Orkantief Sabine Löst Am 09./10. Februar 2020 Eine Schwere Sturmlage Über Europa Aus

Total Page:16

File Type:pdf, Size:1020Kb

Orkantief Sabine Löst Am 09./10. Februar 2020 Eine Schwere Sturmlage Über Europa Aus Abteilung Klimaüberwachung Orkantief Sabine löst am 09./10. Februar 2020 eine schwere Sturmlage über Europa aus Autor(inn)en: Susanne Haeseler, Peter Bissolli, Jan Dassler, Volker Zins, Andrea Kreis Stand: 13.02.2020 Zusammenfassung Orkantief SABINE (in Westeuropa CIARA und in Norwegen ELSA benannt) löste am 9./10. Februar 2020 deutschlandweit Sturmböen bis Orkanstärke (12 Bft) aus. Die höchste Böe meldete der Feldberg im Schwarzwald am 10. Januar mit 49,1 m/s bzw. 177 km/h. Der Kern des Orkantiefs zog vom Atlantik kommend über Schottland nach Norwegen, wobei der Kerndruck zeitweise unter 945 hPa lag. Zwischen Nord- und Südeuropa bestanden Luftdruckunterschiede von etwa 80 hPa. Das dadurch generierte Sturmfeld erfasste weite Teile West-, Mittel- und Nordeuropas. In Deutschland war der Sturm, der sich von der Nordsee in Richtung Alpen ausweitete, von teils kräftigen Schauern und Gewittern begleitet. An der Nordsee gab es vom 10. bis 12. Januar mehrere teils schwere Sturmfluten (Abb. 1 und 4). Die extreme Sturmlage war schon Tage vorher angekündigt und es wurde von Tätigkeiten im Freien sowie Reisen während dieser Zeit abgeraten. Sport- und Musikveranstaltungen wurden vorsichtshalber abgesagt. Am 9./10. Februar stellte die Bahn in Deutschland den Verkehr zeitweise ein. Flüge und Fährverbindungen fielen aus. Viele Schulen und Kindergärten blieben am 10. Februar geschlossen. Der Sturm ließ in den betroffenen Ländern Bäume umstürzen und deckte Hausdächer ab. Auf den Britischen Inseln kam es zu Überschwemmungen. In einigen Regionen (auch in Deutschland) gab es Stromausfälle. Abbildung 1: Sturmflut am Weststrand von Norderney. Die Wellen laufen bis auf die Promenade, die als Küstenschutz dient, herauf. [© Frank Kahl, DWD] 1 Abstract The deep low SABINE (also named CIARA in Western Europe and ELSA in Norway) triggered gale up to hurricane force (12 Bft) throughout Germany on 9/10 February 2020. The weather station on the mountain Feldberg in the Black Forest recorded the nationally highest gust of 49.1 m/s or 177 km/h on 10 February 2020. While the centre of the deep low moved from the Atlantic Ocean via Scotland to Norway, the central pressure was temporarily below 945 hPa. There were air pressure differences of about 80 hPa between northern and southern Europe. The resulting storm field covered large parts of Western, Central and Northern Europe. In Germany, the storm spread from the North Sea towards the Alps, and was accompanied by some heavy showers and thunderstorms. Several storm surges, some of them severe, occurred at the North Sea from 10 to 12 January (Fig. 1 and 4). The extreme storm event was announced days before and people were advised to avoid outdoor activities and travels during this time. Sport and music events were cancelled as a precaution. On 9/10 February, the German railways temporarily stopped operating. Flights and ferry connections were cancelled. Many schools and kindergartens remained closed on 10 February. In the affected countries, trees fell down and roofs were damaged by the storm. Floods occurred in the British Isles. In some regions (also in Germany) there were power outages. Beau Mittlere Windgeschwindigkeit in fort- Bezeichnung 10m Höhe über freiem Gelände grad m/s km/h 0 Windstille 0 - 0,2 < 1 1 leiser