PDF of This Issue

Total Page:16

File Type:pdf, Size:1020Kb

PDF of This Issue MIT's The Weather Oldest and Largest Today: Sunny, windy, 30°F (-1°C) Tonight: Clear, cold, OaF (-17°C) Newspaper Tomorrow: Cloudy, 20°F (-7°C) Details, Page 2 Volume 119, Number 24 Cambridge, Massachusetts 02139 Tuesday, May 4, 1999 > Concerned Students .., Criticize RSSC Plan , . By Rima Arnaout RSSC Chair William J. Hecht '61 ASSOCIATE NEW EDITOR reiterated previous statements say- As the community input phase of ing that the RSSC is "not, in any ,t the Residence System Steering way, shape, or matter, done. This is Committee's redesign project pro- not a final solution ... until we get gresses, students continue to voice community feedback and go back criticism against the RSSC's prelim- into deliberations," Hecht said. ~ inary proposals. Approximately thirty students Ashdown community threatened gathered at Baker House Sunday in Student criticism of the RSSC .;. the second of four scheduled feedback proposals unveiled last Tuesday meetings. Most students were from focused largely on the plans to make Ashdown House and MacGregor Ashdown the Freshman Hall and House - the dormitories most affect- MacGregor a graduate residence. ..., ed by the proposed changes. "For every reason Ashdown is a "I don't understand what's so good place for freshmen, it's a good wrong with our system that it needs place for grad students," said ~6 such substantial change," said Baker Ashdown resident Shunmugavelu resident Marie L. Blanke '01. "The D. Sokka G. "And it's the center of administration is basically saying one half of the student community." that 'you undergrads like the system "We chose Ashdown because it l as it stands, but we know better,'" has big public spaces" and because Blanke said. of its central location, Hecht said. The RSSC's Phase II Status The RSSC recommended to move WAN YUSOF WAN MORSHIDI-TIIE TECH Report, "An Evolving Framework," graduate students to MacGregor The ceremonial lighting of the pit marked the beginning of Senior House's Steer Roast '99 Friday .r.~' calls for the creation of a "Freshman because the dorm provides singles afternoon. See story pg. 13. 1:1all " to be located in Ashdown House and for MacGregor House to Residence Design, Page 18 f become a graduate dormitory. The committee also proposes a changed time line for residence selection to MIT Places Second in 'Most WIred' Rankings include an Independent Activities (f' Period rush. Students would choose By Kevin R. Lang Reserve University placed first. remained relatively stable from pre- for lacking a distance learning pro- their first-year residence through ASSOCIATE NEWS EDITOR Wake Forest University vious years. gram, among other criteria. MIT summer mailings with a Correction After falling behind Dartmouth University, the New Jersey Institute MIT scored 90.45 out of 100 in scored higher in categories includ- •• .,: J Lottery to follow for any dissatisfied College and the New Jersey of Technology, and Rensselaer the survey, slightly more than one ing 24-hour computer availability , . ,">( students, accoraiiig~he pHms. An Institute of Technology last year, Polytechnic Institute finished third point below top-ranked Case and tech support. additional housing lottery - the MIT ranked second in Yahoo! through fifth, respectively. Case Western. MIT fell behind Case Some members of SIPB, the "sophomore shuffle"- would be Internet Life's 1999 listing of Western jumped to the top from Western for having fewer computers Student Information Processing I" l.!eld in spring of the freshman year. "America's 100 Most Wired 63rd in 1998, and Wake Forest per one hundred students, for failing Board, questioned the relevance of - .At the open meeting, however, Colleges." Ohio's Case Western moved up from 77th. NJIT and RPI to have online add/drop forms, and the Yahoo! rankings. "I think 'who cares' pretty much summarizes the response," said Jered J. Floyd G. ,fa Floyd thought that MIT's computer Deutch Discusses Nuclear Proliferation availability and network services were better than the report could ,,...... By Kristen landino show, since many students run ASSOCIA TE NEWS EDITOR Linux from their home computers. Former Director of the CIA and Yahoo! also noted that MIT Institute Professor John M. Deutch hosts the World Wide Web , " ,61 discussed issues relating to global - Consortium, an organization that nuclear security with a full audience develops and manages technical of both students and professors on standards for the web. Monday afternoon W3C is managed by web-inventor i \ Deutch's speech, entitled Tim Berners-Lee. "Comments on International Nuclear In 1997, Yahoo! ranked MIT the Matters", served to highlight U.S. nation's most wired university post-Cold War policy objectives with based on categories ranging from regard to the containment of nuclear hardware resources to online acade- intelligence and