 2007 Hellström, Mattila and 2007 Waldron etal., 1999 Waldron etal., 1999 Moghadasian, and 2008 Zhao etal.,Karlen 2018 etal.,Karlen 201 etal.,Karlen 2018 etal.,Karlen 2018 ) ) ) ) )

and Moghadasian,and 2008

8 ) ) ) ) ) )

)

) )

) ) ) ) )

) ) )

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos Table 1. Cellulosilyticum Cellulosilyticum ruminicola japonicusCellvibrio proteoclasticusButyrivibrio auriculaAuricularia Aureobasidium pullulans usamiiAspergillus Aspergillus tubingensis Aspergillus terreus oryzaeAspergillus nigerAspergillus nidulansAspergillus Aspergillus flavus Aspergillus clavatus awamoriAspergillus Actynomyces Microorganism Biochemical properties Biochemical properties and values kinect microbial ofFAEs.

sp.

-

judae

H1 Comment citer cedocument:

AtFaeA AtFAE AtFAE AtFAE AtFaeD AtFaeA AoFaeC AoFaeB AoFaeA AnFaeC AnFaeB AnFaeA Fae Fae AN1772.2 AfFaeA AcFae AwFaeA ActOFaeI Enzyme FaeII FaeI CjFae1B Est1E EstBC ApFae AuFaeA - - II I

- - -

3 2 1

37 30 75 36 29 63 130 40 28.4 35 32 (kDa) MW 31.5 58 61 31.6 36 210 36 36 36 23 76 43 35 75 61 37 -

31

1

4.9 4.8 4.9 3.3 3.6 3.0 4.6 – – 4.2 – p 6.02 5.59 – – 3.2 6.5 4.3 3.3 – – – 4.34 – – – I

5.0 7.0 6.0 5.0 7.0 6.0 7.0 5.5 6.5 pH opt 8.0 6.0 6.5 6.5 6.7 5.0 5.0 5.0 5.0 5.0 7.0 5.0 6.0 6.0 – – –

- 7.0

50 50 50 55 45 58 30 55 30 (°C) T 35 40 35 61 60 45 60 40 40 50 50 50 55 55 – – – opt

- - - 60 40 66

50 45 50 45 – – 50 40 (°C) T 45 50 40 – 60 45 55 55 55 37 – 60 55 – – – – –

sta

0.81 – – 1.44 2.08 0.47 1.11 0.15 1.21 0.659 0.248 – 0.26 0.31 0.44 – 1.38 2.79 (mM) K 0.16 0.36 13.76 2.50 4.78 – 0.24 0.19 0.04 0.098 0.137 0.010 0.050 4.64 – 0.07 0.07 0.08 – ND 0.29 0.38 0.61 0.091 0.058 0.10 0.104 0.022 0.14

m

– – – 84.95 70.74 – – – 0.90 0.27 2.21 – – 278.18 (s k 232.7 645.9 7.78 2.34 – 24.0 23.0 1.4 30.0 23.7 31.1 15.3 – – 1.32 1.27 1.32 – ND 4.68 0.31 2.59 – – – – – – – – 8.46 cat

-

1

)

– – – 3.53 91.0 – – – – – 3.47 0.88 5.02 – – 99.61 (s k 1,454.4 1,794.2 0.57 0.94 1.77 – 100.0 121.05 38 306.12 172.99 2,933.96 – – 18.89 18.14 16.58 – ND 16.14 0.81 4.25 – – – – – – 304.78 cat

−1

/

K

mM

m

−1

)

MCA MFA MpCA MCA MFA – pNB MFA MCA MSA MpCA MFA MFA – MpCA MpCA MpCA – MCA MSA MpCA MFA MCA MpCA MFA MCA MpCA MFA MFA – – MSA MFA MpCA MFA MpCA MFA MpCA MFA MCA MSA MpCA MFA – MFA MCA Substrate pNA