Zug 0,3 - 1,5 1 - 5 2 leichte Brise 1,6 - 3,3 6 - 11 3 schwache Brise, schwacher Wind 3,4 - 5,4 12 - 19 4 mäßige Brise mäßiger Wind 5,5 - 7,9 20 - 28 5 frische Brise frischer Wind 8,0 - 10,7 29 - 38 6 starker Wind 10,8 - 13,8 39 - 49 7 steifer Wind 13,9 - 17,1 50 - 61 8 stürmischer Wind 17,2 - 20,7 62 - 74 9 Sturm 20,8 - 24,4 75 - 88 10 schwerer Sturm 24,5 - 28,4 89 - 102 11 orkanartiger Sturm 28,5 - 32,6 103 - 117 12 Orkan ab 32,7 ab 118 2 Wetterlage Über dem Nordatlantik lag am 9. Februar 2020 ein umfangreiches Tiefdruckgebiet. An dessen Südflanke hatte sich ein kräftiges Randtief gebildet, welches unter Intensivierung über Schottland nach Norwegen zog und den Namen SABINE erhielt (Abb. 2). Abbildung 2: Zugbahn von Orkantief SABINE vom 8. bis 11. Februar 2020. [Quelle: DWD] Der Kerndruck des Tiefs lag zeitweise unter 945 hPa (Tab. 1; Abb. 3). An der Nordwestküste Norwegens erreichte er seinen Minimalwert von rund 943 hPa. In Tabelle 1 sind einige der Luftdruckwerte aufgeführt. Tab. 1: Auf Meeresniveau reduzierte Luftdruckwerte (hPa) einiger Stationen während des Durchzugs von Orkantief SABINE. [Quelle: DWD] Luftdruck auf WMO-Nr. Station Datum Zeit (UTC) Meereshöhe 03005 Lerwick (Schottland) 09.02.2020 16:00 948,5 03017 Stornoway (Schottland) 09.02.2020 13:00 947,7 03026 Kirkwall Airport (Schottland) 09.02.2020 15:00 945,0 01102 Sklinna Fyr (Norwegen) 10.02.2020 05:00 943,1 01121 Nord-Solvaer (Norwegen) 10.02.2020 07:00 942,7 01217 Molde/Aro (Norwegen) 10.02.2020 00:00 943,9 01259 Buholmrasa Fyr (Norwegen) 10.02.2020 03:00 943,9 3 Zwischen Nord- und Südeuropa ergaben sich Luftdruckunterschiede von etwa 80 hPa (Abb. 3), woraus eine über mehrere Tage andauernde Sturmlage über West-, Mittel- und Nordeuropa resultierte. Abbildung 3: Bodenanalyse vom 10. Februar 2020, 00 UTC. Der Kern des Orkantiefs SABINE befindet sich an der Westküste Norwegens. [Quelle: DWD] In Deutschland traten an der Nordsee erste schwere Sturmböen (10 Bft) am Sonntagmittag (9. Februar) auf. Das Sturmfeld weitete sich dann im Tagesverlauf und am folgenden Tag (10.Februar) Richtung Alpenraum aus, wobei die teilokkludierte Kaltfront von Orkantief SABINE von Sonntagabend bis Montagvormittag Deutschland von Nordwest nach Südost überquerte. Im Bereich dieser Kaltfront wurden die höchsten Windspitzen erwartet. Nachfolgend ließ der Wind zwar im Allgemeinen etwas nach, doch es blieb auch in den folgenden Tagen stürmisch. An einigen Stationen wurden am 11. Februar sogar noch etwas höhere Spitzenböen gemessen als in den Tagen zuvor. Näheres zu den Windgeschwindigkeiten folgt im nächsten Kapitel. In Verbindung mit den anhaltend kräftigen Winden aus westlichen Richtungen kam es an der Nordsee vom 10. bis 12. Februar zu mehreren teils schweren Sturmfluten, wie z.B. in Hamburg. Im Bereich der Kaltfront von SABINE fielen kurzzeitig intensive Niederschläge, aber auch rückseitig der Front gab es noch einige kräftige Schauer. Insgesamt brachte SABINE Tagesniederschläge bis um 40 mm. 4 Windgeschwindigkeiten von SABINE im Vergleich mit KYRILL Sturm- und Orkantiefs bilden sich bevorzugt im Herbst und Winter, da dann die Temperaturunterschiede zwischen den subtropischen und den polaren Gebieten besonders groß sind. Orkanartige Böen (11 Bft) und Orkanböen (12 Bft) treten dabei am häufigsten im Insel- und Küstenbereich sowie in (exponierten) Höhenlagen auf. Sind auch andere Gebiete betroffen, wie bei SABINE, kann man zwar von einem besonderen Ereignis sprechen, doch gab es vor SABINE noch