weapons stock. mic programs. MIT dropped to third The talk was sponsored by the overall last year, when Dartmouth I• Department of Nuclear Engineering College was named most wired col- and the American Nuclear Society. lege and NJIT finished second. Deutch cited the lack of technical Dartmouth dropped to 26th in 1999. knowledge as a major problem in "I think you have to take all nuclear security management in the these surveys with some grain of world today. salt," said Stephen C. Moss G. "Our amount of knowledge about Several students using Athena, these issues is tremendously thin. It is including Moss, thought that the very important to have technical peo- second place ranking was proof of ple in charge ... all of these really sig- MIT being wired enough. However, nificant technical issues require the Moss noted that he was using .~I.. integration of technical knowledge, Athena at the time because economic good sense, and political Information Services had inadver- sensitivity. Often U.S. as well as for- tently disconnected the network , . eign policy makers lack these skills," connection at his office. "It's hard to Deutch said. get the high end computers," Moss He said that students with a tech- said. MIODRAG CIRKOVIC-THE TECH Another Athena user was glad to Institute Professor and former CIA Director John M. Deutch discusses issues surrounding interna- , .> , Deutch, Page 23 see that MIT was not quite the most tional nuclear policy Monday afternoon. Yahoo!, Page 21 ..... MITMSA Comics Students are invited to plant World & Nation 2 .. organizes flowers in memory of Micheal P. Opinion 4 Kosovo relief Manley '02 Saturday, May 8 from Features 6 I effort .. 11 a.m.-noon in MacGregor TechCalendar - 9 J~~ , I Courtyard. Police Log .17 Page 11 Page 14 Sports 24 . , Page2 THE-l'ECH .... ,... y ...... T' 0 IW ....... ,... T W. May 4,1999 WORLD & NATION Dow Jones Closes Above 11,000 Clinton Hints Bombing Could ,- THE WASIfINGTON POST NEW YORK The Dow Jones industrial average, the most widely watched sym- • bol of American wealth, closed above 11,000 for the first time Pause if Serbs Leave Kosovo Monday as investors continued to sell high-flying technology stocks and buy shares in long-neglected manufacturing companies. By Ken Rreman who led a delegation of religious great nation, the only superpower, A late-day bargain hunt, fueled by a positive economic report, and WIlliam Douglas leaders that persuaded Yugoslav must not succumb to the arrogance pushed the Dow average up 225.75 points, or 2.1 percent. It closed at NEIVSDAY President Slobodan Milosevic to of power or the idolatry of might." WASHINGTON 11,014.69. release three American paws. Chernomyrdin said Clinton had The new milestone came just 23 trading days after the barometer On a day of hectic diplomatic Jackson asked Clinton to reach shown receptivity to a bombing • of blue-chip stocks first closed above 10,000. But in that short period, activity, President Clinton suggested out to Milosevic, at least by teie- pause under certain conditions _ the psychology of the market has changed entirely. The narrow group Monday that there might be a pause phoning him to thank him for free- conditions the president spelled out of technology stocks that helped burst previous records has fallen out in the bombing of Yugoslavia if it ing the captives, saying such a call in a press conference shortly before of favor, and investors are now searching intently for bargains they met certain conditions, while might serve to break the diplomatic he met the Russian. He said .. missed before. Russian envoy Viktor ice. But the administration official Milosevic must at least begin to Many Wall Street officials say the change in investing patterns is Chernomyrdin said he felt a diplo- ruled out such a gesture as "unpro- withdraw his forces from Kosovo healthy for the longest-running bull market in history. Americans matic solution to the Kosovo con- ductive." and indicate acceptance of NATO's increasingly have more of their net worth tied to the market _ 52 per- flict was "closer" after meeting Jackson said he had also asked core demands: a total Yugoslav • cent of Americans own stock directly and through mutual funds, up Clinton at the White House. Clinton to release two Yugoslav pullout, a return of all refugees and from 42 percent in 1997 _ and the rise in the market has enriched But the talk of peace was tenta- paws as a reciprocal gesture. deployment of an international secu- Americans and fueled a boom in consumer spending that has kept the tive and conditional, and "Those little steps in the right rity force to protect them. U.S. economy expanding. Chernomyrdin acknowledged that direction can spare all of us a long On the thorny question of the "very detailed negotiations and dis- and bloody war," Jackson said. "We composition of that force, an issue cussions" were still needed to make have the right not to talk...
