A+ Guide to Managing & Maintaining Your PC, 8Th Edition

Total Page:16

File Type:pdf, Size:1020Kb

A+ Guide to Managing & Maintaining Your PC, 8Th Edition A+ Guide to Managing & Maintaining Your PC, 8th Edition Chapter 4 All About Motherboards Objectives • Learn about the different types and features of motherboards • Learn how to use setup BIOS and physical jumpers to configure a motherboard • Learn how to maintain a motherboard • Learn how to select, install, and replace a motherboard A+ Guide to Managing & Maintaining 2 Your PC, 8th Edition © Cengage Learning 2014 Part 2 Buses and Expansion Slots • Bus – System of pathways used for communication • Carried by bus: – Power, control signals, memory addresses, data • Data and instructions exist in binary – Only two states: on and off • Data path size: width of a data bus – Examples: 8-bit bus has eight wire (lines) to transmit A+ Guide to Managing & Maintaining 3 Your PC, 8th Edition © Cengage Learning 2014 •Bit: A bit is the basic unit of information in computing and digital communications. A bit can have only one of two values, and may therefore be physically implemented with a two-state device. The most common representation of these values are 0 and 1. The term bit is a contraction of binary digit. •Byte: A byte is a unit of digital information in computing and telecommunications that most commonly consists of eight bits. •bps: bit rate, bit per seconds •Hz: (Hertz): It is defined as the number of cycles per second of a periodic phenomenon. The hertz is equivalent to cycles per second. •Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz) A+ Guide to Managing & Maintaining 4 Your PC, 8th Edition © Cengage Learning 2014 Size 1 Byte = 8bit 1024 Bytes = 1 KB KB = Kilobyte 1024 KB = 1 MB MB = Megabyte 1024 MB = 1 GB GB = Gigabyte 1024 GB = 1 TB TB = Terabyte 1024 TB = 1 PB PB = Petabyte Bit rates Name Symbol Multiple Decimal prefixes (SI) kilobit per second kbit/s 103 megabit per second Mbit/s 106 gigabit per second Gbit/s 109 terabit per second Tbit/s 1012 Multiples of bits Decimal Binary Value Metric Value JEDEC IEC 1000 kbit kilobit 1024 Kbit kilobit Kibit kibibit 1000^2 Mbit megabit 1024^2 Mbit megabit Mibit mebibit 1000^3 Gbit gigabit 1024^3 Gbit gigabit Gibit gibibit 1000^4 Tbit terabit 1024^4 - - Tibit tebibit 1000^5 Pbit petabit 1024^5 - - Pibit pebibit 1000^6 Ebit exabit 1024^6 - - Eibit exbibit 1000^7 Zbit zettabit 1024^7 - - Zibit zebibit 1000^8 Ybit yottabit 1024^8 - - Yibit yobibit A+ Guide to Managing & Maintaining 5 Your PC, 8th Edition © Cengage Learning 2014 Figure 4-16 A data bus has traces or lines that carry voltage interpreted by the CPU and other devices as bits A+ Guide to Managing & Maintaining 6 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • System clock (system timer) – times activities on the motherboard • Speed of memory, Front Side Bus, processor, or other component is measured in hertz (Hz), which is one cycle per second – Megahertz (MHz): one million cycles per second – Gigahertz (GHz): one billion cycles per second • Motherboards can have more than one bus – Table 3-4 on the following slide lists many buses A+ Guide to Managing & Maintaining 7 Your PC, 8th Edition © Cengage Learning 2014 front side bus (FSB), back side bus . The memory bus The IDE or ATA bus connects The AGP bus connects The PCI bus connects A+ Guide to Managing & Maintaining 8 Your PC, 8th Edition © Cengage Learning 2014 • Front Side Bus (FSB) OR CPU Bus is the bus that carries data between the CPU and the northbridge. • Depending on the processor used, some computers may also have a back-side bus that connects the CPU to the cache. This bus and the cache connected to it are faster than accessing the system memory via the front side bus. FSB speed 2600 MHz, 2000 MHz, 1600 MHz, 1333 MHz, 1066 MHz, 800 MHz, 533 MHz, or 400 MHz. A CPU operates from 166 MHz to almost 4 GHz. • The amount of data that a CPU can process at the one time depends on the size of the front side bus (FSB). The wider the processor data bus width, the more powerful the processor is. Current processors have a 32-bit or a 64-bit processor data bus . • Back Side Bus connects the CPU with the level 2 (L2) cache, also known as secondary or external cache. The processor determines the speed of the back side bus. • Memory bus connects the northbridge to the memory. Common ratings for memory are 800 MHz, 1066 MHz,1333 MHz and 1866 MHz • IDE or ATA bus connects the southbridge to the disk drives. • AGP bus connects the video card to the memory and the CPU. The speed of the AGP