<<

Tables of Representative Carbohydrate-Binding To date numerous CBPs have been identified and demonstrated or implicated in mediating various cellular events through -carbohydrate interactions. The Consortium will target representatives of three major families of CBPs 1) the C-type family (including the , Table 1), the Siglec family (including CD22, Table 2) and the family (Table 3). In addition, within the last five years receptors (TCR) have been documented to recognize carbohydrate when presented by non-classical (CD1) and classical major histocompatibility complex (MHC) antigen presenting molecules. For the purposes of this project, the sub-family of TCR and the corresponding presenting molecules represent a fourth family (Table 4) that will be investigated. In addition to these four families, several other CBPs have been identified which are not homologous members of these families, but that still fall within the scope of the program. Please see the Consortium CBP DB for a comprehensive listing of targets within the scope of the Consortium. Table 1. C-Type CBP Group Species Cell types Comments CD23a 2 Human B cells ¥ Binds CD11/CD18 via carbohydrate Murine ¥ Binds IgE via protein determinant subset ¥ Binds T cells to promote primary DC-SIGNb 2 Human ¥ binding motif ¥ Binds ICAM3 as ligand, also HIV gp120 DC-SIGNRc 2 Human Dendritic cells ¥ May be a co-receptor with DC-SIGN Dendritic cells in ¥ Dendritic cells in spleen, and skin Dectin-1d 2 Murine Spleen, thymus and (Langerhans) Skin (langerhan) Dectin-2e 2 Murine Same as Dectin-1 ¥ Similar expression pattern to dectin-1 HECLf 2 Human ¥ Putative cytoplasmic localization Erythroid precursors Langering 2 Human Langerhan cells ¥ Inducer of Birbeck granules (epidermal DC) Layilinh 2 Murine Numerous ¥ Located in membrane ruffles ¥ Binds talin MCLi 2 Murine Macrophage ¥ Macrophage restricted Minclej 2 Murine Macrophage ¥ Inducible C-type lectin (TNF, IL-6, INF-γ ) ¥ Binds Gal/GalNAc MMGLk 2 Murine ¥ Removes asialo- from serum ¥ Implicated in DTH Endothelial cells ¥ Binds SLeX containing carbohydrates l Murine E- 4 ¥ Mediates leukocyte trafficking to sites of Human Platelets ¥ Binds SLeX containing O-linked sugars on PSGL-1 P-selectinm 4 Murine Endothelial ¥ Mediates leukocyte trafficking to sites of Human inflammation ¥ Mediates platelet binding to Neutrophils ¥ Binds sulfated-SLex containing carbohydrates on O- Lymphocytes linked n Murine L-selectin 4 Human ¥ Mediates trafficking to sites of inflammation ¥ Mediates lymphocyte recirculation DEC-205o 6 Murine Dendritic ¥ Endocytic receptor involved in antigen processing Human Thymic endothelial ¥ Existing knock out mouse Macrophages ¥ Endocytic receptor Fibroblasts ¥ Binds GlcNAc Endo180p 6 Human Murine Endothelial Chondrocytes Macrophages ¥ Role in innate immunity, possible uptake of antigen Mannose (GalNAc- Hepatic endothelial for presentation by CD1 and MHC class II q 6 Murine SO4) receptor ¥ Mannose specific as monomer in macrophages ¥ GalNAc-SO4 specific as dimer in endothelial cells Phospholipase A(2) 6 Human Various ¥ Binds to phosholipase A2 through peptide receptorr Murine determinant