Recommended publications
  • J. Robert Schrieffer Strange Quantum Numbers in Condensed Matter
    Wednesday, May 1, 2002 3:00 pm APS Auditorium, Building 402, Argonne National Laboratory APS Colloquium home J. Robert Schrieffer Nobel Laureate National High Magnetic Field Laboratory Florida State University, Tallahassee [email protected] http://www.physics.fsu.edu/research/NHMFL.htm Strange Quantum Numbers in Condensed Matter Physics The origin of peculiar quantum numbers in condensed matter physics will be reviewed. The source of spin-charge separation and fractional charge in conducting polymers has to do with solitons in broken symmetry states. For superconductors with an energy gap, which is odd under time reversal, reverse spin-orbital angular momentum pairing occurs. In the fractional quantum Hall effect, quasi particles of fractional charge occur. In superfluid helium 3, a one-way branch of excitations exists if a domain wall occurs in the system. Many of these phenomena occur due to vacuum flow of particles without crossing the excitation of the energy gap. John Robert Schrieffer received his bachelor's degree from Massachusetts Institute of Technology in 1953 and his Ph.D. from the University of Illinois in 1957. In addition, he holds honorary Doctor of Science degrees from universities in Germany, Switzerland, and Israel, and from the University of Pennsylvania, the University of Cincinnati, and the University of Alabama. Since 1992, Dr. Schrieffer has been a professor of Physics at Florida State University and the University of Florida and the Chief Scientist of the National High Magnetic Field Laboratory. He also holds the FSU Eminent Scholar Chair in Physics. Before moving to Florida in 1991, he served as director for the Institute for Theoretical Physics from 1984-1989 and was the Chancellor's Professor at the University of California in Santa Barbara from 1984-1991.
    [Show full text]
  • Appendix E • Nobel Prizes
    Appendix E • Nobel Prizes All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are supplied; they often antedate the prize considerably. 1901 (P) Wilhelm Roentgen for discovering x-rays (1895). 1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for discovering the Zeeman effect, the splitting of spectral lines in magnetic fields. 1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and Marie Curie for studying radioactivity. 1904 (P) Lord Rayleigh for studying the density of gases and discovering argon. (C) William Ramsay for discovering the inert gas elements helium, neon, xenon, and krypton, and placing them in the periodic table. 1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899). 1906 (P) J. J. Thomson for studying electrical discharge through gases and discover- ing the electron (1897). 1907 (P) Albert A. Michelson for inventing optical instruments and measuring the speed of light (1880s). 1908 (P) Gabriel Lippmann for making the first color photographic plate, using inter- ference methods (1891). (C) Ernest Rutherford for discovering that atoms can be broken apart by alpha rays and for studying radioactivity. 1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegraphy. 1910 (P) Johannes D. van der Waals for studying the equation of state for gases and liquids (1881). 1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody spectrum (1893). (C) Marie Curie for discovering radium and polonium (1898) and isolating radium.
