Study of Certain Reproductive and Productive Performance Parameters

Total Page:16

File Type:pdf, Size:1020Kb

Study of Certain Reproductive and Productive Performance Parameters The Pharma Innovation Journal 2020; 9(9): 270-274 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Study of certain reproductive and productive TPI 2020; 9(9): 270-274 © 2020 TPI performance parameters of malnad gidda cattle in its www.thepharmajournal.com Received: 21-06-2020 native tract Accepted: 07-08-2020 Murugeppa A Murugeppa A, Tandle MK, Shridhar NB, Prakash N, Sahadev A, Vijaya Associate Professor and Head, Department of Veterinary Kumar Shettar, Nagaraja BN and Renukaradhya GJ Gynaecology and Obstetrics, Veterinary College, Shivamogga, Abstract Karnataka, India The study was conducted to establish baseline information pertaining to productive and reproductive performance of Malnad Gidda and its crossbred in Shivamogga District of Karnataka. The data from 286 Tandle MK animals reared by 98 farmers from Thirtahalli, Hosanagara and Sagara taluks of Shivamogga district Director of Instruction (PGS), Karnataka Veterinary Animal were collected through a structured questionnaire. The parameters such as age at puberty (25.15±0.29 and Fisheries University, Bidar, months); age at first calving (39.32±2.99 months); dry period (6.22±1.26 months); calving interval Karnataka, India (13.68±2.55 months); gestation period (282.14±9.03 days); service period (136.73±10.03 days); lactation length (258.22 ± 10.95 days); milk yield per day (3.69±0.32 kg); total milk yield (227.19±8.31 kg); days Shridhar NB to reach peak milk yield (46.19±0.51 day); birth weight of the new born calf (8.71±0.45 kg); time taken Professor and Head, Department for placental expulsion of placenta (4.63±0.39 hours); onset of postpartum estrous (77.64±1.98 days); of Veterinary Pharmacology and Duration of estrous period (15.25±1.67 hours); time of ovulation (15.15 ± 1.7 hours) and length of estrus Toxicology, Veterinary College cycle (22.63±2.96. days) were recorded. There was no significant difference (p>0.05) in the productive Shivamogga, Karnataka, India and reproductive parameters of cattle among three taluks Sagar, Hosanagar and Thirthahalli. These parameters are in similar line to that of other dwarf breeds of cattle like Punganur, Kasaragod and Prakash N Vechur. Professor and Head, Department of Veterinary Gynaecology and Keywords: Malnad gidda cattle, reproduction, production parameters Obstetrics, Veterinary College Bengaluru, Karnataka, India Introduction Sahadev A Malnand Gidda is a small, multipurpose (manure, milk and draft) breed of cattle reared by the Dean, Veterinary College, farmers in Western Ghat region of Karnataka. They play a pivotal role in the socio-economic Shivamogga, Karnataka, India status of the farmers in this region. A survey was carried out in Shivamogga district during Vijaya Kumar Shettar 2005 to 2020 for studying the breed for its productive and reproductive status. It was observed Professor and Head, Department that Malnad Gidda cattle are generally maintained under semi range housing system, being of Animal Genetics and allowed to graze during day and being stallfed with paddy grass and little concentrates in the Breeding, Veterinary College, shed during night. Bedding material containing paddy straw, dry leaves and twigs mixed up Gadag, Karnataka, India with dung and urine were used as compost fertilizer for various plantations. The milk produced [15] Nagaraja BN by this breed is 0.5 - 3.5 liters per day (Ramesha et al., 2013) . The disease resistance Professor and Head, Department capability of this indigenous breed is considered to be important in the present context of of Veterinary Surgery and characterization, utilization and improvement of the breed. However, the data regarding the Radiology, Veterinary College, reproductive and productive state of this breed of cattle are seldom known. The present study Bengaluru, Karnataka, India was designed to study certain reproductive and productive performance parameters of malnad Renukaradhya GJ gidda cattle in its native tract. Assistant Professor, Department of Veterinary Gynaecology and