Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment Through Mannose Receptor/CD206 Targeting

Total Page:16

File Type:pdf, Size:1020Kb

Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment Through Mannose Receptor/CD206 Targeting International Journal of Molecular Sciences Review Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting Maria Luisa Fiani *, Valeria Barreca, Massimo Sargiacomo, Flavia Ferrantelli, Francesco Manfredi and Maurizio Federico * National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; [email protected] (V.B.); [email protected] (M.S.); fl[email protected] (F.F.); [email protected] (F.M.) * Correspondence: maria.fi[email protected] (M.L.F.); [email protected] (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.) Received: 6 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors. Keywords: tumor-associated macrophages; tumor microenvironment; macrophage polarization; mannose receptor; exosomes; extracellular vesicles; HIV-1 Nef 1. Introduction Both immunosuppression and genetic escape are formidable weapons through which tumors can elude host immune surveillance. Solid tumors develop in a quite complex context, referred to as tumor microenvironment (TME) [1,2], which is composed of both cellular and non-cellular elements, usually resulting in an immunosuppressive behavior. Counteracting such a general effect would favor both spontaneous and therapeutic anti-tumor immunity, hence critically contributing to control tumor cell growth. Therefore, subverting TME immunosuppression represents a major goal for anticancer immunotherapies. Int. J. Mol. Sci. 2020, 21, 6318; doi:10.3390/ijms21176318 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 6318 2 of 20 Int.Both J. Mol. normal Sci. 2020, and21, x tumor cells constitutively release membrane-bilayered vesicles, commonly2 of 20 referred to as extracellular vesicles (EVs) [3,4]. They differ in the mechanisms of biogenesis and secretion,secretion, giving giving rise rise to to the the generation generation of of a a heterogeneous heterogeneous populationpopulation of of vesicles vesicles with with different different sizes sizes andand contents contents [5 ,6[5,6],], which which include include small small EVs EVs (sEVs)(sEVs) oror exosomesexosomes and and microvesicles microvesicles or or ectosomes. ectosomes. ExosomesExosomes are vesiclesare vesicles of 30–150 of 30–150 nm diameter nm diameter generated generated by inward by buddinginward ofbudding endosomal of endosomal membranes to formmembranes intraluminal to form vesicles intraluminal that accumulate vesicles in that intracellular accumulate organelles in intracellular called multivesicular organelles called bodies (MVBs).multivesicular MVBs ultimately bodies (MVBs). fuse with MVBs the plasmaultimately membrane, fuse with thereby the plasma releasing membrane, intraluminal thereby vesicles releasing into theintraluminal extracellular vesicles environment into the (Figure extracellular1). On envi theronment contrary, (Figure ectosomes 1). On are the 100–500 contrary, nm ectosomes vesicles shed are by direct100–500 budding nm vesicles from shed the by plasma direct membrane budding from [7,8 the]. Di plasmafferent membrane types of EVs [7,8]. often Different show types overlapping of EVs featuresoften thatshow make overlapping difficult tofeatures obtain that relatively make puredifficul preparationst to obtain whenrelatively purified pure from preparations cell-conditioned when mediapurified or biological from cell-conditioned fluids. In this media review, or webiological will use fluids. the term In this sEV review, to refer we to will EV use types the co-isolated term sEV to by refer to EV types co-isolated by typical purification methods and exosomes to distinguish EV whose typical purification methods and exosomes to distinguish EV whose subcellular biogenesis strictly subcellular biogenesis strictly derives from multivesicular bodies/endosomes [8]. derives from multivesicular bodies/endosomes [8]. Figure 1. Electron microscopy of multivesicular bodies (MVB) and small extracellular vesicles (sEVs) Figure 1. Electron microscopy of multivesicular bodies (MVB) and small extracellular vesicles (sEVs) (a) TEM micrograph of multivesicular bodies with intraluminal vesicles in Mel501, a melanoma cell (a) TEM micrograph of multivesicular bodies with intraluminal vesicles in Mel501, a melanoma cell line (b) SEM (Scanning Electron Microscope). Micrograph of sEVs purified from conditioned medium line (b) SEM (Scanning Electron Microscope). Micrograph of sEVs purified from conditioned medium of Mel501of Mel501 cells cells by by di ffdifferentialerential centrifugations. centrifugations. Courtesy Courtesy ofof FrancescaFrancesca Iosi and the the Microscopy Microscopy Area Area of of thethe ISS ISS Core Core Facilities. Facilities. SEVs carry a complex cargo of nucleic acids, proteins, and lipids that largely reflects the SEVs carry a complex