    [Show full text]
  • John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel
    John Robert Schrieffer Daniel Arovas, Greg Boebinger, and Nick Bonesteel Citation: Physics Today 73, 1, 63 (2020); doi: 10.1063/PT.3.4395 View online: https://doi.org/10.1063/PT.3.4395 View Table of Contents: https://physicstoday.scitation.org/toc/pto/73/1 Published by the American Institute of Physics ARTICLES YOU MAY BE INTERESTED IN Gaurang Bhaskar Yodh Physics Today 73, 64 (2020); https://doi.org/10.1063/PT.3.4396 Johannes Kepler’s pursuit of harmony Physics Today 73, 36 (2020); https://doi.org/10.1063/PT.3.4388 Rare earths in a nutshell Physics Today 73, 66 (2020); https://doi.org/10.1063/PT.3.4397 The sounds around us Physics Today 73, 28 (2020); https://doi.org/10.1063/PT.3.4387 Charles Kittel Physics Today 72, 73 (2019); https://doi.org/10.1063/PT.3.4326 The usefulness of GRE scores Physics Today 73, 10 (2020); https://doi.org/10.1063/PT.3.4376 OBITUARIES made when Cooper solved the problem John Robert Schrieffer of two electrons above a quiescent Fermi towering figure in theoretical con- sea. He took into account the effective at- densed-matter physics, John Robert tractive interaction mediated by phonons, ASchrieffer died on 27 July 2019 in Tal- which resulted in a bound state of elec- lahassee, Florida. He is best known for trons. Schrieffer’s focus crystallized on his crucial contributions to the theory of finding a many-electron theory that superconductivity, a problem that since could incorporate Cooper’s bound pairs, its discovery in 1911 had vexed physi- which, though not quite bosons, some- cists searching for a microscopic expla- how needed to be condensed.
    [Show full text]
  • Nobel Prizes in Physics Closely Connected with the Physics of Solids
    Nobel Prizes in Physics Closely Connected with the Physics of Solids 1901 Wilhelm Conrad Röntgen, Munich, for the discovery of the remarkable rays subsequently named after him 1909 Guglielmo Marconi, London, and Ferdinand Braun, Strassburg, for their contributions to the development of wireless telegraphy 1913 Heike Kamerlingh Onnes, Leiden, for his investigations on the properties of matter at low temperatures which lead, inter alia, to the production of liquid helium 1914 Max von Laue, Frankfort/Main, for his discovery of the diffraction of X-rays by crystals 1915 William Henry Bragg, London, and William Lawrence Bragg, Manchester, for their analysis of crystal structure by means of X-rays 1918 Max Planck, Berlin, in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta 1920 Charles Edouard Guillaume, Sèvres, in recognition of the service he has rendered to precise measurements in Physics by his discovery of anoma- lies in nickel steel alloys 1921 Albert Einstein, Berlin, for services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect 1923 Robert Andrews Millikan, Pasadena, California, for his work on the ele- mentary charge of electricity and on the photo-electric effect 1924 Manne Siegbahn, Uppsala, for his discoveries and researches in the field of X-ray spectroscopy 1926 Jean Baptiste Perrin, Paris, for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium 1928 Owen Willans Richardson, London, for his work on the thermionic phe- nomenon and especially for his discovery of the law named after him 1929 Louis Victor de Broglie, Paris, for his discovery of the wave nature of electrons 1930 Venkata Raman, Calcutta, for his work on the scattering of light and for the discovery of the effect named after him © Springer International Publishing Switzerland 2015 199 R.P.