Materials and methods Obstetrics, Veterinary College Malnad Gidda cattle from Sagar, Hosanagar and Thirthahalli taluks of Shivamogga district and Bengaluru, Karnataka, India cattle from Malnad Gidda Research and Information Center, Veterinary College Campus, Shivamogga were used for the study. The required genetic data information for the study was obtained from Southern Regional Station, ICAR-National Dairy Research Institute, Bengaluru, Karnataka. Corresponding Author: 131 Malnad Gidda cattle which had calved once, either multiparous or pluriparous, with the Murugeppa A age group ranging from 3.5 years to 10 years were selected for recording the the data on the Associate Professor and Head, Department of Veterinary reproductive and productive performance using a detailed questionnaire. The parameters like Gynaecology and Obstetrics, age of puberty, age of first calving, dry period, calving interval, gestation period, service Veterinary College, Shivamogga, period, lactation length, peak milk yield per day, total milk yield, days to reach peak milk Karnataka, India ~ 270 ~ The Pharma Innovation Journal http://www.thepharmajournal.com yield, birth weight of the new born calf, time taken for statistical analysis using computerized statistical software, placental expulsion, onset of postpartum estrous, duration of GraphPad Prism Version 8.00 (2019) [8] by applying one way estrous period, time of ovulation and length of estrus cycle or two-way ANOVA at 0.05 % level of significance with the were recorded. application of Tukey's post test. Mean values and standard error of mean were calculated and all the values were Statistical analysis expressed as Mean ± SE (Graph Pad Prism, 2019) [8]. The data obtained from the present study were subjected to Fig 1: Malnad Gidda breed cattle Results estrous (77.64±1.98 days); duration of estrous period The parameters like age at puberty (25.15±0.29 months); age (15.25±1.67 hours); time of ovulation (15.15 ± 1.7 hours); and at first calving (39.32±2.99 months); dry period (6.22±1.26 length of estrus cycle (22.63±2.96 days) were recorded (Table months);calving interval (13.68±2.55 months); gestation 1). There was no significant difference (p>0.05) in the period (282.14±9.03 days); service period (136.73±10.03 productive and reproductive parameters among three taluks days); lactation length (258.22 ± 10.95 days); milk yield per Sagar, Hosanagar and Thirthahalli. There was no significant day (3.69±0.32 kg); total milk yield (227.19±8.31 kg); days to difference in between the productive and reproductive reach peak milk yield (46.19±0.51 day); birth weight of the parameters among three taluks Sagar, Hosanagar and new born calf (8.71±0.45 kg); time taken for placental Thirthahalli. expulsion of placenta (4.63±0.39 hours); onset of postpartum Table 1: Different reproductive and productive parameters of Malnad Gidda cattle S. No Details Hosanagara Sagar Thirthahalli Average 1. Age at puberty (Month) n=63 25.14±0.33 25.45±0.32 24.86±0.26 25.15±0.29 2. Age at first calving (Month)n=56 38.43±4.38 39.56±3.32 39.98±1.29 39.32±2.99 3. Dry period (Months),n=96 5.23±1.38 6.68±1.12 6.75±1.29 6.22±1.26 4. Calving interval (Months) n=65 13.36 ±2.36 13.69±2.56 14.01±2.63 13.68±2.55 5. Gestation period (Days) n=61 283.34±9.38 299.98±8.45 263.12±9.28 282.14±9.03 6. Service period (Days),n=59 144.34 ±5.38 128.48 ±12.45 137.39 ±12.28 136.73±10.03 7. Lactation length (Days) n=65 258.01±10.13 248.12±11.13 268.55±11.61 258.22 ± 10.95 8. Milk yield per day (kg), n=57 3.58±0.13 4.13±0.23 3.38±0.61 3.69±0.32 9. Total milk yield (kg) n=54 228.33±9.13 226.88±8.12 223.38±7.61 227.19±8.31 10. Days to reach peak milk yield (Days), n=56 48.93 ± 1.54 47.13 ± 1.41 45.20±1.10 46.19±0.51 ~ 271 ~ The Pharma Innovation Journal http://www.thepharmajournal.com 11. Birth weight of the new born calf (kg), n=36 8.61±0.34 8.78±0.49 8.66±0.56 8.71±0.45 12. Time taken for placental expulsion of placenta (h) n=33 4.51±0.31 4.71±0.72 4.63±0.13 4.63±0.39 13. Onset of postpartum estrous (Days), n=65 78.63±1.56 82.63±1.87 75.93±2.65 77.64±1.98 14. Duration of estrous period (h) n=37 14.75±1.28 17.87±2.15 13.15±1.52 15.251.67 15. Time of ovulation (h) n=17 14.57 ± 1.69 17.58 ± 1.68 11.57 ± 1.72 15.15 ± 1.7 16. Length of estrus cycle (Day) n=67 19.69±3.56 24.12±2.15 23.11±3.18 22.63±2.96 Values are expressed as Mean SEM p*<0.05 Discussion Gaolao cattle as 12.9 ± 0.09 months. Gahlot et al. (2002) [6] The present study was undertaken to document the observed that calving interval in Tharparkar cattle as 398.25 ± reproductive parameters of Malnad Gidda in its native tract 3.09 days. Thombre et al. (2002) [24] reported that the overall through data collection and also to assess the response of inter calving period was 533.64 ± 5.21 days in Deoni cattle repeat breeding Malnad Gidda cattle to estrus induction. The maintained at CCBP and ACDF, Parbhani and found non- results obtained in the present are tabulated (Table 1) and significant effect of season of calving whereas significant statistically analyzed.
Recommended publications
  • Factors Affecting the Reproductive Performance of Sahiwal Cattle
    Int.J.Curr.Microbiol.App.Sci (2020) 9(9): 1236-1240 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 9 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.909.151 Factors Affecting the Reproductive Performance of Sahiwal Cattle Devesh Singh, C. B. Singh, B. S. Khadda* and S. B. Bhardwaj Department of Livestock Production Management, College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India *Corresponding author ABSTRACT The present study was conducted on 308 Sahiwal cows sired by 38 bulls spared over a K e yw or ds period of 32 years (1981- 2012), maintained at instructional dairy farm and AICRP on Age at first calving, cattle -Sahiwal (field unit) at G.B.P.U.A. & T., Pantnagar Uttarakhand and Chak Ganjaria Calving interval, Government Cattle Farm Lucknow, Uttar Pradesh. The overall least- square means for age Service period, at first calving (AFC), first calving interval (FC1) and first service period (FSP) were Sahiwal cattle, 1281.89 ± 15.57, 426.70 ± 8.53 and 140.85 ± 8.90 days, respectively. Significant effect of Reproductive traits sire and farm was observed in all the reproductive traits, while season was found to non- significantly influencing the age at first calving, first calving interval and first service Article Info period. Period of calving had highly significant (P<0.01) effect on AFC whereas, effect period of calving was found to be non-significant on first calving interval and first service Accepted: period.
    [Show full text]
  • Country Report on Animal Genetic Resources of India
    COUNTRY REPORT ON ANIMAL GENETIC RESOURCES OF INDIA DEPARTMENT OF ANIMAL HUSBANDRY & DAIRYING MINISTRY OF AGRICUCLTURE GOVERNMENT OF INDIA Preparation of Country Report on AnGR Training for the preparation of Country Report was provided by the FAO (at Bangkok) to three Scientists viz. Dr. D K Sadana, PS from NBAGR, Dr. A. Batobyal, Jt. Commissioner, GOI and Dr. Vineet Bhasin, Sr. Scientist, ICAR. The NBAGR, Karnal was identified as the Nodal Institute to prepare the draft Country Report. The scientists of the Animal Genetic Resources Division prepared answers to the background questions, collected livestock data from various sources, examined, discussed and compiled the received input. Chief Nodal Officers of the five regions of the country (North, West, South, East and North East) were identified to coordinate the collection of information from the Nodal Officers (Data contributors) from different states of the Country. Three national workshops were organized, two at NBAGR, Karnal and one at UAS, Bangalore.In the National Workshops, the Nodal Officers from different states were given training and guidelines for answering the background questions. Subsequently, the Draft Report was updated with the details received from nodal officers and other data contributors. Following scientists have contributed in writing and preparation of the Draft Country Report on AnGR: 1. Dr. V.K. Taneja, DDG (AS), ICAR, New Delhi 2. Dr. S.P.S. Ahlawat, Director, NBAGR, National Coordinator 3. Dr. D.K. Sadana, P.S., Organising Secretary 4. Dr. Anand Jain, Sr. Scientist & Support Scientist for NE Region 5. Dr. P.K. Vij, Sr. Scientist & Chief Nodal Officer - Northern Region 6.