stärkere Orkane. Zu einem dieser Orkane zählt KYRILL, der am 18./19. Januar 2007, ähnlich wie SABINE, ganz Deutschland erfasste und schwere Schäden anrichtete. Im Folgenden werden die Spitzenböen von Orkan SABINE am 9./10. Februar 2020 mit denen von KYRILL am 18./19. Januar 2007 verglichen. Die Abbildungen zeigen zunächst Karten der täglichen Windspitzen. Schon hier fällt auf, dass KYRILL an deutlich mehr Stationen sehr hohe Böen auslöste. Maximale Windspitzen (m/s) während des Orkans Maximale Windspitzen (m/s) während des Orkans SABINE am 09.02.2020 SABINE am 10.02.2020 5 Maximale Windspitzen (m/s) während des Orkans Maximale Windspitzen (m/s) während des Orkans KYRILL am 18.01.2007 KYRILL am 19.01.2007 Bei 28,5 bis 32,6 m/s (11 Bft) spricht man von orkanartigen Böen, bei 32,7 m/s und mehr (12 Bft) von Orkanböen. [Quelle: DWD/CDC] Die maximale Windspitze bei Orkan SABINE meldete der Feldberg/Schwarzwald mit 49,1 m/s (177 km/h) am 10. Februar 2020. Während KYRILL trat am Wendelstein am 18. Januar 2007 dagegen eine Böe von 56,3 m/s (203 km/h) auf. Vergleicht man die absoluten Böenmaxima, die während der Orkane SABINE und KYRILL aufgetreten sind, ergibt sich die in Abbildung 4 dargestellte Häufigkeitsverteilung. Für SABINE wurde dabei der Zeitraum vom 9. bis 11. Februar 2020 betrachtet, wobei die Werte von 260 Stationen in die Analyse eingingen. Für KYRILL war es der 18. und 19. Januar 2007 mit den Werten von 247 Stationen. Die Anzahl betrachteter Stationen war also annähernd gleich. 6 Abbildung 4: Häufigkeit der maximalen Windstärken (Bft) während des Orkans SABINE (9.-11. Februar 2020; 260 Stationen) im Vergleich zu KYRILL (18./19. Januar 2007; 247 Stationen). 12+ bezeichnet hier extreme Orkanböen der Stärke 12 Bft (ab 118 km/h) von mehr als 140 km/h. [Quelle: DWD] Es zeigt sich, dass die Böenmaxima bei KYRILL zu höheren Werten verschoben sind. Während bei SABINE am häufigsten absolute Spitzenböen von 10 Bft auftraten, waren es bei KYRILL solche von 11 Bft. Auswirkungen in anderen europäischen Ländern Auch andere europäische Länder in West-, Mittel- und Nordeuropa hat Orkantief SABINE (in Westeuropa unter dem Namen CIARA und in Norwegen als ELSA geführt) schwer getroffen. Verbreitet wurden Spitzenböen von mehr als 90 km/h erreicht, d.h. Windstärke 10 Bft und mehr. Einen Überblick über die stärksten Windböen im Zeitraum 9. Februar 2020 06 UTC bis 11. Februar 2020 06 UTC in einzelnen Ländern gibt die nachfolgende Tabelle 2 (basierend auf SYNOP-Stationen und Berichten der nationalen Wetterdienste; an anderen Stationen sind noch höhere Werte möglich). Tabelle 2: Spitzenböen (in km/h) im Zeitraum 9. Februar 2020 (06 UTC) bis 11. Februar 2020 (06 UTC) während Orkan SABINE in einigen europäischen Ländern. [Quelle: DWD] Land Station Spitzenböe (km/h) Belgien Chievres 133 Deutschland Feldberg/Schwarzwald 177 Estland Vilsandi 94 Finnland Hanko Russaro 119 Frankreich Cap Corse 219 Irland Mace Head 126 Lettland Ventspils 90 Niederlande Platform F16-A 140 Norwegen Juvasshoe 133 Österreich Brunnenkogel Feuerkogel Loferer 148 Alm Polen Sniezka 198 Schweden Sylarna 133 Schweiz Gütsch ob Andermatt 202 Slowakei Lomnicky Stit 162 Slowenien Kredarica 115 Spanien Estaca de Bares 113 Tschechien Snezka-Postovna 180 Ungarn Kekesteto 112 Vereinigtes Königreich Cairngorm Summit 202 7 Klimatologische Einordnung Bereits in der ersten Januarhälfte 2020 gab es mehrere sehr kräftige Sturmtiefs über dem Nordostatlantik, die zeitweise einen Kerndruck unter 950 hPa aufwiesen.