cargo of nucleic acids, proteins, and lipids that largely reflects the characteristics and the functional state of the cells they originate from, and that will be delivered to characteristics and the functional state of the cells they originate from, and that will be delivered to neighboringneighboring or distantor distant cells cells [9 ,[9,10].10]. As As a a result, result, the the functionsfunctions ofof those recipient cells cells will will be be modulated modulated by sEVsby sEVs in ain manner a manner that that is is strictly strictly dependent dependent on on the the naturenature ofof producerproducer cells, making making sEVs sEVs central central playersplayers in intercellularin intercellular communication communication and and reprogramming reprogramming ofof targettarget cells [11]. [11]. Ectosomes Ectosomes generation generation is ais much a much less less known known process process that that requires requires the the accumulation accumulation ofof theirtheir cargo at at the the cytosolic cytosolic surface surface of of specificspecific plasma plasma membrane membrane microdomains microdomains [7 [7,12].,12]. SEVs-mediatedSEVs-mediated transfer transfer of of molecular molecular and and genetic genetic materialmaterial from one cell cell to to another, another, either either locally locally or ator long at long distance, distance, is ais keya key contributor contributor to to the the mechanisms mechanisms ofof intercellularintercellular communication involved involved in variousin various physiological physiological and and pathological pathological conditions conditions [[13–15].13–15]. Moreover, for for these these reasons, reasons, sEVs sEVs are are nownow considered considered powerful powerful tools fortools clinical for applications,clinical applications, including advancedincluding diagnostics,advanced diagnostics, therapeutics, andtherapeutics, regenerative and medicine regenerative [16–19 medicine]. [16–19]. TheThe molecular molecular composition composition ofof sEVssEVs is determined determined by by the the cell cell type type of origin of origin as well as wellas by asthe by theintracellular intracellular pathway pathway followed followed en enroute route to their to their release release into intothe extracellu the extracellularlar space space[8,20,21]. [8, 20This,21 ]. Thisheterogeneity heterogeneity confers confers to to sEVs sEVs dist distinctinct properties, properties, such such as as tropism tropism to to certain certain organs, organs, and and uptake uptake by by specificspecific cell cell types. types. In In the the case case of of tumor-derived tumor-derived sEVs,sEVs, thesethese eventsevents often lead lead to to the the impairment impairment of of immuneimmune responses responses at TMEat TME [22 [22],], also also favoring favoring pre-metastatic pre-metastatic nicheniche formationformation and metastasis metastasis [23,24]. [23,24]. Int. J. Mol. Sci. 2020, 21, 6318 3 of 20 In tumor cells, sEV biogenesis and ultimately sEV composition is a complex and regulated process, which involves many different molecules associated with the
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Macrophage Activation Markers, CD163 and CD206, in Acute-On-Chronic Liver Failure
    cells Review Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure Marlene Christina Nielsen 1 , Rasmus Hvidbjerg Gantzel 2 , Joan Clària 3,4 , Jonel Trebicka 3,5 , Holger Jon Møller 1 and Henning Grønbæk 2,* 1 Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark; [email protected] (M.C.N.); [email protected] (H.J.M.) 2 Department of Hepatology & Gastroenterology, Aarhus University Hospital, 8200 Aarhus N, Denmark; [email protected] 3 European Foundation for the Study of Chronic Liver Failure (EF-CLIF), 08021 Barcelona, Spain; [email protected] (J.C.); [email protected] (J.T.) 4 Department of Biochemistry and Molecular Genetics, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain 5 Translational Hepatology, Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany * Correspondence: [email protected]; Tel.: +45-21-67-92-81 Received: 1 April 2020; Accepted: 4 May 2020; Published: 9 May 2020 Abstract: Macrophages facilitate essential homeostatic functions e.g., endocytosis, phagocytosis, and signaling during inflammation, and express a variety of scavenger receptors including CD163 and CD206, which are upregulated in response to inflammation. In healthy individuals, soluble forms of CD163 and CD206 are constitutively shed from macrophages, however, during inflammation pathogen- and damage-associated stimuli induce this shedding. Activation of resident liver macrophages viz. Kupffer cells is part of the inflammatory cascade occurring in acute and chronic liver diseases. We here review the existing literature on sCD163 and sCD206 function and shedding, and potential as biomarkers in acute and chronic liver diseases with a particular focus on Acute-on-Chronic Liver Failure (ACLF).