References: a 1-3; b 4-7; c 5; d 8; e 9; f 10; g 11; h 12; i 13; j 14; k 15-19; l 20; m 21-23, 20; n 24-26, 20; o 27-29; p 30; q 31-36; r 37-40 Table 2. Siglec Species Cell types Comments (# Ig Domais) ¥ Subsets of resident and inflammatory macrophages /Siglec-1a Human ¥ Does not require unmasking to mediate binding Macrophages (17) Murine ¥ Does not have -based motifs in cyt. Tail ¥ Prefers 2,3 linked over 2,6 linkage ¥ Regulator of activation ¥ Recruits SHP-1 to cytoplasmic ITIM motifs Human CD22/Siglec-2b (7) B cells ¥ Potential role in B cell homing to bone marrow Murine ¥ Binding site masked on resting B cells ¥ Strong preference for 2,6-linked sialic acids ¥ Commonly used as a marker of early myeloid cells Myeloid Human ¥ Co-cross-linking with Fc receptor inhibits activation CD33/Siglec-3c (2) progenitors Murine ¥ Two cytoplasmic ITIM-like motifs ¥ Recruits SHP-1 and SHP-2 to ITIM motifs ¥ Role in maintenance of , inhibitor of axonal growth Human MAG/Siglec-4d (4) ¥ Two forms with and without ITIM motif Murine Schwann cells ¥ Single cytoplasmic tyrosine-based motif ¥ Prefers 2,3 linked sialic acid over 2,6 linkage Monocytes ¥ Presence of two ITIM-like motifs Siglec-5e (4) Human Neutrophils ¥ Binds 2,3- 2,6- and 2,8-linked sialic acids ¥ Identified as low affinity Trophoblast Siglec-6f (3) Human ¥ Presence of two ITIM-like motifs B cells ¥ Restricted specificity for Sialyl Tn structure ¥ Identified as NK cell inhibitory receptor Natural killer cells ¥ Alternatively spliced form lacking D2 identified Siglec-7g (3) Human Monocytes ¥ Presence of two ITIM-like motifs ¥ Binds equally to 2,3 and 2,6-linked sialic acids ¥ Alt. Spliced forms have two ITIM-like motifs Siglec-8h (3) Human ¥ Prefers 2,3 linked sialic acid over 2,6 linkage Monocytes ¥ Presence of two ITIM-like motifs Siglec-9I (3) Human Neutrophils ¥ Binds equally to 2,3 and 2,6-linked sialic acids NK-like cells ¥ Presence of two ITIM-like motifs Siglec-10j (5) Human B cells ¥ Binds equally to 2,3 and 2,6-linked sialic acids Siglec-11(5) Human Under study ¥ Under investigation References a 41, 42; b 43-46; c 47, 48; d 47, 48, 9, 49, 50; e 51, 52; f 52; g 53-55; h 56; i 57, 58; j59 Table 3. Galectin / Species Structure Organs/Cell types Comments Galectin-1a • Probably most widely distributed galectin Abundant in most • Human • Binds terminal _-galactosides organs (muscle, heart, • Mouse • Occurs as a 14.9 kDa non-covalent dimer lung, liver, lymph • Rat • Expressed in epithelial endothelial, fibroblasts, and node, thymus, colon) smooth muscle cells b Galectin-2 • Thought to be expressed at a minor level • Human Stomach epithelial • Occurs as a 14.5 kDa non-covalent dimer • Rat cells

c Galectin-3 • N-terminus has a -like domain • Human Colon, macrophages, • Also known as the Mac-2 suface antigen • Mouse many other epithelial • Occurs as a 27.5 kDa monomer • Rat and fibroblastic cells

d Galectin-4 • Occurs as a divalent monomeric protein with • Human tandem CRDs that may have different sugar binding • Mouse Gastrointestinal specificity • Rat

e Galectin-5 • The single CRD has 85% homology to the CRD of • Rat Erythrocytes galectin-9

f Galectin-6 • 85% identical to galectin-6 • Human • Galectin-4 and galectin-6 genes are closely linked Gastrointestinal • Mouse

g Galectin-7 • Used as a marker of stratified • Human Skin • Mouse

h Galectin-8 • Occurs as a divalent monomeric protein with • Human Liver, kidney, cardiac tandem CRDs (joined by a link peptide) that may • Mouse muscle, lung, and have different sugar binding specificity • Rat brain • Its link peptide is totally unique from Galectin4/6