Recommended publications
  • 2019 20 Winter Quarter
    Weather for the Winter Quarter 2019/20 For the most part December’s weather followed the rather damp pattern of the preceding quarter. By the end of the month we had had 91 mm of rain against a ten-year average of 59.4 mm. In fact September, October, November and December were all significantly wetter than we would have expected - 336mm against 232mm, or 145% of the expected rainfall. The middle two weeks of the December were the wettest when we had 13 consecutive rain days. It is interesting to note that despite this the Environment Agency reported that there had not been sufficient First Snowdrop Autumn rain to make up for the deficit resulting from the st 31 December 2019 previous four dry years. The average temperature for December was a little lower than expected and there were 9 nights below 0℃. However there were some good sunny days in amongst the gloom - in the first week, then the three days up to Christmas (23rd-25th) and two leading up to New Year (30th-31st). The new year started rather dull, but the first two weeks were surprisingly warm with generally southerly winds bringing heat from much further south. Not until the 13th-17th did we get the first winter storm with gusts locally of 50 mph (and much more in other parts of the country). There was also quite a lot of rain, 18.3 mm, but most of it fell in the hours of darkness. Then on Saturday 18th the pressure rose, the sun shone and we had not just one but two clear days - and consequently cold nights.
    [Show full text]
  • Coping with the Long Term
    Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Marjanke A. Hoogstra Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Promotoren: Prof. dr. H. (Heiner) Schanz Hoogleraar Märkte der Wald- und Holzwirtschaft Institut für Forst- und Umweltpolitik Albert-Ludwigs-Universität Freiburg, Duitsland Prof. dr. B.J.M (Bas) Arts Hoogleraar Bos- en Natuurbeleid Leerstoelgroep Bos- en Natuurbeleid Wageningen Universiteit, Nederland Promotiecommissie: Prof. dr. ir. G.M.J. Mohren (Wageningen Universiteit, Nederland) Prof. dr. G. Oesten (Albert-Ludwigs-Universität Freiburg, Duitsland) Dr. M. Pregernig (Universität für Bodenkultur Wien, Oostenrijk) Prof. dr. B.J. Thorsen (Københavns Universitet, Denemarken) Dit onderzoek is uitgevoerd binnen Mansholt Graduate School of Social Sciences Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 16 december 2008 des middags te half twee in de Aula Hoogstra, M.A. [2008] Coping with the Long Term - An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry. PhD thesis Forest and Nature Conservation Policy Group, Wageningen University, Wageningen, the Netherlands. With references - with summary in Dutch and in English. ISBN 978-90-8585-242-1 The Road goes ever on and on Down from the door where it began.