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2004 ( 2017 ( ( ( ( ( ( ( ( Reference Li Li et al.,2011 et al.,2011 McClendon et2010 al., Goldstone Haase Rumboldal., et 2003 al.,2013Gong et Vriesde etal., 1997 Vriesde etal., 1997 Vriesde etal., 1997 Vriesde etal., 1997 Vriesde etal., 1997 et al.,Zhang 2015 et al.,2009Koseki et al.,2009Koseki et al.,Zeng 2014 etDilokpimol al.,2017 Vriesde etal., 2002 Williamson,& Faulds 1994 Williamson,& Faulds 1993 Williamson,& Faulds 1993 Chen, Shin & 2007 et al.,Zhang 2013 et al.,Damásio 2013 et al.,Fazary 2010 et al.,2016Hunt ) )

- Aschoff etal.,2013

)

) ) )

) ) ) ) )

)

) ) ) ) ) ) ) ; )

) (

Levasseuret al., ) )

)

) ) ; ; Wong,2006 ( Wuet al., )

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Schizophyllumcommune sapidus Pleurotus Pleurotus eryngii piceumPenicillium expansumPenicillium giganteus Panus Neurosporacrassa Myceliophthora thermophila plantarum Lactobacillus Lactobacillus farciminis Lactobacillus amylovorus Lactobacillus acidophilus Lactobacillus Lactarius hatsudake Fusarium proliferatum Fusarium oxysporum Erwinia chrysanthemi thermocellum Clostridium Chrysosporium lucknowense sp. Chaetomium Sorangium cellulosum fermentum

CQ31

Comment citer cedocument: PeFae PgFae NcFae MtFaeC MtFaeB Lp_0796 FaeLfe FaeLfa FaeLam FaeLac LhFae FpFae FoFaeC FoFaeB/FaeI FoFaeA/FaeII FaeT FaeD XynZ FaeB2 Fae2 Fae1 Fae FaeIII ScFae2 ScFae1 ScFaeD2 ScFaeD1 PsEst1 PeFaeA PpFae

-

I

31 62 31 27 35 35 45 33 36 29 29.6 42 34 35 54 63 55 67 56 65 61 35 23 33 28 29 29 29 29 55 38

- 36

– 9.5 9.9 – – 5.8 6.0 5.2 5.5 – 4.98 4.67 5.07 – – 5.7 5.2 – – – 8.26 3.5 3.1 – – – – 5.6 – –

6.5−7.5 6.0 7.0 7.0 7.5 7.5 6.0 8.0 7.5 6.5 7.5 9.0 6.0 7.0 7.5 7.5 6.0 5.0 3.0 5.6 4.0 6.0 6.0 6.0 7.0 6.5 7.0 8.0 6.5 4.0

- - - 8.0 7.0 7.5

50 65 55 45 – – 60 65 40 45 60 40 – – 45 45 50 50 70 37 40 55 55 55 – 37 45 45 30 –

- - - - 60 50 50 50

50 45 30 45 – – 70 – 50 50 55 45 45 45 – 40 60 – 40 – 60 50 30 50 50 50 – – – –

0.196 0.263 0.146 0.16 0.50 0.21 0.12 0.26 1.12 0.20 0.60 0.81 0.29 0.68 0.58 – – 5.0 – – – 0.98 1.26 1.06 0.03 0.51 0.18 0.22 0.43 0.74 0.123 0.137 0.146 0.123 0.151 0.159 1.95 0.44 0.145 – 2.6 0.36 0.02 0.021 0.25 0.14 0.57 0.59 1.64 0.21 0.09 0.71 – – – – – 0.54

– – 140.6 8.2 222.9 120.4 5.91 0.46 19.88 6.85 0.13 1.94 0.21 0.65 – – – – – – – 6 538. 330.9 2,130.9 310.5 6.5 8.2 9.6 8.3 34.1 91.4 54.7 38.4 105.1 51.0 – 3.41 0.85 – – – 4.8 12.19 5.24 0.13 0.40 0.53 2.60 4.56 5.47 3.30 – – – – – – –