I Galectin-9 • Galectin-9 and its (most probably) allelic variant • Human ecalectin, are potent chemoattractants Thymus, kidney, • Mouse • Occurs as a divalent monomeric protein with Hodgkin’s lymphoma • Rat tandem CRDs (joined by a link peptide) that may have different sugar binding specificity j Galectin-10 • Most abundant protein in eosinophils, formerly (Charcot-Leyden called Charcot-Leyden Crystal Protein Crystal Protein) • Previously thought to have lysophospholipase Eosinophils, A. Human activity, but recently shown to be distinct • Mouse • Unlike galectin-1, galectin-10 binds mannose

k Galectin-11 (Grifin) • May represent a new lens crystallin, (galectin- related inter-fiber protein) Lens • Rat • Exhibits lack of affinity for simple β-galactosides • Like galectin-1, galectin-11 can dimerize References: a 60-62; b 63; c 64; d 65; e 66; f 67; g 68; h 69; i 70; j 71; k 72 Table 4. T cells Reactive with Antigens Containing Carbohydrates Antigen T cell Antigen presenting molec. Peptides Classical class I or • Glycopeptides αβ T cells Classical class II • Glycopeptides γδ T cells None—direct recognition • Synthetic glycosphingolipids Microbial Undefined microbial αβ T cells CD1a • Glucose monomycolate • αβ T cells CD1b • Phosphatidyl inositols • Hexosyl-1-phosphoisoprenoids αβ T cells CD1c • Mannosyl-phosphodolichols • Undefined microbial γδ T cells CD1c Autologous or synthetic glycolipids • Undefined autologous αβ T cells CD1a • Brain glycosphingolipids including αβ gangliosides and sulfatide T cells CD1b • Undefined autologous αβ T cells CD1c • α-galactosylceramide NK T cells CD1d • Undefined autologous References:

1. Bajorath, J., and Aruffo, A. (1996) Structure-based modeling of the ligand binding domain of the human CD23 and comparison of two independently derived molecular models. Protein Sci 5:240-7. 2. Kehry, M. R., and Yamashita, L. C. (1989) Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE- dependent antigen focusing. Proc Natl Acad Sci U S A 86:7556-60. 3. Bettler, B., Maier, R., Ruegg, D., and Hofstetter, H. (1989) Binding site for IgE of the human lymphocyte low- affinity Fc epsilon receptor (Fc epsilon RII/CD23) is confined to the domain homologous with animal lectins. Proc Natl Acad Sci U S A 86:7118-22. 4. Lin, C. L., Sewell, A. K., Gao, G. F., Whelan, K. T., Phillips, R. E., and Austyn, J. M. (2000) Macrophage- tropic HIV Induces and Exploits Dendritic Cell Chemotaxis. J Exp Med 192:587-594. 5. Soilleux, E. J., Barten, R., and Trowsdale, J. (2000) DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J Immunol 165:2937-42. 6. Geijtenbeek, T. B., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Adema, G. J., van Kooyk, Y., and Figdor, C. G. (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575-85. 7. Geijtenbeek, T. B., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani, V. N., Littman, D. R., Figdor, C. G., and van Kooyk, Y. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587-97. 8. Ariizumi, K., Shen, G. L., Shikano, S., Ritter, R., 3rd, Zukas, P., Edelbaum, D., Morita, A., and Takashima, A. (2000) Cloning of a second dendritic cell-associated C-type lectin (dectin-2) and its alternatively spliced isoforms. J Biol Chem 275:11957-63. 9. Arquint, M., Roder, J., Chia, L. S., Down, J., Wilkinson, D., Bayley, H., Braun, P., and Dunn, R. (1987) Molecular cloning and primary structure of myelin-associated . Proc Natl Acad Sci U S A 84:600-4. 10. Fernandes, M. J., Iscove, N. N., Gingras, G., and Calabretta, B. (2000) Identification and characterization of the gene for a novel C-type lectin (CLECSF7) that maps near the natural killer gene complex on human chromosome 12. Genomics 69:263-70. 11. Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S., and Saeland, S. (2000) , a novel C- type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71-81. 12. Borowsky, M. L., and Hynes, R. O. (1998) Layilin, a novel talin-binding homologous with C- type lectins, is localized in membrane ruffles. J Cell Biol 143:429-42. 13. Balch, S. G., McKnight, A. J., Seldin, M. F., and Gordon, S. (1998) Cloning of a novel C-type lectin expressed by murine macrophages. J Biol Chem 273:18656-64. 14. Matsumoto, M., Tanaka, T., Kaisho, T., Sanjo, H., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Akira, S. (1999) A novel LPS-inducible C-type lectin is a transcriptional target of NF- IL6 in macrophages. J Immunol 163:5039-48. 15. Ii, M., Kurata, H., Itoh, N., Yamashina, I., and Kawasaki, T. (1990) Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for and N-acetylgalactosamine. J Biol Chem 265:11295-8. 16. Imai, Y., Akimoto, Y., Mizuochi, S., Kimura, T., Hirano, H., and Irimura, T. (1995) Restricted expression of galactose/N-acetylgalactosamine-specific macrophage C-type lectin to connective tissue and to metastatic lesions in mouse lung. 86:591-8. 17. Mizuochi, S., Akimoto, Y., Imai, Y., Hirano, H., and Irimura, T. (1997) Unique tissue distribution of a mouse macrophage C-type lectin. Glycobiology 7:137-46. 18. Chun, K. H., Imai, Y., Higashi, N., and Irimura, T. (2000) Migration of dermal cells expressing a macrophage C-type lectin during the sensitization phase of delayed-type hypersensitivity. J Leukoc Biol 68:471-8. 19. Bartlett, A. L., Grewal, T., De Angelis, E., Myers, S., and Stanley, K. K. (2000) Role of the macrophage galactose lectin in the uptake of desialylated LDL. Atherosclerosis 153:219-30. 20. Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64:113-39. 21. Cummings, R. D. (1999) Structure and function of the selectin ligand PSGL-1. Braz J Med Biol Res 32:519-28. 22. McEver, R. P., and Cummings, R. D. (1997) Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100:S97-103. 23. McEver, R. P., and Cummings, R. D. (1997) Perspectives series: in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100:485-91. 24. Uchimura, K., Muramatsu, H., Kadomatsu, K., Fan, Q. W., Kurosawa, N., Mitsuoka, C., Kannagi, R., Habuchi, O., and Muramatsu, T. (1998) Molecular cloning and characterization of an N-acetylglucosamine-6- O- sulfotransferase. J Biol Chem 273:22577-83. 