    [Show full text]
  • Whole Day Download the Hansard
    Wednesday Volume 672 26 February 2020 No. 30 HOUSE OF COMMONS OFFICIAL REPORT PARLIAMENTARY DEBATES (HANSARD) Wednesday 26 February 2020 © Parliamentary Copyright House of Commons 2020 This publication may be reproduced under the terms of the Open Parliament licence, which is published at www.parliament.uk/site-information/copyright/. 299 26 FEBRUARY 2020 300 Stephen Crabb: As we prepare to celebrate St David’s House of Commons Day, now is a good moment to celebrate the enormous and excellent progress that has been made in reducing unemployment in Wales. Does my right hon. Friend Wednesday 26 February 2020 agree that what is really encouraging is the fact that the long-term lag between Welsh employment levels and the The House met at half-past Eleven o’clock UK average has now closed, with more people in Wales going out to work than ever before? PRAYERS Simon Hart: I am grateful to my right hon. Friend and constituency neighbour for raising this issue. He will be as pleased as I am that the figures in his own [MR SPEAKER in the Chair] constituency, when compared with 2010, are as good as they are. It is absolutely right that the Government’s job, in collaboration with the Welsh Government if that is necessary, is to ensure we create the circumstances Oral Answers to Questions where that trend continues. He has my absolute assurance that that will be the case. Christina Rees (Neath) (Lab/Co-op): Will the Secretary WALES of State provide the House with specific details on how many people have been affected by the catastrophic flood damage to residential properties and businesses The Secretary of State was asked— across Wales, and exactly how much has been lost to the Universal Credit Welsh economy so far? Simon Hart: I should start by saying that, during the 1.
    [Show full text]
  • EGU2014-6135, 2014 EGU General Assembly 2014 © Author(S) 2014
    Geophysical Research Abstracts Vol. 16, EGU2014-6135, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License. Dynamic aspects of windstorm Kyrill (January 2007) Patrick Ludwig (1), Joaquim G. Pinto (1,2), Simona A. Hoepp (1), Andreas H. Fink (3), and Suzanne L. Gray (2) (1) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany ([email protected]), (2) Department of Meteorology, University of Reading, Reading, United Kingdom, (3) Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Several dynamical and mesoscale aspects concerning severe windstorm Kyrill (January 2007) are analysed by results of high-resolution simulations with the regional climate model (RCM) COSMO-CLM. After explosive cyclogenesis south of Greenland takes place while crossing a very intense upper-level jet stream, Kyrill underwent secondary cyclogenesis over the North Atlantic Ocean just west of the British Isles. The secondary cyclogenesis (Kyrill II), was located on the occlusion front of the mature cyclone (Kyrill I), which is very unusual compared to typical frontal cyclogenesis generally occurring along the trailing cold fronts of existing cyclones. The mechanisms of secondary cyclogenesis are investigated based on moderate-resolution (0.0625◦ grid spacing) RCM simulations. The formation of Kyrill II along the occlusion front follows common mechanism for secondary cyclogenesis like breaking up of a local, low tropospheric PV strip along the front and diabatic heating with associated development of a vertical extended PV tower. Kyrill II propagated further towards Europe, and its development was favoured by a split jet structure aloft the surface cyclone, which maintained the deep core pressure (around 961 - 965 hPa) for at least 36 hours.
    [Show full text]
  • Downloaded 10/05/21 02:25 PM UTC 3568 JOURNAL of the ATMOSPHERIC SCIENCES VOLUME 74
    NOVEMBER 2017 B Ü ELER AND PFAHL 3567 Potential Vorticity Diagnostics to Quantify Effects of Latent Heating in Extratropical Cyclones. Part I: Methodology DOMINIK BÜELER AND STEPHAN PFAHL Institute for Atmospheric and Climate Science, ETH Zurich,€ Zurich, Switzerland (Manuscript received 9 February 2017, in final form 31 July 2017) ABSTRACT Extratropical cyclones develop because of baroclinic instability, but their intensification is often sub- stantially amplified by diabatic processes, most importantly, latent heating (LH) through cloud formation. Although this amplification is well understood for individual cyclones, there is still need for a systematic and quantitative investigation of how LH affects cyclone intensification in different, particularly warmer and moister, climates. For this purpose, the authors introduce a simple diagnostic to quantify the contribution of LH to cyclone intensification within the potential vorticity (PV) framework. The two leading terms in the PV tendency equation, diabatic PV modification and vertical advection, are used to derive a diagnostic equation to explicitly calculate the fraction of a cyclone’s positive lower-tropospheric PV anomaly caused by LH. The strength of this anomaly is strongly coupled to cyclone intensity and the associated impacts in terms of surface weather. To evaluate the performance of the diagnostic, sensitivity simulations of 12 Northern Hemisphere cyclones with artificially modified LH are carried out with a numerical weather prediction model. Based on these simulations, it is demonstrated that the PV diagnostic captures the mean sensitivity of the cyclones’ PV structure to LH as well as parts of the strong case-to-case variability. The simple and versatile PV diagnostic will be the basis for future climatological studies of LH effects on cyclone intensification.