    [Show full text]
  • Liebig, Justus #4
    LIEBIG TREE #4 c Dr. John Andraos, 2002 Joseph Redtenbacher Liebig condenser (Vienna, MD 1834; Giessen) Otto Meyerhof benzilic acid Concept of energy rich pyrophosphate bonds (1931); rearrangement (1838) Carl Schmidt discovery of relationship between oxygen (Giessen, 1844) consumption and lactic acid metabolism in muscle Physiology & Medicine Nobel 1922 Ostwald dilution law (1888), concept of catalysis (1894) rates of chemical reactions; chemical equilibrium Chemistry Nobel 1909 Karl Lohmann Georg Bredig Concept of energy rich pyrophosphate bonds (1931) (Leipzig, 1894) Lineweaver-Burk Discovery of ADP (1934), ATP (1929) plot (1934) Severo Ochoa Discovery of mechanisms Fajans rules on bonding for biosynthesis of Hermann Braune Evans-Polanyi relationship (1938) James W. McBain (1915); Discovery of Bell-Evans-Polanyi principle (1936/8) ribonucleic and deoxy- (Heidelberg, 1911) element 91 protactinium (1917) (Heidelberg, 1906) ribonucleic acids group displacement law (1913) Physiology & Medicine Nobel 1959 Fritz Strassmann concept of nuclear Odd Hassel Jerome R. Vinograd fission(1934 - 45) Conformational analysis Ernest Warhurst (Stanford, 1940) Fritz Lipmann George Wald Cyclohexane structures (Manchester, 1936) Discovery of coenzyme A Discovery of primary Chemistry Nobel 1969 John E. Hearst Physiology & physiological and chemical Eugene Wigner (Cal Tech, 1961) Medicine Nobel 1953 visual processes in eye Discovery and application of fundamental John Charles Polanyi Physiology & Medicine symmetry principles to atomic nuclei and Infrared chemilumiscence;
    [Show full text]
  • Annual Report 2017
    67th Lindau Nobel Laureate Meeting 6th Lindau Meeting on Economic Sciences Annual Report 2017 The Lindau Nobel Laureate Meetings Contents »67 th Lindau Nobel Laureate Meeting (Chemistry) »6th Lindau Meeting on Economic Sciences Over the last 67 years, more than 450 Nobel Laureates have come 67th Lindau Nobel Laureate Meeting (Chemistry) Science as an Insurance Policy Against the Risks of Climate Change 10 The Interdependence of Research and Policymaking 82 to Lindau to meet the next generation of leading scientists. 25–30 June 2017 Keynote by Nobel Laureate Steven Chu Keynote by ECB President Mario Draghi The laureates shape the scientific programme with their topical #LiNo17 preferences. In various session types, they teach and discuss Opening Ceremony 14 Opening Ceremony 86 scientific and societal issues and provide invaluable feedback Scientific Chairpersons to the participating young scientists. – Astrid Gräslund, Professor of Biophysics, Department of New Friends Across Borders 16 An Inspiring Hothouse of Intergenerational 88 Biochemistry and Biophysics, Stockholm University, Sweden By Scientific Chairpersons Astrid Gräslund and Wolfgang Lubitz and Cross-Cultural Exchange Outstanding scientists and economists up to the age of 35 are – Wolfgang Lubitz, Director, Max Planck Institute By Scientific Chairpersons Torsten Persson and Klaus Schmidt invited to take part in the Lindau Meetings. The participants for Chemical Energy Conversion, Germany Nobel Laureates 18 include undergraduates, PhD students as well as post-doctoral Laureates 90 researchers. In order to participate in a meeting, they have to Nominating Institutions 22 pass a multi-step application and selection process. 6th Lindau Meeting on Economic Sciences Nominating Institutions 93 22–26 August 2017 Young Scientists 23 #LiNoEcon Young Economists 103 Scientific Chairpersons SCIENTIFIC PROGRAMME – Martin F.
    [Show full text]
  • On the History of Condensed Matter Physics AIF - Pisa, February 2014
    From Germanium to Graphene!: On the history of Condensed Matter Physics! AIF - Pisa, February 2014! A survey of Solid State Physics from 20-th to 21-th century:! a science that transformed the world around us! G. Grosso! February 18, 2014! Some considerations on a framework from which to grasp aspects and programs of fundamental and technological research in Condensed Matter Physics (CMP): a necessarily very incomplete account of condensed matter physics at the beginning of the 21th century. ! In the history of fundamental science, the area of Solid State Physics! represents the widest section of Physics and provides an example of! how Physics changes and what Physics can be.! In the 20-th century, research in Solid State Physics had enormous impact! both in basic aspects as well in technological applications.! Advances in ! - experimental techniques of measurements, ! - control of materials structures, ! - new theoretical concepts and numerical methods ! have been and actually are at the heart of this evolution.! Solid State Physics is at the root of most technologies of today’s world and! is a most clear evidence of how evolution of technology can be traced to! fundamental physics discoveries.! Just an example: Physics in communication industry…….! Eras of physics Communications technology changes Era of electromagnetism First electromagnet (1825) Electric currents<--> Magnetic fields (Oersted Telegraph systems (Cooke,Wheatstone, 1820, Faraday and Henry 1825) Morse 1837) Electromagnetic eq.s (Maxwell 1864), First transcontinental telegraph line (1861) e.m. waves propagation (Hertz 1880) Telephone (Bell 1874-76) Era of the electron Vacuum-tube diode (Fleming 1904)…… Discovery of the electron (Thomson, 1897) Wireless telegraph (Marconi 1896) Thermionic emission (Richardson 1901) Low energy electron diffraction (LEED) Wave nature of the electron (Davisson 1927) Radio astronomy (Jansky 1933) Era of quantum mechanics Kelly at Bell Labs.