    [Show full text]
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • Insights Into Interactions of Mycobacteria with the Host Innate
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Articles pubs.acs.org/acschemicalbiology Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans † ‡ † † † † Ruixiang Blake Zheng, Sabine A. F. Jegouzo,́ Maju Joe, Yu Bai, Huu-Anh Tran, Ke Shen, † † † † § § Jörn Saupe, Li Xia, Md. Faiaz Ahmed, Yu-Hsuan Liu, Pratap Subhashrao Patil, Ashish Tripathi, § ‡ † ‡ Shang-Cheng Hung, Maureen E. Taylor,*, Todd L. Lowary,*, and Kurt Drickamer*, † Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada ‡ Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom § Genomics Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan *S Supporting Information ABSTRACT: An array of homogeneous glycans representing all the major carbohydrate structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been probed with a panel of glycan-binding receptors expressed on cells of the mammalian innate immune system. The results provide an overview of interactions between mycobacterial glycans and receptors that mediate uptake and survival in macrophages, dendritic cells, and sinusoidal endothelial cells. A subset of the wide variety of glycan structures present on mycobacterial surfaces interact with cells of the innate immune system through the receptors tested. Endocytic receptors, including the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact predominantly with mannose-containing caps found on the mycobacterial polysaccharide lipoarabinomannan. Some of these receptors also interact with phosphatidyl-myo-inositol mannosides and mannose-containing phenolic glycolipids.
    [Show full text]
  • The Role of Langerin Transfer From
    Inhibition of Two Temporal Phases of HIV-1 Transfer from Primary Langerhans Cells to T Cells: The Role of Langerin This information is current as Najla Nasr, Joey Lai, Rachel A. Botting, Sarah K. Mercier, of September 29, 2021. Andrew N. Harman, Min Kim, Stuart Turville, Rob J. Center, Teresa Domagala, Paul R. Gorry, Norman Olbourne and Anthony L. Cunningham J Immunol 2014; 193:2554-2564; Prepublished online 28 July 2014; Downloaded from doi: 10.4049/jimmunol.1400630 http://www.jimmunol.org/content/193/5/2554 Supplementary http://www.jimmunol.org/content/suppl/2014/07/26/jimmunol.140063 http://www.jimmunol.org/ Material 0.DCSupplemental References This article cites 60 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/193/5/2554.full#ref-list-1 Why The JI? Submit online. by guest on September 29, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection
    fgene-11-00358 April 9, 2020 Time: 15:55 # 1 ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fgene.2020.00358 Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection Allen F. Ryan1*, Chanond A. Nasamran2, Kwang Pak1, Clara Draf1, Kathleen M. Fisch2, Nicholas Webster3 and Arwa Kurabi1 1 Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 2 Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 3 Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, Edited by: two endothelial, one pericyte and one melanocyte cluster. Within some clusters, Amélie Bonnefond, Institut National de la Santé et de la cell subtypes were identified. While many corresponded to those cell types known Recherche Médicale (INSERM), from prior studies, several novel types or subtypes were noted. The results indicate France unexpected cellular diversity within the resting middle ear mucosa. The resolution of Reviewed by: Fabien Delahaye, uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major Institut Pasteur de Lille, France role. Thus innate immunity is likely responsible for normal recovery from middle ear Nelson L. S. Tang, infection. The need for rapid response to pathogens suggests that innate immune The Chinese University of Hong Kong, China genes may be constitutively expressed by middle ear cells.
    [Show full text]
  • Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
    BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia
    [Show full text]
  • Superoxide Anion Generation in Human Milk Macrophages: Opsonin-Dependent Versus Opsonin-Independent Stimulation Compared with Blood Monocytes
    0031-3998/01/4903-0435 PEDIATRIC RESEARCH Vol. 49, No. 3, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Superoxide Anion Generation in Human Milk Macrophages: Opsonin-Dependent Versus Opsonin-Independent Stimulation Compared with Blood Monocytes RÜDIGER ADAM, FRANK KUCZERA, HENRIK KÖHLER, AND HORST SCHROTEN Zentrum für Kinderheilkunde, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany ABSTRACT Macrophages are believed to play an important role within the found when unopsonized zymosan was used. After addition of - immunoprotective effects of human breast milk. It was the cytochalasin B, equal inhibition of O2 generation was observed purpose of this study to evaluate the capability of human milk regardless of the cell type or stimulus used. Thus, MM⌽ are ⌽ - macrophages (MM ) to generate superoxide anions (O2 )in stimulated to a greater extent by serum-independent mechanisms comparison with peripheral blood monocytes (BMo) after stim- than BMo. As opsonins like complement or IgG are rare in the ulation with opsonized and unopsonized zymosan. Potential in- colostrum and the neonatal intestinal environment, such a differ- hibitors of attachment and phagocytosis such as mannose and entiation toward serum-independent phagocytic abilities could cytochalasin B were used. Expression of the mannose receptor on play an important role for protective functions of human MM⌽. MM⌽ was demonstrated by staining with MAb. BMo generated Possible involvement of the mannose receptor and the ␤-glucan - ⌽ Ϯ Ϯ - more O2 than MM (417 79 versus 216 15 nmol O2 /mg receptor in this specialization are discussed. (Pediatr Res 49: protein, p Ͻ 0.05) after stimulation with opsonized zymosan.
