Extratropical Cyclone Model for Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of Synoptic-Scale Tornado Regimes
Garner, J. M., 2013: A study of synoptic-scale tornado regimes. Electronic J. Severe Storms Meteor., 8 (3), 1–25. A Study of Synoptic-Scale Tornado Regimes JONATHAN M. GARNER NOAA/NWS/Storm Prediction Center, Norman, OK (Submitted 21 November 2012; in final form 06 August 2013) ABSTRACT The significant tornado parameter (STP) has been used by severe-thunderstorm forecasters since 2003 to identify environments favoring development of strong to violent tornadoes. The STP and its individual components of mixed-layer (ML) CAPE, 0–6-km bulk wind difference (BWD), 0–1-km storm-relative helicity (SRH), and ML lifted condensation level (LCL) have been calculated here using archived surface objective analysis data, and then examined during the period 2003−2010 over the central and eastern United States. These components then were compared and contrasted in order to distinguish between environmental characteristics analyzed for three different synoptic-cyclone regimes that produced significantly tornadic supercells: cold fronts, warm fronts, and drylines. Results show that MLCAPE contributes strongly to the dryline significant-tornado environment, while it was less pronounced in cold- frontal significant-tornado regimes. The 0–6-km BWD was found to contribute equally to all three significant tornado regimes, while 0–1-km SRH more strongly contributed to the cold-frontal significant- tornado environment than for the warm-frontal and dryline regimes. –––––––––––––––––––––––– 1. Background and motivation As detailed in Hobbs et al. (1996), synoptic- scale cyclones that foster tornado development Parameter-based and pattern-recognition evolve with time as they emerge over the central forecast techniques have been essential and eastern contiguous United States (hereafter, components of anticipating tornadoes in the CONUS). -
Coping with the Long Term
Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Marjanke A. Hoogstra Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Promotoren: Prof. dr. H. (Heiner) Schanz Hoogleraar Märkte der Wald- und Holzwirtschaft Institut für Forst- und Umweltpolitik Albert-Ludwigs-Universität Freiburg, Duitsland Prof. dr. B.J.M (Bas) Arts Hoogleraar Bos- en Natuurbeleid Leerstoelgroep Bos- en Natuurbeleid Wageningen Universiteit, Nederland Promotiecommissie: Prof. dr. ir. G.M.J. Mohren (Wageningen Universiteit, Nederland) Prof. dr. G. Oesten (Albert-Ludwigs-Universität Freiburg, Duitsland) Dr. M. Pregernig (Universität für Bodenkultur Wien, Oostenrijk) Prof. dr. B.J. Thorsen (Københavns Universitet, Denemarken) Dit onderzoek is uitgevoerd binnen Mansholt Graduate School of Social Sciences Coping with the Long Term An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry Marjanke Alberttine Hoogstra Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 16 december 2008 des middags te half twee in de Aula Hoogstra, M.A. [2008] Coping with the Long Term - An Empirical Analysis of Time Perspectives, Time Orientations, and Temporal Uncertainty in Forestry. PhD thesis Forest and Nature Conservation Policy Group, Wageningen University, Wageningen, the Netherlands. With references - with summary in Dutch and in English. ISBN 978-90-8585-242-1 The Road goes ever on and on Down from the door where it began. -
The East Coast Tidal Surge of 5 December 2013 Lincolnshire
OFFICIAL Lincolnshire’s Tidal Surge Response & Recovery ‘After Action’ Report The East Coast Tidal Surge of 5th December 2013 Lincolnshire Resilience Forum’s Response & Recovery ‘After Action’ Report 20th March 2014 1 OFFICIAL Lincolnshire’s Tidal Surge Response & Recovery ‘After Action’ Report Foreword On Thursday 5th December 2013 a deepening pressure system combined with high astronomical tides and strong to gale force ‘north westerly’ winds to generate a coastal surge along the whole of the east coast of England, the largest surge since the ‘great storm’ of 1953. Due to advances in surge forecasting, flood prediction and contingency planning at national, sub-national and local levels we were able to ‘get ahead’ of the storm. From Tuesday 3rd December partners began deploying one of the largest multi-agency emergency response and recovery operations ever conducted in Lincolnshire. This included the most significant evacuation