    [Show full text]
  • Nobel Laureates
    NOBEL LAUREATES ALUMNI EDWARD DOISY JOHN ROBERT SCHRIEFFER (1892–1986) shared the Nobel Prize in medicine and physiology in (1931– ) shared the 1972 Nobel Prize in physics with faculty 1943. Doisy discovered the chemical nature of vitamin K. His work member John Bardeen and postdoctoral fellow Leon Cooper for The involvedcampus synthesis, isolation, and characterization of the K vitamins. their work at the U of I on the theory of superconductivity. Schrieffer Doisy received two U of I degrees: a Bachelor of Arts (1914) and a received a Master of Science in 1954 and a Ph.D. in 1957 from the boastsMaster two of Science (1916). University and served on the physics faculty from 1959 to 1962. National Historic VINCENT DU VIGNEAUD PHILLIP A. SHARP Landmarks:(1901–1978) the won the Nobel Prize in chemistry in 1955 for his (1944– ) shared the 1993 Nobel Prize in medicine and physiology work on “biochemically important sulfur compounds, especially for the discovery of split genes, which proved that genes can be Astronomical for achieving the first synthesis of a polypeptide hormone.” Du composed of several separate segments. Sharp received a Ph.D. in ObservatoryVigneaud received a Bachelor of Science (1923) and a Master of chemistry from the U of I in 1969. Science (1924) from the U of I. He served on the University faculty HAMILTON SMITH and fromthe Morrow1929 to 1932. (1931– ) shared the 1978 Nobel Prize in medicine and physiology Plots. A number ROBERT HOLLEY for “the discovery of restriction enzymes and their application to of buildings(1922–1993) have won the Nobel Prize in medicine and physiology in problems of molecular genetics.” Smith graduated from University 1968 for his work determining the precise structure of nucleic acids.
    [Show full text]
  • Image-Brochure-LNLM-2020-LQ.Pdf
    NOBEL LAUREATES PARTICIPATING IN LINDAU EVENTS SINCE 1951 Peter Agre | George A. Akerlof | Kurt Alder | Zhores I. Alferov | Hannes Alfvén | Sidney Altman | Hiroshi Amano | Philip W. Anderson | Christian B. Anfinsen | Edward V. Appleton | Werner Arber | Frances H. Arnold | Robert J. Aumann | Julius Axelrod | Abhijit Banerjee | John Bardeen | Barry C. Barish | Françoise Barré-Sinoussi | Derek H. R. Barton | Nicolay G. Basov | George W. Beadle | J. Georg Bednorz | Georg von Békésy |Eric Betzig | Bruce A. Beutler | Gerd Binnig | J. Michael Bishop | James W. Black | Elizabeth H. Blackburn | Patrick M. S. Blackett | Günter Blobel | Konrad Bloch | Felix Bloch | Nicolaas Bloembergen | Baruch S. Blumberg | Niels Bohr | Max Born | Paul Boyer | William Lawrence Bragg | Willy Brandt | Walter H. Brattain | Bertram N. Brockhouse | Herbert C. Brown | James M. Buchanan Jr. | Frank Burnet | Adolf F. Butenandt | Melvin Calvin Thomas R. Cech | Martin Chalfie | Subrahmanyan Chandrasekhar | Pavel A. Cherenkov | Steven Chu | Aaron Ciechanover | Albert Claude | John Cockcroft | Claude Cohen- Tannoudji | Leon N. Cooper | Carl Cori | Allan M. Cormack | John Cornforth André F. Cournand | Francis Crick | James Cronin | Paul J. Crutzen | Robert F. Curl Jr. | Henrik Dam | Jean Dausset | Angus S. Deaton | Gérard Debreu | Petrus Debye | Hans G. Dehmelt | Johann Deisenhofer Peter A. Diamond | Paul A. M. Dirac | Peter C. Doherty | Gerhard Domagk | Esther Duflo | Renato Dulbecco | Christian de Duve John Eccles | Gerald M. Edelman | Manfred Eigen | Gertrude B. Elion | Robert F. Engle III | François Englert | Richard R. Ernst Gerhard Ertl | Leo Esaki | Ulf von Euler | Hans von Euler- Chelpin | Martin J. Evans | John B. Fenn | Bernard L. Feringa Albert Fert | Ernst O. Fischer | Edmond H. Fischer | Val Fitch | Paul J.