    [Show full text]
  • View Full Text-PDF
    Int.J.Curr.Microbiol.App.Sci (2021) 10(01): 1773-1779 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 10 Number 01 (2021) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2021.1001.207 Assessment of Haematological and Biochemical Changes in Postpartum Anoestrous Ongole Cattle of Andhra Pradesh M. Rama Goury1, B.V.S. Saikiran2, S.K.I. Vasantha2*, Nikhil Kumar Tej2 and C.H. Srinivasa Prasad2 1NTR College of Veterinary Science, Gannavaram, A.P, India 2Dept of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, A.P, India *Corresponding author ABSTRACT The present study was aimed to assess the hemato-biochemical changes in postpartum anoestrous Ongole cattle. A total of 12 animals of same age and K e yw or ds body weight were randomly selected and divided in to two groups, G I: Hematology , postpartum anoestrous (PPA, n=6) and G II: cyclic animals (n=6). Blood Biochemical , samples were collected by jugular vein puncture and analyzed for Postpartum anoestrous (PPA); hematological parameters. Further, the serum was separated from another Ongole cattle aliquot of blood sample and utilized for biochemical parameters. The mean RBC, Hb, PCV, glucose, total protein and cholesterol values were Article Info significantly (p<0.05) lower in PPA compared to cyclic animals. In Accepted: 12 December 2020 contrast, no significant (p>0.05) difference was observed in MCV, MCH, Available Online: MCHC, WBC, lymphocyte and monocytes between groups. From the 10 January 2021 present study, it was concluded that hematological and biochemical parameters are reliable indicators of postpartum anestrus.
    [Show full text]
  • Genetic Divergence Study Between Umblachery and Kangayam Breed of Cattle Using Random Amplified Polymorphic Dna
    International Journal of Food, Agriculture and Veterinary Sciences ISSN: 2277-209X (Online) An Online International Journal Available at http://www.cibtech.org/jfav.htm 2013 Vol. 3 (1) January-April, pp. 136-140/Thiagarajan Research Article GENETIC DIVERGENCE STUDY BETWEEN UMBLACHERY AND KANGAYAM BREED OF CATTLE USING RANDOM AMPLIFIED POLYMORPHIC DNA *Thiagarajan R. Department of Animal Genetics and Breeding, Madras Veterinary College, Chennai, Tamil Nadu *Author for correspondence ABSTRACT Fifty randomly selected Umblachery and Kangayam cattle were used. Out of nine random primers tested five random primers ILO 1127, ILO 526, ILO 868, ILO 876 and BG 85 yielded amplification with genomic DNA samples. In Umblachery, primers ILO 1127, ILO 526, ILO 876 have the ability to amplify more bands such as 9, 8 and 10 where as ILO 868 and BG 85 gave only 4 bands. All the primers except BG 85 produced polymorphic bands. In the same way, in Kangayam breed, all primer except BG 85 produced more bands (6 to 12) and the numbers of polymorphic bands are two in ILO 1127, three in ILO 526 and one in all other three primers. All the five primers revealed band sharing within and between breeds. The frequency varied in Umblachery from 0.06 to 0.118 with respect to primers ILO 526 and ILO 876 whereas in Kangayam it varied from 0.07 to 0.2665 with respect to primers ILO 526 and ILO 876 respectively. The highest APD value between these two breeds obtained was 88.00 with ILO 868 and the lowest value of 50 with ILO 876.The MAPD between these two breeds was estimated to be 74.93 indicating these two breeds differed at 74.9% of loci amplified by a group of five random primers.