operation in recent memory, the rescue of a number of people who became isolated by floodwaters, and work to ensure critical services were maintained and damaged infrastructure quickly repaired. Thankfully there were only 3 (relatively minor) casualties as a result of the surge, but more than 720 residential and commercial properties were inundated from the resultant overtopping and breach of defences. I would like to pass on my sympathy and support to those whose households and businesses flooded. We continue to work to support a full community recovery, and I commend the work of colleagues at Boston Borough Council who have led this work. In the circumstances this was a very good, forecast-led response and recovery effort. -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
Meteorology – Lecture 19
Meteorology – Lecture 19 Robert Fovell [email protected] 1 Important notes • These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his “Meteorology” course, published by The Great Courses (TGC). Unless otherwise identified, they were created by RGF. • In some cases, the figures employed in the course video are different from what I present here, but these were the figures I provided to TGC at the time the course was taped. • These figures are intended to supplement the videos, in order to facilitate understanding of the concepts discussed in the course. These slide shows cannot, and are not intended to, replace the course itself and are not expected to be understandable in isolation. • Accordingly, these presentations do not represent a summary of each lecture, and neither do they contain each lecture’s full content. 2 Animations linked in the PowerPoint version of these slides may also be found here: http://people.atmos.ucla.edu/fovell/meteo/ 3 Mesoscale convective systems (MCSs) and drylines 4 This map shows a dryline that formed in Texas during April 2000. The dryline is indicated by unfilled half-circles in orange, pointing at the more moist air. We see little T contrast but very large TD change. Dew points drop from 68F to 29F -- huge decrease in humidity 5 Animation 6 Supercell thunderstorms 7 The secret ingredient for supercells is large amounts of vertical wind shear. CAPE is necessary but sufficient shear is essential. It is shear that makes the difference between an ordinary multicellular thunderstorm and the rotating supercell. The shear implies rotation. -
Migration: on the Move in Alaska
National Park Service U.S. Department of the Interior Alaska Park Science Alaska Region Migration: On the Move in Alaska Volume 17, Issue 1 Alaska Park Science Volume 17, Issue 1 June 2018 Editorial Board: Leigh Welling Jim Lawler Jason J. Taylor Jennifer Pederson Weinberger Guest Editor: Laura Phillips Managing Editor: Nina Chambers Contributing Editor: Stacia Backensto Design: Nina Chambers Contact Alaska Park Science at: [email protected] Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at: www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Migration: On the Move in Alaska ...............1 Future Challenges for Salmon and the Statewide Movements of Non-territorial Freshwater Ecosystems of Southeast Alaska Golden Eagles in Alaska During the A Survey of Human Migration in Alaska's .......................................................................41 Breeding Season: Information for National Parks through Time .......................5 Developing Effective Conservation Plans ..65 History, Purpose, and Status of Caribou Duck-billed Dinosaurs (Hadrosauridae), Movements in Northwest -
The Role of Serial European Windstorm Clustering for Extreme Seasonal
The role of serial European windstorm clustering for extreme seasonal losses as determined from multi-centennial simulations of high resolution global climate model data Matthew D. K. Priestley, Helen F. Dacre, Len C. Shaffrey, Kevin I. Hodges, Joaquim G. Pinto Response to reviewer 1 Dear Reviewer, We thank you for the comments and suggestions that you have made to our manuscript, which have helped improve its quality. Please find below a response to all of your comments and questions raised. Any page and line numbers refer to the initial NHESSD document. The italicised black text are the comments to the manuscript. Our responses are in red with any changes described. An amended version of the manuscript has also been uploaded to highlight the changes. In the marked