– – 879.06 16.4 1,061.43 1,003.47 22.75 0.416 99.44 11.41 0.16 6.70 0.31 1.13 – – – – – – – 427.4 312.1 71.029 608.8 36.11 37.27 22.32 11.21 275.1 666.2 372.6 310.6 696.3 319.2 11.2 7.75 5.85 – – – 100 580 21 0.95 0.70 0.90 1.58 21.74 60.77 4.64 – – – – – – –

MSA MFA MSA MFA MCA MpCA MFA MCA MpCA MFA MFA FAX MFA – MFA – MCA MpCA MFA MCA MSA MpCA MFA MCA MpCA MFA – – – – – MFA MCA MpCA MFA MCA MSA MpCA MFA MCA MSA MpCA MFA MCA MSA MpCA MFA – – – – – MFA MpCA MCA MFA MpCA FAXXX

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 2011 ( ( ( ( Wu et al., 2012 Wual., et etal.,2016Nieter et al.,2013Linke etal.,2014Nieter et al.,2016 Gao &Donaghy McKay, 2003 et al.,Wang2014 et al.,Crepin 2003a etal., Topakas 2005 etal., Topakas 2004 Esteban al.,2017 Xu et al.,2017 Xu et al.,2017 Xu et al.,2017 Xu et et al.,Wang2016 Chen, Shin & 2006 etMoukouli al.,2008 etal., Topakas 2003 etal., Topakas 2003 Hugouvieux& Hassan Blumal., 2000et et al.,Kühnel et al.,2013 Yang )

- Torres et Torres al., et 2012 ) ) ) ) )

)

) ) ) ) ) ) )

) ) )

) ) ) )

) 2013

- Cotte )

)

- Pattat, Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos pNB: ferulate; MpCA: methyl p arabinofuranosyl-(1→3)]- xylopyranosyl-(1→4)-D-xylopyranose; FAXXX: 1

2 burchelliEquus 2 2 wortmanniTalaromyces stipitatusTalaromyces werraensisStreptomyces olivochromogenes Streptomyces sp. Streptomyces Dimeric protein. Microflora ofa cow’srumen Microflora samples Fecal of soil metagenomicsCotton p -Nitrophenyl butyrate; pNF:

Rusa unicolorRusa 2 Metagenomic analysis.FAXX: O

-coumarate;methyl MSA: sinapate; ND, not detected; pNA: O

-β-D-xylopyranosyl-(1→4)-D-xylopyranose; MCA: methyl caffeate; MFA: methyl Comment citer cedocument:

and

p -Nitrophenyl ferulate; not–, detected ornot mentioned. RuFae2 Tvmz2a Tvms10 Tan410 Fae68 Fae7262 Fae125 TsFaeC TsFaeB TsFaeA SwFaeD SoFae R43 R18

O -β-D-xylopyranosyl-(1→4)- - [5 29 31.2 18.6 55 58.8 43 40 65 35 35 48 29 52 38 39 - O

-(transferuloyl)-α-L-arabinofuranosyl]-(1→3)-

8.5 – – 4.7 4.9 5.2 5.6 4.6 5.3 3.5 – 7.9 – –

7.0 8.0 7.0 7.0 – – – 6.0 – – 7.5 5.5 7.0 7.5

- 7.0

50 38 35 35 – – – 60 – – 40 30 40 50

O - [5 50 40 40 40 – – – – – 45 40 45 - - O

p -(trans-feruloyl)-α-L- -Nitrophenyl acetate; – – – – – – – 0.37 0.01 0.04 – – 0.12 0.23 1.86 0.54 2.61 3.00 4.41 9.39 3.31 4.31 4.99