25. Ohmori, K., Kanda, K., Mitsuoka, C., Kanamori, A., Kurata-Miura, K., Sasaki, K., Nishi, T., Tamatani, T., and Kannagi, R. (2000) P- and E-selectins recognize sialyl 6-sulfo lewis X, the recently identified L-selectin ligand. Biochem Biophys Res Commun 278:90-6. 26. Hiraoka, N., Petryniak, B., Nakayama, J., Tsuboi, S., Suzuki, M., Yeh, J. C., Izawa, D., Tanaka, T., Miyasaka, M., Lowe, J. B., and Fukuda, M. (1999) A novel, high endothelial venule-specific sulfotransferase expresses 6- sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11:79-89. 27. Guo, M., Gong, S., Maric, S., Misulovin, Z., Pack, M., Mahnke, K., Nussenzweig, M. C., and Steinman, R. M. (2000) A monoclonal antibody to the DEC-205 receptor on human dendritic cells. Hum Immunol 61:729-38. 28. Steinman, R. M. (1996) Dendritic cells and immune-based therapies. Exp Hematol 24:859-62. 29. Swiggard, W. J., Mirza, A., Nussenzweig, M. C., and Steinman, R. M. (1995) DEC-205, a 205-kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: purification, characterization, and N-terminal sequence. Cell Immunol 165:302-11. 30. Sheikh, H., Yarwood, H., Ashworth, A., and Isacke, C. M. (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113:1021-32. 31. Harris, N., Super, M., Rits, M., Chang, G., and Ezekowitz, R. A. (1992) Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood 80:2363-73. 32. Ezekowitz, R. A., Sastry, K., Bailly, P., and Warner, A. (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and of yeasts in Cos-1 cells. J Exp Med 172:1785-94. 33. Taylor, M. E., Conary, J. T., Lennartz, M. R., Stahl, P. D., and Drickamer, K. (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265:12156-62. 34. Roseman, D. S., and Baenziger, J. U. (2000) Molecular basis of lutropin recognition by the mannose/GalNAc-4- SO4 receptor. Proc Natl Acad Sci U S A 97:9949-54. 35. Fiete, D., Beranek, M. C., and Baenziger, J. U. (1997) The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides terminating with SO4-4- GalNAcbeta1,4GlcNAcbeta or Man at independent sites. Proc Natl Acad Sci U S A 94:11256-61. 36. Fiete, D. J., Beranek, M. C., and Baenziger, J. U. (1998) A -rich domain of the "mannose" receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci U S A 95:2089-93. 37. Wu, K., Yuan, J., and Lasky, L. A. (1996) Characterization of a novel member of the macrophage mannose receptor type C lectin family. J Biol Chem 271:21323-30. 38. Ishizaki, J., Hanasaki, K., Higashino, K., Kishino, J., Kikuchi, N., Ohara, O., and Arita, H. (1994) Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem 269:5897-904. 39. Ancian, P., Lambeau, G., Mattei, M. G., and Lazdunski, M. (1995) The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J Biol Chem 270:8963-70. 40. Valentin, E., Koduri, R. S., Scimeca, J. C., Carle, G., Gelb, M. H., Lazdunski, M., and Lambeau, G. (1999) Cloning and recombinant expression of a novel mouse-secreted phospholipase A2. J Biol Chem 274:19152-60. 41. Crocker, P. R., Mucklow, S., Bouckson, V., McWilliam, A., Willis, A. C., Gordon, S., Milon, G., Kelm, S., and Bradfield, P. (1994) Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. Embo J 13:4490-503. 42. Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D. G., and Crocker, P. R. (2001) Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97:288-296. 43. Stamenkovic, I., and Seed, B. (1990) The B-cell antigen CD22 mediates and erythrocyte adhesion. Nature 345:74-7. 44. Leprince, C., Draves, K. E., Geahlen, R. L., Ledbetter, J. A., and Clark, E. A. (1993) CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc Natl Acad Sci U S A 90:3236-40. 45. Sgroi, D., Varki, A., Braesch-Andersen, S., and Stamenkovic, I. (1993) CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem 268:7011-8. 46. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I., and Varki, A. (1993) Natural ligands of the B cell adhesion molecule CD22 beta carry N- linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem 268:7019-27. 47. Simmons, D., and Seed, B. (1988) Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J Immunol 141:2797-800. 48. Freeman, S. D., Kelm, S., Barber, E. K., and Crocker, P. R. (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85:2005-12. 49. Sato, S., Fujita, N., Kurihara, T., Kuwano, R., Sakimura, K., Takahashi, Y., and Miyatake, T. (1989) cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Commun 163:1473-80. 