    [Show full text]
  • Annual Report 2001-2002, in Which Multiple Activities of Agricultural Research, Education and Extension Are Highlighted
    DARE/ICARDARE/ICAR AnnualAnnual ReportReport 2001-20022001-2002 Department of Agricultural Research Indian Council of and Education Agricultural Research Ministry of Agriculture New Delhi Government of India Indian Council of Agricultural Research President Shri Nitish Kumar (Up to 22.7.2001) Minister of Agriculture Shri Ajit Singh (Since 23.7.2001) Minister of Agriculture Vice-President Dr Debendra Pradhan (Up to 1.9.2001) Minister of State (AH&D & DARE) Director-General Dr R S Paroda (Up to 14.8.2001) Secretary Department of Agricultural Research and Education Shri J N L Srivastava (15.8.2001 to 3.10.2001) Secretary, Ministry of Agriculture Dr Panjab Singh (Since 4.10.2001) Secretary Department of Agricultural Research and Education Secretary Smt Shashi Misra (Since 22.2.2001) Additional Secretary Department of Agricultural Research and Education Financial Adviser Shri R S Prasad (Up to 7.6.2001) Joint Secretary and FA Department of Agricultural Research and Education Shri P Sinha (Since 7.6.2001) Additional Secretary and FA Department of Agricultural Research and Education iii OVERVIEW Foreword The National Agricultural Research System (NARS) with the Indian Council of Agricultural Research (ICAR) as an apex body is striving for the holistic development of agriculture at the national level through planning, promoting, conducting and coordinating research, education and extension and training on all aspects of agriculture for ensuring optimal utilization of land, water and plant and animal genetic resources. India has achieved worldwide acclaim in the field of agricultural research, education and extension by achieving more than four-fold increase in foodgrains production besides significant increases in the milk, oilseeds, fruits, vegetables and fish production since independence.
    [Show full text]
  • Class 4 :Definition of Breed-Classification of Indigenous, Exotic Cattle and Buffaloes -Breed Characteristics of Sindhi, Kangaya
    Class 4 :Definition of breed-classification of indigenous, exotic cattle and buffaloes -Breed characteristics of Sindhi, Kangayam and Umblacherry, Jersey, Holstein Friesian, Murrah and Surti. Breed: Definition : Denotes and established group of animals / birds having the similar general body shape, colour, structure and characters which produced offspring with same characters I . Cattle - 1. Indigenous 2. Exotic Indigenous Breeds are classified under three groups based on utility / purpose. a. Milch - Example- Sindhi, Sahiwal, Gir and Deoni b. Dual - Example- Hariyana, Ongole, Tharparkar, Kankrej c. Draught – Example- Kangayam, Umblacherry, Amritmahal, Hallikar 2. Exotic – Milch – Jersey, Holstein Friesian Red Sindhi Also Known By: Malir (Baluchistan), Red Karachi, Sindhi The Red Sindhi originated in the Pakistani state of Sind but due to its hardiness, heat resistance and high milk yields they have spread into many parts of India and at least 33 countries in Asia, Africa, Oceania and the Americas. Under good management conditions the Red Sindhi averages over 1700 kg of milk after suckling their calves but under optimum conditions there have been milk yields of over 3400 kg per lactation. The average height of a Red Sindhi cow is 116 cm with a body weight of 340 kg. Bulls average 134 cm in height and a body weight of 420 kg. They are normally a deep, rich red color but this can vary from a yellowish brown to dark brown. Males are darker than females and when mature may be almost black on the extremities, such as the head, feet and tail. Red Sindhi in Australia Red Sindhi cattle arrived in Australia in 1954 from Pakistan, as a gift to the Australian Government.