– – – – – – – 9.26 9.55 9.65 – – 0.89 1.98 – – – – – – – – –

O

-β-D- – – – – – – – 25.0 746.0 323.0 – – 7.67 8.73 – – – – – – – – –

– – – – – – – MSA MpCA MFA – – MSA MFA MFA MSA MCA MpCA MFA MSA MCA MpCA MFA

( ( ( ( ( 2003b ( ( ( ( Wong et Wongal., 2013et Chandrasekharaiah et al.,2012 et al.,2013 Yao etal.,2019 Antonopoulou et al.,Crepin 2003b Garcia et al.,Schulz 2018 Williamson,& Faulds 1991 etal Uraji )

- Conesa al., 2004 et ., 2014., )

)

) )

)

) )

; )

( Crepin et al., )

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos 1 wortmannii Talaromyces stipitatus Talaromyces sapi Pleurotus purpurogenum Penicillium Neurosporacrassa thermophila Myceliophthora Aspergillus terreus oryzaeAspergillus oryzaeAspergillus nigerAspergillus N402 nigerAspergillus nigerAspergillus nigerAspergillus Aspergillus flavus nidulansAspergillus pullulans Aureobasidium Organism – Table 2.

, Glycosylated. Glycosylated.

not detected ornotmentioned.

Comparison in Comparison in protein effects glycosylation ofheterologous expressedFAEs. dus

2

Non-glycosylated. Protein Fae7262 Fae125 Fae68 TsFaeC PsEst1 Pp NcFae MtFae1 AtFaeA AoFaeC AoFaeB AnFaeD AnFaeC AnFaeB AnFaeA AfFaeA AN1772.2 ApFae FaeA

Comment citer cedocument: -

I

host Expressed C1 thermophila M. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. pastoris P. 298302 A. coli niger A. pastoris P. cerevisiae S. -

niger CMICC

2

1

and E. #

Predicted molecularPredicted mass. *Tm temperature). (melting

Glycosylated 40 40 and 37 and 40 30.246 35.04 58.8 130 210 39 75 61 43 30 74 40 43 40 66 70 35

MW(kDa)

Non - 29.286 32.303 28.164 55.340 glycosylated 28.552

110 35 55 55 30 60 56 60 32 – – – –

# # # #

Glycosylation 53 23 22 11 O – – – – 2 – – – – – – – 1 –

site

10 13 18 10 N 4 3 2 7 – 1 2 6 – 2 0 – 3 –

Glycosylated Optimum(°C) temperature 55 50 50 50 55 58 45 60 60 50 48 – – – – – - -

Non - glycosylated

50 – – – – – – – – – – – – – – – – –

2018a) etal., (Antonopoulou etal., 2004)(Crepin ( et al.,(Oleas 2017) etal., 2003a)(Crepin etal., (Topakas 2012) et al.,(Zhang 2015) et al.,2009)(Koseki et al.,2009)(Koseki 2018) etal., (Mäkelä et(Dilokpimol al.,2017) ( et al.,2006)(Benoit et al.,(Zhang 2013) Chen,and (Shin 2007) (Rumboldal., et 2003) Reference Kelle et al.,2016Kelle Vriesde etal., 2002

)

)

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos     85characters)HIGHLIGHTS (maximum

Biosynthetic tools for Biosynthetic tools The potentialof areversatiletheFeruloyl esterases biocatalystsproduction of forhydroxycinnamates assessmentCritical various strategies comparing forvalorization feruloyl esterase feruloyl esterases foris highlighted biotechnological feruloyl esterases applications Comment citer cedocument: esterification andtransesterificationcompoundsbioactive of

41

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

42

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

43

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

44

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

45

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

46

Version postprint of bioactive compounds. Bioresource Technology, 278, 408-423. ,DOI :10.1016/j.biortech.2019.01.064 (2019). Feruloyl esterases: Biocatalysts toovercome biomassrecalcitrance andfor theproduction Oliveira, D.M.,Mota,Oliva, B.,Segato, Marchiosi,Ferrarese-Filho, Faulds,C.,dos Santos

Comment citer cedocument:

47