50. Kelm, S., Schauer, R., Manuguerra, J. C., Gross, H. J., and Crocker, P. R. (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj J 11:576-85. 51. Cornish, A. L., Freeman, S., Forbes, G., Ni, J., Zhang, M., Cepeda, M., Gentz, R., Augustus, M., Carter, K. C., and Crocker, P. R. (1998) Characterization of -5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 92:2123-32. 52. Patel, N., Linden, E. C., Altmann, S. W., Gish, K., Balasubramanian, S., Timans, J. C., Peterson, D., Bell, M. P., Bazan, J. F., Varki, A., and Kastelein, R. A. (1999) OB-BP1/Siglec-6. A leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 274:22729-38. 53. Nicoll, G., Ni, J., Liu, D., Klenerman, P., Munday, J., Dubock, S., Mattei, M. G., and Crocker, P. R. (1999) Identification and Characterization of a Novel Siglec, Siglec-7, Expressed by Human Natural Killer Cells and Monocytes. J Biol Chem 274:34089-34095. 54. Angata, T., and Varki, A. (2000) Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology 10:431-8. 55. Falco, M., Biassoni, R., Bottino, C., Vitale, M., Sivori, S., Augugliaro, R., Moretta, L., and Moretta, A. (1999) Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190:793-802. 56. Floyd, H., Ni, J., Cornish, A. L., Zeng, Z., Liu, D., Carter, K. C., Steel, J., and Crocker, P. R. (2000) Siglec- 8. A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275:861-6. 57. Angata, T., and Varki, A. (2000) Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co- with sialic acid synthesis pathways. J Biol Chem 275:22127-35. 58. Zhang, J. Q., Nicoll, G., Jones, C., and Crocker, P. R. (2000) Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275:22121-6. 59. Munday, J., Kerr, S., Ni, J., Cornish, A. L., Zhang, J. Q., Nicoll, G., Flyod, H., Mattei, M.-G., Moore, P., Liu, D., and Crocker, P. R. (2001) Identification, characterisation and leucocyte expression of Siglec-10, a novel human sialic acid binding receptor. Biochem J. :submitted. 60. Nowak, T. P., Haywood, P. L., and Barondes, S. H. (1976) Developmentally regulated lectin in embryonic chick muscle and a myogenic cell line. Biochem Biophys Res Commun 68:650-7. 61. de Waard, A., Hickman, S., and Kornfeld, S. (1976) Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem 251:7581-7. 62. Teichberg, V. I., Silman, I., Beitsch, D. D., and Resheff, G. (1975) A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72:1383-7. 63. Gitt, M. A., Massa, S. M., Leffler, H., and Barondes, S. H. (1992) Isolation and expression of a gene encoding L-14-II, a new human soluble -binding lectin. J Biol Chem 267:10601-6. 64. Robertson, M. W., Albrandt, K., Keller, D., and Liu, F. T. (1990) Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry 29:8093-100. 65. Oda, Y., Herrmann, J., Gitt, M. A., Turck, C. W., Burlingame, A. L., Barondes, S. H., and Leffler, H. (1993) Soluble lactose-binding lectin from rat intestine with two different carbohydrate-binding domains in the same peptide chain. J Biol Chem 268:5929-39. 66. Gitt, M. A., Wiser, M. F., Leffler, H., Herrmann, J., Xia, Y. R., Massa, S. M., Cooper, D. N., Lusis, A. J., and Barondes, S. H. (1995) Sequence and mapping of galectin-5, a beta-galactoside-binding lectin, found in rat erythrocytes. J Biol Chem 270:5032-8. 67. Gitt, M. A., Colnot, C., Poirier, F., Nani, K. J., Barondes, S. H., and Leffler, H. (1998) Galectin-4 and galectin-6 are two closely related lectins expressed in mouse . J Biol Chem 273:2954-60. 68. Madsen, P., Rasmussen, H. H., Flint, T., Gromov, P., Kruse, T. A., Honore, B., Vorum, H., and Celis, J. E. (1995) Cloning, expression, and chromosome mapping of human galectin-7. J Biol Chem 270:5823-9. 69. Hadari, Y. R., Paz, K., Dekel, R., Mestrovic, T., Accili, D., and Zick, Y. (1995) Galectin-8. A new rat lectin, related to galectin-4. J Biol Chem 270:3447-53. 70. Wada, J., and Kanwar, Y. S. (1997) Identification and characterization of galectin-9, a novel beta- galactoside- binding mammalian lectin. J Biol Chem 272:6078-86. 71. Ackerman, S. J., Corrette, S. E., Rosenberg, H. F., Bennett, J. C., Mastrianni, D. M., Nicholson-Weller, A., Weller, P. F., Chin, D. T., and Tenen, D. G. (1993) Molecular cloning and characterization of human eosinophil Charcot- Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily. J Immunol 150:456-68. 72. Ogden, A. T., Nunes, I., Ko, K., Wu, S., Hines, C. S., Wang, A. F., Hegde, R. S., and Lang, R. A. (1998) GRIFIN, a novel lens-specific protein related to the galectin family. J Biol Chem 273:28889-96.