bus is© usuallyCengage Learning 66 MHz.2014 Table 3-4 Buses listed by throughput A+ Guide to Managing & Maintaining 10 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • Conventional PCI – Improved several times – Four types of slots and six possible PCI card configurations A+ Guide to Managing & Maintaining 11 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • PCI-X – Uses 64-bit data path – Latest revision is PCI-X 3.0 (all revisions are backward-compatible) Figure 4-19 The two long white PCI-X slots can support PCI cards A+ Guide to Managing & Maintaining 12 Your PC, 8th Edition © Cengage Learning 2014 A+ Guide to Managing & Maintaining 13 Your PC, 8th Edition © Cengage Learning 2014 A+ Guide to Managing & Maintaining 14 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • PCI Express (PCIe) – Not backward compatible with conventional PCI or PCI-X – Expected to replace both PCI and PCI-X in the future – Uses a serial bus, which is faster than parallel – Comes in four different slot sizes • PCI Express x1, x4, x8, and x16 – Latest version is PCIe 3.0 which doubles the throughput of version 2.0 A+ Guide to Managing & Maintaining 15 Your PC, 8th Edition © Cengage Learning 2014 A+ Guide to Managing & Maintaining 16 Your PC, 8th Edition © Cengage Learning 2014 Figure 4-21 Three types of PCIe slots and one conventional PCI slot A+ Guide to Managing & Maintaining 17 Your PC, 8th Edition © Cengage Learning 2014 PCI/e x16 PCI/e x1 2xPCI slot PCI/e x4 PCI/e x8 A+ Guide to Managing & Maintaining 18 Your PC, 8th Edition © Cengage Learning 2014 dual monitor PCI express graphics card USB 3.0 with x1 Dual monitor PCI Express graphic PCI Express graphic card with 16x card with 16x A+ Guide to Managing & Maintaining 19 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • PCI Riser cards – Installs in a PCI slot and provides another slot at a right angle – Used to fit PCI, PCIe, and PCI-X Figure 4-23 PCI riser card provides a cards into a low- 3.3-V slot or 5-V slot depending on profile or slimline which direction the card is inserted in case the PCI slot A+ Guide to Managing & Maintaining 20 Your PC, 8th Edition © Cengage Learning 2014 Buses and Expansion Slots • AGP Buses – Accelerated Graphics Port (AGP) – standard used by motherboard video slots and video cards for years – Will need to know how to support it even though it is a dying technology – AGP standards include: • Three major releases - AGP 1.0, AGP 2.0, AGP 3.0 • One major change in slot length – AGP Pro • Four different speeds – 1x, 2x, 4x, and 8x • Three different voltages • Six different slots A+ Guide to Managing & Maintaining 21 Your PC, 8th Edition © Cengage Learning 2014 Table 3-5 AGP standards summarized A+ Guide to Managing & Maintaining 22 Your PC, 8th Edition © Cengage Learning 2014 A+ Guide to Managing & Maintaining 23 Your PC, 8th Edition © Cengage Learning 2014 A+ Guide to Managing & Maintaining 24 Your PC, 8th Edition © Cengage Learning 2014 On-Board Ports and Connectors • On-board ports (integrated components) – Ports coming directly off the motherboard • USB, sound, network, video, eSATA ports • Older motherboards might have mouse and keyboard ports, parallel and serial ports • I/O shield – Plate installed in computer case providing holes for on-board ports • Internal connectors – Parallel ATA, floppy drive, serial ATA, SCSI, USB or FireWire (IEEE 1394) connectors A+ Guide to Managing & Maintaining 25 Your PC, 8th Edition © Cengage Learning 2014 Configuring a Motherboard • Motherboard settings – Enable or disable connector or port – Set CPU frequency, system bus, other buses – Control security features – Control what happens when PC first boots • Three ways to configure older motherboards: – DIP switches, jumpers, CMOS RAM • Today, almost all motherboard configuration data is stored in CMOS RAM – Program called BIOS setup or CMOS setup is used to make changes to settings stored in CMOS RAM A+ Guide to Managing & Maintaining 26 Your PC, 8th Edition © Cengage Learning 2014 Using Jumpers to Configure a Motherboard • Jumper – two small posts or metal pins that stick up off the motherboard that is open or closed – Open jumper has no cover and a closed jumper has a cover on the two pins – Retain setup or installation information – Jumpers can be used to clear a forgotten supervisor or power-on password A+ Guide to Managing & Maintaining 27 Your PC, 8th Edition © Cengage Learning 2014 Figure 4-35 This group of three jumpers controls the BIOS configuration Figure 4-36 BIOS configuration jumper settings A+ Guide to Managing & Maintaining 28 Your PC, 8th Edition © Cengage Learning 2014 Using Setup BIOS To Configure a Motherboard • Access the BIOS Setup Program – Press a key or combination of keys during the boot process • Varies from one manufacturer to another • See documentation for your motherboard or watch the screen near the beginning of the boot – Setup screen appears with menus and Help features A+ Guide to Managing & Maintaining 29 Your PC, 8th Edition © Cengage Learning