    [Show full text]
  • Dr Bhushan Tyagi Pptgoi 23.2.2016
    Government of India Ministry of Agriculture and Farmers Welfare Department of Animal Husbandry, Dairying and Fisheries NPBB and related CSS: Target & Budget provisions vis a vis current implementation status Date: 23rd February 2017 Venue: Anand, Gujarat DADF SCHEMES NATIONAL PROGRAMME FOR BOVINE BREEDING & DAIRY DEVELOPMENT (NPBBDD) o NATIONAL PROGRAMME FOR BOVINE BREEDING (NPBB) o RASHTRIYA GOKUL MISSION (RGM) NATIONAL KAMDHENU BREEDING CENTRE (NKBC) NATIONAL MISSION ON BOVINE PRODUCTIVITY (NMBP) 2 National Programme for Bovine Breeding (NPBB) & Rashtriya Gokul Mission (RGM) NPBB Components 1. Extension of field AI network 2. Strengthening of existing AI centres 3. Monitoring of AI Program 4. Development & Conservation of Indigenous Breeds 5. Managerial Grants to SIA and Grants linked to Activities 6. Manpower Development 7. Strengthening LN Transport and Distribution system 8. Procurement of Bulls for NS & AI 9. Control of infertility & reduction of intercalving period Monitoring of AI Program Key Performance Indicator EOP Target (As per approved Project Plan) Identification of females covered 25548000 through AI Identification of AI born calves 10409000 Tagging Applicators 72928 Data entry (No. of Transactions) 10051100 Computerization for implementation of 11685 INAPH (Data centers) RASHTRIYA GOKUL MISSION PRESENT STATUS •299.9 MILLION BOVINES •191 MILLION CATTLE •108.7 Million Buffaloes • 0.30 Million Mithuns • 0.1 Million Yak • 151.17 million indigenous Cattle (83% of Total Cattle Population) • INDIGENOUS GENETIC RESOURCES •
    [Show full text]
  • Unit 4 Milch Breeds
    UNIT 4 MILCH BREEDS Structure 4.0 Objectives 4.1 Introduction 4.2 Milch Breeds of Cattle Indigenous Milch and Dual-purpose Breed Exotic Dairy Cattle Breeds Synthetic Crossbred Cattle Strains Breed Improvement in Cattle 4.3 Milch Breeds of Buffaloes Breed Improvement in Buffaloes 4.4 Milch Breeds of Goats Indigenous Goat breeds Exotic Dairy Goat Breeds Breed Improvement in Goats 4.5 Let Us Sum Up 4.6 Key Words 4.7 Some Useful Books 4.8 Answers to check your Progress 4.0 OBJECTIVES After reading this unit, we shall be able to: enumerate the names of different milch breeds of cattle, buffalo and goat; state the distribution of these breeds in their respective home tracts; describe the physical characteristics of these breeds; performance of these breeds; specify the reproduction and production; and indicate the concept of breed improvement. 4.1 INTRODUCTION Cattle, buffalo and goats constituting 404.1 million population are three major domestic animal species, which contribute over 91.0 million tonnes milk in the country. The buffaloes contribute maximum (52%) to total milk production followed by cattle (45%) and goats (3%). There are large number of well descript breeds of cattle, buffalo and goats which are widely distributed under different agro-climatic regions. Besides these, there is large population of non-descript animals. A breed is a group of inter-breeding domestic animals of a species. It shows similarity among its individuals in certain distinguishable characteristics (colour, shape, size of body parts). The breeds have been developed as a result of selection and breeding based on the needs of mankind as well as adaptation to agro-climatic conditions of their native home tracts.
    [Show full text]
  • CATAIR Appendix
    CBP and Trade Automated Interface Requirements Appendix: PGA October 8, 2020 Pub # 0875-0419 Contents Table of Changes .................................................................................................................................................... 4 PG01 – Agency Program Codes ........................................................................................................................... 18 PG01 – Government Agency Processing Codes ................................................................................................... 22 PG01 – Electronic Image Submitted Codes.......................................................................................................... 26 PG01 – Globally Unique Product Identification Code Qualifiers ........................................................................ 26 PG01 – Correction Indicators* ............................................................................................................................. 26 PG02 – Product Code Qualifiers........................................................................................................................... 28 PG04 – Units of Measure ...................................................................................................................................... 30 PG05 – Scientific Species Code ........................................................................................................................... 31 PG05 – FWS Wildlife Description Codes ...........................................................................................................