    [Show full text]
  • Severe Storm Xynthia Over Southwestern and Western Europe
    Severe Storm Xynthia over southwestern and western Europe A severe storm named “Xynthia” affected Portugal, Spain, Switzerland, France, parts of south-east England, Belgium, the Netherlands, Luxembourg, Germany and Austria. Strong gusts on 27-28 February 2010 caused extended damage on traffic routes, electrical power outage, destruction due to flooding at the French Atlantic coast and more than 60 losses of lives. Most of the damage was in France and western Germany. The track of this storm and its rapid development were outstanding, but the magnitude of the gusts was comparable to other violent storms in the past. Synoptical development and weather conditions Xynthia arose from an initially shallow low pressure system which formed over the subtropical sea area south of the Azores Islands on Friday, 26 February 2010. The southward flow of colder air masses in the upper air caused the deepening of a broad trough over the central and eastern North Atlantic. A shortwave trough within this broader system and a high temperature difference between extremely warm air over Africa and colder air over the eastern Atlantic caused a strong cyclogenesis of Xynthia. On Saturday, February 27, the cyclone moved northeastwards over Portugal and the Bay of Biscay to the westernmost areas of France and intensified very rapidly to a core pressure of about 967 hPa around midnight which means a deepening of about 20 hPa within 24 hours (Fig. 1-3). During the following three days it began weakening and moved further northeastwards along the coastline of northern France and the North Sea, and then it crossed the southern Baltic Sea to southern Finland until March 3.
    [Show full text]
  • Annual Report 2018 YEARS Local Leader, Global Partner CONTENTS
    Annual Report 2018 YEARS Local Leader, Global Partner CONTENTS General Information Financial Status 2 Vision-Mission 44 Economic Outlook 3 Shareholder Structure 50 Turkish Insurance Industry 4 Corporate Profile 52 Turkish Reinsurance Market and Milli Re in 2018 6 Milestones 56 Global Reinsurance Market and Milli Re in 2018 12 Chairman’s Message 63 Financial Strength, Profitability and Solvency 14 General Manager’s Message 64 Key Financial Indicators 20 Board of Directors 66 The Company Capital 23 Participation of the Members of the Board of Directors in 67 2018 Technical Results Relevant Meetings during the Fiscal Period 69 2018 Financial Results 24 Senior Management 71 General Assembly Agenda 25 Internal Systems Managers 72 Report by the Board of Directors 26 Organization Chart 74 Dividend Distribution Policy 27 Human Resources Applications 75 Dividend Distribution Proposal 28 2018 Annual Report Compliance Statement 29 Independent Auditor’s Report on the Annual Report of the Board Risks and Assessment of the Governing Body of Directors 77 Risk Management 81 Assessment of Capital Adequacy Financial Rights Provided to the Members of the Governing 81 Transactions Carried Out with Milli Re’s Risk Group Body and Senior Executives 81 The Annual Reports of the Parent Company in the Group of 32 Financial Rights Provided to the Members of the Governing Body Companies and Senior Executives Unconsolidated Financial Statements Together with Research & Development Activities Independent Auditors’ Report Thereon 32 Research & Development Activities
    [Show full text]
  • A Review of Media Coverage of Climate Change and Global Warming in 2020 Special Issue 2020
    A REVIEW OF MEDIA COVERAGE OF CLIMATE CHANGE AND GLOBAL WARMING IN 2020 SPECIAL ISSUE 2020 MeCCO monitors 120 sources (across newspapers, radio and TV) in 54 countries in seven different regions around the world. MeCCO assembles the data by accessing archives through the Lexis Nexis, Proquest and Factiva databases via the University of Colorado libraries. Media and Climate Change Observatory, University of Colorado Boulder http://mecco.colorado.edu Media and Climate Change Observatory, University of Colorado Boulder 1 MeCCO SPECIAL ISSUE 2020 A Review of Media Coverage of Climate Change and Global Warming in 2020 At the global level, 2020 media attention dropped 23% from 2019. Nonetheless, this level of coverage was still up 34% compared to 2018, 41% higher than 2017, 38% higher than 2016 and still 24% up from 2015. In fact, 2020 ranks second