version, text which has been removed has been struck through, with new additions being in red. This paper presents an analysis of temporal clustering of extratropical cyclones in the North Atlantic and the associated windstorm losses over central Europe. The studies shows the seasonally aggregated losses are substantially underestimated if temporal clustering is not taken into consideration. Also the relative contribution of the cyclone resulting in the highest losses per season to the overall seasonal losses is investigated. This contribution is very variable and ranges between 25 to 50%. The study makes use of decadal hindcasts to analyze hundreds of years of present day simulations and statistics based on this large sample are very robust. The quality of the text, the figures and the science is high. The only point that should be scrutinized is the GPD fit to the ERA- interim data. -
EGU2014-6135, 2014 EGU General Assembly 2014 © Author(S) 2014
Geophysical Research Abstracts Vol. 16, EGU2014-6135, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License. Dynamic aspects of windstorm Kyrill (January 2007) Patrick Ludwig (1), Joaquim G. Pinto (1,2), Simona A. Hoepp (1), Andreas H. Fink (3), and Suzanne L. Gray (2) (1) Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany ([email protected]), (2) Department of Meteorology, University of Reading, Reading, United Kingdom, (3) Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Several dynamical and mesoscale aspects concerning severe windstorm Kyrill (January 2007) are analysed by results of high-resolution simulations with the regional climate model (RCM) COSMO-CLM. After explosive cyclogenesis south of Greenland takes place while crossing a very intense upper-level jet stream, Kyrill underwent secondary cyclogenesis over the North Atlantic Ocean just west of the British Isles. The secondary cyclogenesis (Kyrill II), was located on the occlusion front of the mature cyclone (Kyrill I), which is very unusual compared to typical frontal cyclogenesis generally occurring along the trailing cold fronts of existing cyclones. The mechanisms of secondary cyclogenesis are investigated based on moderate-resolution (0.0625◦ grid spacing) RCM simulations. The formation of Kyrill II along the occlusion front follows common mechanism for secondary cyclogenesis like breaking up of a local, low tropospheric PV strip along the front and diabatic heating with associated development of a vertical extended PV tower. Kyrill II propagated further towards Europe, and its development was favoured by a split jet structure aloft the surface cyclone, which maintained the deep core pressure (around 961 - 965 hPa) for at least 36 hours. -
Covariance of Storm Hazards in the Atlantic Basin Michael Angus, Gregor C
Covariance of Storm Hazards in the Atlantic Basin Michael Angus, Gregor C. Leckebusch & Ivan Kuhnel Royal Meteorological Society Atmospheric Science Conference 2019 Are Regional Climate Perils Related? Risk of Global Weather Connections, Lloyd’s and Met Office 2016 2 Hypothesis The Atlantic Hurricane Season and European winter windstorm season are not independent from one another A pathway exists between the two through a climate teleconnection 3 Hypothesised pathways Gray 1984 Scaife et al. 2017 4 Hypothesised pathways Fan and Schneider 2012 Hallam et al. 2019 Wild et al. 2015, Dunstone et al. 2016 5 Data Limitations Atlantic Basin Reliable count data for both Tropical and Extratropical Cyclones only in the satellite era (1979-present) Extend by building event climatology from Pearson Correlation coefficient: -0.2 Ensemble Prediction Not significant at the 95th percent confidence level Tropical Cyclone count: IBTrACS best Track data System Extratropical Cyclone count: Cyclone Tracking in ERA-interim 6 Methodology Repurpose a forecast ensemble to treat each ensemble member as a different climate realization National Hurricane Center, Hurricane Katrina Uncertainty August 25th 7 Ensemble Prediction System European Centre for Medium Range Weather Forecasting (ECMWF) System 5 EPS (SEAS5) 51 ensemble members over 36 years (1981-2016), total of 1836 model years Initialised 1st of each month, run for 7 months. Selected 1st of August initialisation to cover peak Atlantic Hurricane Season (Aug-Oct) and peak European Windstorm season (Dec-Feb) Horizontal grid spacing TCo319 (~35km, cubic grid) 8 Event Tracking Methodology Find Clusters of 98th percentile Hurricane Floyd Hurricane Sandy windspeed exceedance (Leckebusch et al. 2008) Track storms over time using nearest neighbour approach (WiTRACK; Kruschke 2015) Focus on area of damaging winds, rather than central core pressure 9 Event Tracking Methodology EUMETSAT storm track, from Meteo Sat-9 Air Mass Product. -