    [Show full text]
  • 24 August 2013 Seminar Held
    PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening.
    [Show full text]
  • Magnetic Resonance Force Microscopy for Condensed Matter Issue Date: 2017-07-05 1 Introduction
    Cover Page The handle http://hdl.handle.net/1887/50492 holds various files of this Leiden University dissertation Author: Wagenaar, Jelmer J.T. Title: Magnetic resonance force microscopy for condensed matter Issue Date: 2017-07-05 1 Introduction Nuclear magnetic resonance (NMR) is known for its application as magnetic resonance imaging (MRI). It provides the spatial mapping of 1H nuclei in biological tis- sues and is therefore used in hospitals around the world. 1 Glover and Mansfield 2002 The resolution of MRI is limited to the micrometer scale1, which makes it impossible to obtain information of struc- tures on the nanometer scale, a holy grail in the fields of medicine, chemistry and physics. In the early nineties, Sidles (1991) came with a solution to combine the force microscopy techniques sensitive to atoms with that of magnetic resonance techniques: Mag- netic Resonance Force Microscopy (MRFM) was born. The technique was promising, big steps were taken, and the holy grail of atomic resolution imaging of biological tis- sues seemed within an arm’s reach. Unfortunately, the last steps are the most difficult. The technique is experimentally challenging and so far, the images of biological structures are no better than those obtained by other conventional techniques. In order to be an attractive technique, MRFM needs to be scientifi- cally relevant while the technique is further improved to- wards the holy grail of imaging biological structures on the nanometer scale. In this thesis, we show how MRFM can usefully con- tribute to the field of condensed-matter. In this chap- ter, we give a short history of why NMR has been, and still is, an important technique in the understanding of condensed-matter systems.
    [Show full text]
  • Brief Reports of Nobel Laureates in Physics
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 5, Issue 2 (Nov. - Dec. 2013), PP 60-68 www.iosrjournals.org Brief Reports of Nobel Laureates in Physics Dr.Shaikh Sarfaraz Ali Department of Physics, Veer Surendra Sai University of Technology (VSSUT), Burla-768018, Samalpur, Odisha, India. Abstract: Alfred B. Nobel, a Swedish chemist and engineer who invented dynamite left $ 9 million in his will to establish the Nobel Prize, which are awarded annually, without regard to nationality, in six different areas like Peace, Literature, Physics, Chemistry, Physiology or Medicine and Economic Science to those who, during the preceding year, shall have conferred the greatest benefit on mankind. Here the complete list of all the Nobel Laureates in Physics since 1901 to 2013 is compiled. 1901-Wilhelm Conrad Rontgen, Born in Lennep, Rhenish Prussia, Germany (1845-1923) was awarded the Nobel Prize for the Discovery of Rontgen rays which is also known as X-rays. 1902-Hendrik Antoon Lorentz, Born in Arnhen, the Netherlands (1853-1928) was awarded 1/2 of the Nobel Prize for the investigations of effects of magnetism on the phenomena of radiation. 1902-Pieter Zeeman, Born in Zonnemaire, the Netherlands (1865-1943) was awarded 1/2 of the Nobel Prize for the Investigations of the effects of magnetism on the phenomena of radiation. 1903-Henri Antoine Becquerel, Born in Paris (1852-1908) was awarded 1/2 of the Nobel Prize for the discovery of spontaneous radioactivity. 1903-Pierre Curie, Born in Paris (1859-1906) was awarded 1/4 of the Nobel Prize for the Phenomena of radiation discovered by Becquerel.
    [Show full text]