in terms of the amount of coverage of climate change or global warming (behind 2019) since our monitoring began 17 years ago in 2004. Canadian print media coverage – The Toronto Star, National Post and Globe and Mail – and United Kingdom (UK) print media coverage – The Daily Mail & Mail on Sunday, The Guardian & Observer, The Sun & Sunday Sun, The Telegraph & Sunday Telegraph, The Daily Mirror & Sunday Mirror, and The Times & Sunday Times – reached all-time highs in 2020. has been As the year 2020 has drawn to a close, new another vocabularies have pervaded the centers of critical year our consciousness: ‘flattening the curve’, in which systemic racism, ‘pods’, hydroxycholoroquine, 2020climate change and global warming fought ‘social distancing’, quarantines, ‘remote for media attention amid competing interests learning’, essential and front-line workers, in other stories, events and issues around the ‘superspreaders’, P.P.E., ‘doomscrolling’, and globe.
    [Show full text]
  • 200212 Dvc Wash up Storm Ciara 9 February 2020
    Classification: Confidential MET Data & Capacity Constrained Operations Andy Knight Aircraft Operations Manager Classification: Confidential Classification: Confidential Heathrow is (usually) capacity constrained • Prior to Covid-19 we were full & operated to capacity all day, every day • Our daily operating hours are restricted by the UK Department for Transport • We have minimal ability to recover from operational disruption Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ac nisl non purus semper. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla “ ac nisl non purus semper. Lorem ipsum dolor sit amet, consectetur adipisci. Classification: Confidential Classification: Confidential Weather has the greatest impact on our operation • Fog • Strong Winds • Thunderstorms • Snow & Ice Classification: Confidential Classification: Confidential MET data is vital • Developments in MET are essential to increasing resilience and operational performance of our airport • This means less delay and better punctuality for passengers, better service for all of our customers • We can make better operational decisions at an earlier stage to make best use of our capacity Classification: Confidential Classification: Confidential MET Product Input: Example • Met Office forecaster (SOM) based in Heathrow APOC • CB/TS risk forecast produced in LTCC, Swanwick • SOM can liaise with LTCC forecaster & align impact to Heathrow • SOM able to speak directly to APOC stakeholders & duty teams • SOM able to translate impacts in DCB Classification:
    [Show full text]
  • Homo Erectus, Became Extinct About 1.7 Million Years Ago
    Bear & Company One Park Street Rochester, Vermont 05767 www.BearandCompanyBooks.com Bear & Company is a division of Inner Traditions International Copyright © 2013 by Frank Joseph All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Library of Congress Cataloging-in-Publication Data Joseph, Frank. Before Atlantis : 20 million years of human and pre-human cultures / Frank Joseph. p. cm. Includes bibliographical references. Summary: “A comprehensive exploration of Earth’s ancient past, the evolution of humanity, the rise of civilization, and the effects of global catastrophe”—Provided by publisher. print ISBN: 978-1-59143-157-2 ebook ISBN: 978-1-59143-826-7 1. Prehistoric peoples. 2. Civilization, Ancient. 3. Atlantis (Legendary place) I. Title. GN740.J68 2013 930—dc23 2012037131 Chapter 8 is a revised, expanded version of the original article that appeared in The Barnes Review (Washington, D.C., Volume XVII, Number 4, July/August 2011), and chapter 9 is a revised and expanded version of the original article that appeared in The Barnes Review (Washington, D.C., Volume XVII, Number 5, September/October 2011). Both are republished here with permission. To send correspondence to the author of this book, mail a first-class letter to the author c/o Inner Traditions • Bear & Company, One Park Street, Rochester, VT 05767, and we will forward the communication. BEFORE ATLANTIS “Making use of extensive evidence from biology, genetics, geology, archaeology, art history, cultural anthropology, and archaeoastronomy, Frank Joseph offers readers many intriguing alternative ideas about the origin of the human species, the origin of civilization, and the peopling of the Americas.” MICHAEL A.