Future Changes in European Windstorm Severities and Impacts Jennifer L Catto Alex Little* Matthew Priestley
Future changes in European windstorm severities and impacts Jennifer L Catto Alex Little* Matthew Priestley University of Exeter *Now at JBA Risk. EGU 2021 Session AS1.6 - Fri, 30 Apr, 13:30–15:00 (CEST) Introduction Motivation Research Questions • Future climate changes will be felt through changes in the weather systems. • How will the severity of European windstorms change in the future? • In Europe one of the most important weather systems is extratropical cyclones. • How will the impacts of European • There are currently a lot of uncertainties windstorms change in the future? around how the frequency and intensity of extratropical cyclones will change over • What will be the role of adaptation to Europe, associated with competing storm severity for decreasing the impacts? dynamical effects, and global climate model uncertainties. • How will future population changes • Another aspect of uncertainty comes from influence the impacts of European the different ways in which intensity is windstorms? defined. • Using models from the latest suite of CMIP, and applying a storm severity index, we investigate future changes in characteristics of windstorms over Europe. December 2020 Alex Little II. POPULATION DENSITY PROJECTIONS Methods and Data December 2020 Alex Little H SSP5 Lagrangian Feature Tracking - Using TRACK (HodgesII. PopulationPOPULATION data DENSITY1980 – 2010 PROJECTIONS 1994,1995) applied to 6-hourly 850hPa relative SSP2 Population data are vorticity (truncated to T42 resolution) from ERA5 taken from the (1980-2010) and 8 CMIP6 models. Socioeconomic data Models and applications ACCESS-CM2 MIROC6 center (SEDAC) at https://sedac.ciesin.co BCC-CSM2-MR MPI-ESM1.2-HR H lumbia.edu/data/set/pSSP5 SSP2 1980 – 2010 EC-Earth3 MPI-ESM1.2-LR opdynamics-1-8th- pop-base-year- KIOST-ESM MRI-ESM2-0 F1 F1 2040 – 2070 2040 – 2070projection-ssp-2000- Present day: Historical simulations for 1980-2010. -
Downloaded 10/05/21 02:25 PM UTC 3568 JOURNAL of the ATMOSPHERIC SCIENCES VOLUME 74
NOVEMBER 2017 B Ü ELER AND PFAHL 3567 Potential Vorticity Diagnostics to Quantify Effects of Latent Heating in Extratropical Cyclones. Part I: Methodology DOMINIK BÜELER AND STEPHAN PFAHL Institute for Atmospheric and Climate Science, ETH Zurich,€ Zurich, Switzerland (Manuscript received 9 February 2017, in final form 31 July 2017) ABSTRACT Extratropical cyclones develop because of baroclinic instability, but their intensification is often sub- stantially amplified by diabatic processes, most importantly, latent heating (LH) through cloud formation. Although this amplification is well understood for individual cyclones, there is still need for a systematic and quantitative investigation of how LH affects cyclone intensification in different, particularly warmer and moister, climates. For this purpose, the authors introduce a simple diagnostic to quantify the contribution of LH to cyclone intensification within the potential vorticity (PV) framework. The two leading terms in the PV tendency equation, diabatic PV modification and vertical advection, are used to derive a diagnostic equation to explicitly calculate the fraction of a cyclone’s positive lower-tropospheric PV anomaly caused by LH. The strength of this anomaly is strongly coupled to cyclone intensity and the associated impacts in terms of surface weather. To evaluate the performance of the diagnostic, sensitivity simulations of 12 Northern Hemisphere cyclones with artificially modified LH are carried out with a numerical weather prediction model. Based on these simulations, it is demonstrated that the PV diagnostic captures the mean sensitivity of the cyclones’ PV structure to LH as well as parts of the strong case-to-case variability. The simple and versatile PV diagnostic will be the basis for future climatological studies of LH effects on cyclone intensification. -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.