    [Show full text]
  • Animal Genetic Resources Information Bulletin
    The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Les appellations employées dans cette publication et la présentation des données qui y figurent n’impliquent de la part de l’Organisation des Nations Unies pour l’alimentation et l’agriculture aucune prise de position quant au statut juridique des pays, territoires, villes ou zones, ou de leurs autorités, ni quant au tracé de leurs frontières ou limites. Las denominaciones empleadas en esta publicación y la forma en que aparecen presentados los datos que contiene no implican de parte de la Organización de las Naciones Unidas para la Agricultura y la Alimentación juicio alguno sobre la condición jurídica de países, territorios, ciudades o zonas, o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and the extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. Tous droits réservés. Aucune partie de cette publication ne peut être reproduite, mise en mémoire dans un système de recherche documentaire ni transmise sous quelque forme ou par quelque procédé que ce soit: électronique, mécanique, par photocopie ou autre, sans autorisation préalable du détenteur des droits d’auteur.
    [Show full text]
  • Vol. 13 No. 2 7 Hematological Studies on Malnad Gidda Breed of Cattle In
    The Indian Journal of Veterinary Sciences & Biotechnology (2017) Volume 13, Issue 2, 7-11 ISSN (Print) : 2394-0247 : ISSN (Print and online) : 2395-1176, abbreviated as IJVSBT http://dx.doi.org/10.21887/ijvsbt.v13i2.10041 Submitted : 17-06-2017 Accepted : 21-08-2017 Published : 15-11-2017 Hematological Studies on Malnad Gidda Breed of Cattle in Karnataka K. Hemanth Gowda, M. Narayanaswamy, T. Veena, A. Krishnaswamy, C. S. Nagaraja, N. B. Sridhar, K. Ganesh and G. P. Kalmath Department of Veterinary Physiology, Veterinary College, Hebbal, Bangalore-24, Karnataka, India. Corresponding Author: [email protected] This work is licensed under the Creative Commons Attribution International License (http:// creativecommons.org/licenses /by/4.0/P), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. Copyright @: 2017 by authors and SVSBT. Abstract The present study was conducted to establish the base line hematological values in Malnad Gidda cattle during winter and summer seasons under the agro-climatic condition of Western Ghats of Karnataka. Thirty healthy Malnad Gidda cattle divided into five groups based on age, sex and lactation. The mean values of TEC, Hb, PCV, ESR, TLC and eosinophil per cent were significantly (P<0.05) higher in adult animals than young animals in both sexes. But, MCV was significantly (P<0.05) higher in young compared to adult animals. The mean values of MCH, MCHC, neutrophil, basophil, monocyte and lymphocyte per cent did not vary significantly among the age groups and among the gender. The mean values of all the above parameters between sexes within age groups and between the seasons were not significantly different.
    [Show full text]
  • Genetic Diversity Among Indian Gir, Deoni and Kankrej Cattle Breeds Based on Microsatellite Markers
    Indian Journal of Biotechnology Vol 9, April 2010, pp 126-130 Genetic diversity among Indian Gir, Deoni and Kankrej cattle breeds based on microsatellite markers D S Kale*, D N Rank, C G Joshi 1, B R Yadav 2, P G Koringa, K M Thakkar, T C Tolenkhomba 2 and J V Solanki Department of Animal Genetics and Breeding and 1Department of Animal Biotechnology College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand 388 001, India 2Livestock Genome Analysis Laboratory, Dairy Cattle Breeding Division National Dairy Research Institute (NDRI), Karnal 132 001, India Received 27 October 2008; revised 17 June 2009; accepted 20 August 2009 The present study was conducted to examine genetic diversity, genetic differentiation and genetic relationship among Gir, Deoni and Kankrej cattle breeds using microsatellite markers. The number of alleles observed at different loci ranged from 5 (HEL5) to 8 (CSRM60) with a total of 46 alleles across three breeds. The overall heterozygosity and polymorphic information content (PIC) values were 0.730 and 0.749, respectively. Nei’s standard genetic distance was least between Gir and Kankrej and highest between Deoni and Kankrej. In the analyzed loci, an overall significant deficit of heterozygotes across these breeds was found and it could be due to inbreeding within breeds. The overall genetic differentiation ( FST ) among breeds was moderate, but significantly different. All loci, except INRA035, contributed significantly to the overall differentiation. The highest FST values were found in HEL5 and lowest in INRA035. The overall Nem value indicated a high rate of genetic flow between the breeds, which is in agreement with their origin of close proximity in the geographical area.
    [Show full text]