    [Show full text]
  • Originally Published As
    Originally published as: Klaus, M., Holsten, A., Hostert, P., Kropp, J. P. (2011): Integrated methodology to assess windthrow impacts on forest stands under climate change. - Forest Ecology and Management, 261, 11, 1799-1810 DOI: 10.1016/j.foreco.2011.02.002 An integrated methodology to assess windthrow impacts on forest stands under climate change M. Klausa,b, A. Holstena, P. Hostertb, J.P. Kroppa aPotsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany bGeography Department, Humboldt-Universit¨at zu Berlin, Unter den Linden 6, 10099 Berlin, Ger- many Corresponding author: Anne Holsten: Tel.: +49 0 331 288 2689, E-mail address: holsten@pik- potsdam.de Abstract Storms have a high potential to cause severe ecological and economic losses in forests. We performed a logistic regression analysis to create a storm damage sen- sitivity index for North Rhine-Westphalia, Germany, based on damage data of the storm event “Kyrill”. Future storm conditions were derived from two regional climate models. We combined these measures to an impact metric, which is embedded in a broader vulnerability framework and quantifies the impacts of winter storms un- der climate change until 2060. Sensitivity of forest stands to windthrow was mainly driven by a high proportion of coniferous trees, a complex orography and poor quality soils. Both climate models simulated an increase in the frequency of severe storms, whereby differences between regions and models were substantial. Potential impacts will increase although they will vary among regions with the highest impacts in the mountainous regions. Our results emphasise the need for combining storm damage sensitivity with climate change signals in order to develop forest protection measures.
    [Show full text]
  • The Characteristics and Structure of Extra-Tropical Cyclones in a Warmer Climate Victoria A
    https://doi.org/10.5194/wcd-2019-2 Preprint. Discussion started: 27 August 2019 c Author(s) 2019. CC BY 4.0 License. The characteristics and structure of extra-tropical cyclones in a warmer climate Victoria A. Sinclair1, Mika Rantanen1, Päivi Haapanala1, Jouni Räisänen1, and Heikki Järvinen1 1Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, PO BOX 64, FI-00014 Correspondence: Victoria Sinclair (Victoria.Sinclair@helsinki.fi) Abstract. Little is known about how the structure of extra-tropical cyclones will change in the future. In this study aquaplanet simulations are performed with a full complexity atmospheric model. These experiments can be considered as an intermediate step towards increasing knowledge of how, and why, extra-tropical cyclones respond to warming. A control simulation and a warm simulation in which the sea surface temperatures are increased uniformly by 4 K are run for 11 years. Extra-tropical 5 cyclones are tracked, cyclone composites created, and the omega equation applied to assess causes of changes in vertical motion. Warming leads to a 3.3% decrease in the number of extra-tropical cyclones, no change to the median intensity nor life time of extra-tropical cyclones, but to a broadening of the intensity distribution resulting in both more stronger and more weaker storms. Composites of the strongest extra-tropical cyclones show that total column water vapour increases everywhere relative to the cyclone centre and that precipitation increases by up to 50% with the 4 K warming. The spatial structure 10 of the composite cyclone changes with warming: the 900–700-hPa layer averaged potential vorticity, 700-hPa ascent and precipitation maximums associated with the warm front all move polewards and downstream and the area of ascent expands in the downstream direction.
    [Show full text]