    [Show full text]
  • Use of Dendritic Cell Receptors As Targets for Enhancing Anti-Cancer Immune Responses
    cancers Review Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses Md Kamal Hossain and Katherine A. Wall * Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, 43614 OH, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-419-383-1943 Received: 27 February 2019; Accepted: 19 March 2019; Published: 24 March 2019 Abstract: A successful anti-cancer vaccine construct depends on its ability to induce humoral and cellular immunity against a specific antigen. Targeting receptors of dendritic cells to promote the loading of cancer antigen through an antibody-mediated antigen uptake mechanism is a promising strategy in cancer immunotherapy. Researchers have been targeting different dendritic cell receptors such as Fc receptors (FcR), various C-type lectin-like receptors such as dendritic and thymic epithelial cell-205 (DEC-205), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and Dectin-1 to enhance the uptake process and subsequent presentation of antigen to T cells through major histocompatibility complex (MHC) molecules. In this review, we compare different subtypes of dendritic cells, current knowledge on some important receptors of dendritic cells, and recent articles on targeting those receptors for anti-cancer immune responses in mouse models. Keywords: dendritic cells; Fc receptor; C-type lectin receptor; major histocompatibility complex (MHC); immunotherapy 1. Introduction Checkpoint inhibitors (CTLA-4, PD-1/PD-L1), adoptive cell transfer, monoclonal antibodies and cancer vaccines are among the most popular cancer immunotherapy modalities available so far. Some of these therapies are either used alone or as adjuvant therapy in combination with other conventional therapy.
    [Show full text]
  • Reprogramming Erythroid Cells for Lysosomal Enzyme Production Leads to Visceral and CNS Cross-Correction in Mice with Hurler Syndrome
    Reprogramming erythroid cells for lysosomal enzyme production leads to visceral and CNS cross-correction in mice with Hurler syndrome Daren Wanga, Wei Zhanga, Theodosia A. Kalfab,c, Gregory Grabowskic,d, Stella Daviesc,e, Punam Malika,b,c, and Dao Pana,c,1 aMolecular and Gene Therapy Program, Division of Experimental Hematology and Cancer Biology, bDivision of Hematology/Oncology, dDivision of Human Genetics, and eDivision of Bone Marrow Transplantation and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; and cDepartment of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45221 Edited by Inder M. Verma, The Salk Institute for Biological Studies, La Jolla, CA, and approved October 02, 2009 (received for review July 29, 2009) Restricting transgene expression to maturing erythroid cells can However, it is limited by likely poor penetration to the CNS, the reduce the risk for activating oncogenes in hematopoietic stem need for frequent i.v. infusions for a lifetime, and tremendous costs. cells (HSCs) and their progeny, yet take advantage of their robust A therapeutical approach with lower mortality and morbidity, and protein synthesis machinery for high-level protein production. This with the capacity to correct CNS deterioration, is needed. study sought to evaluate the feasibility and efficacy of reprogram- Ex vivo HSC gene transfer followed by autologous transplanta- ming erythroid cells for production of a lysosomal enzyme, ␣-L- tion is an attractive alternative for LSD treatment that could iduronidase (IDUA). An erythroid-specific hybrid promoter pro- provide lifelong therapeutical effects without the morbidity and vided inducible IDUA expression and release during in vitro mortality of allogeneic transplantation.
    [Show full text]
  • Reviewed by HLDA1
    Human CD Marker Chart Reviewed by HLDA1 T Cell Key Markers CD3 CD4 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD8 CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD74 DHLAG, HLADG, Ia-g, li, invariant chain HLA-DR, CD44 + + + + + + CD158g KIR2DS5 + + CD248 TEM1, Endosialin, CD164L1, MGC119478, MGC119479 Collagen I/IV Fibronectin + ST6GAL1, MGC48859, SIAT1, ST6GALL, ST6N, ST6 b-Galactosamide a-2,6-sialyl- CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD75 CD22 CD158h KIR2DS1, p50.1 HLA-C + + CD249 APA, gp160, EAP, ENPEP + + tranferase, Sialo-masked lactosamine, Carbohydrate of a2,6 sialyltransferase + – – + – – + – – CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD75S a2,6 Sialylated lactosamine CD22 (proposed) + + – – + + – + + + CD158i KIR2DS4, p50.3 HLA-C + – + CD252 TNFSF4,
    [Show full text]