Recommended publications
  • Z/OS ♦ Z Machines Hardware ♦ Numbers and Numeric Terms ♦ the Road to Z/OS ♦ Z/OS.E ♦ Z/OS Futures ♦ Language Environment ♦ Current Compilers ♦ UNIX System Services
    Mainframes The Future of Mainframes Is Now ♦ z/Architecture ♦ z/OS ♦ z Machines Hardware ♦ Numbers and Numeric Terms ♦ The Road to z/OS ♦ z/OS.e ♦ z/OS Futures ♦ Language Environment ♦ Current Compilers ♦ UNIX System Services by Steve Comstock The Trainer’s Friend, Inc. http://www.trainersfriend.com 800-993-8716 [email protected] Copyright © 2002 by Steven H. Comstock 1 Mainframes z/Architecture z/Architecture ❐ The IBM 64-bit mainframe has been named "z/Architecture" to contrast it to earlier mainframe hardware architectures ♦ S/360 ♦ S/370 ♦ 370-XA ♦ ESA/370 ♦ ESA/390 ❐ Although there is a clear continuity, z/Architecture also brings significant changes... ♦ 64-bit General Purpose Registers - so 64-bit integers and 64-bit addresses ♦ 64-bit Control Registers ♦ 128-bit PSW ♦ Tri-modal addressing (24-bit, 31-bit, 64-bit) ♦ Over 140 new instructions, including instructions to work with ASCII and UNICODE strings Copyright © 2002 by Steven H. Comstock 2 z/Architecture z/OS ❐ Although several operating systems can run on z/Architecture machines, z/OS is the premier, target OS ❐ z/OS is the successor to OS/390 ♦ The last release of OS/390 was V2R10, available 9/2000 ♦ The first release of z/OS was V1R1, available 3/2001 ❐ z/OS can also run on G5/G6 and MP3000 series machines ♦ But only in 31-bit or 24-bit mode ❐ Note these terms: ♦ The Line - the 16MiB address limit of MVS ♦ The Bar - the 2GiB limit of OS/390 ❐ For some perspective, realize that 16EiB is... ♦ 8 billion times 2GiB ♦ 1 trillion times 16MiB ❐ The current release of z/OS is V1R4; V1R5 is scheduled for 1Q2004 Copyright © 2002 by Steven H.
    [Show full text]
  • Broadband/IP/Cloud Computing
    Broadband/IP/Cloud Computing Presentation to the Colorado Telecommunications Association www.cellstream.com (c) 2011 CellStream, Inc. 1 www.cellstream.com (c) 2011 CellStream, Inc. 2 www.cellstream.com (c) 2011 CellStream, Inc. 3 www.cellstream.com (c) 2011 CellStream, Inc. 4 www.cellstream.com (c) 2011 CellStream, Inc. 5 Past vs. Present The Past – 20th Century The Present – 21st Century • Peer-to-Peer with broadcast • Many-to-Many with multicast • Mix of Analog and Digital • All media is digital – single • Producers supply transport Consumers • All media is connected • Peer-to-Peer is 1:1 • Many-to-Many is M:N o Traditional Telephone • Producers and Consumers • Broadcast is 1:N do both o Newspaper o CNN takes reports from Twitter o TV/Radio o End users send pictures and reports www.cellstream.com (c) 2011 CellStream, Inc. 6 Where are we in Phone Evolution? PHONE 1.0 PHONE 2.0 PHONE 3.0 Soft phone Your Phone Number Your Phone Number Your Phone Number represents where you represents you represents an IP Address – are (e.g. 972-747- regardless of where you independent of location 0300 is home, 214- are. and appliance you are 405-3708 is work) using (e.g. IP Phone, Cell Phone, PDA, Computer, Television, etc.) www.cellstream.com (c) 2011 CellStream, Inc. 7 Phone 3.X • Examples of Phone 3.0 are Skype, Google Talk, others on a PC. • Phone 3.1 – Skype on an iTouch • Phone 3.2 – Android OS from Google – a phone Centric OS that runs on cellular appliances • Phone 3.3 – Android OS from Google that runs on a Phone Appliance www.cellstream.com (c) 2011 CellStream, Inc.
    [Show full text]
  • Etir Code Lists
    eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet.
    [Show full text]
  • Z/OS, Language Environment, and UNIX How They Work Together
    The Trainer’s Friend, Inc. 256-B S. Monaco Parkway Telephone: (800) 993-8716 Denver, Colorado 80224 (303) 393-8716 U.S.A. Fax: (303) 393-8718 E-mail: [email protected] Internet: www.trainersfriend.com z/OS, Language Environment, and UNIX How They Work Together The following terms that may appear in these materials are trademarks or registered trademarks: Trademarks of the International Business Machines Corporation: AD/Cycle, AIX, AIX/ESA, Application System/400, AS/400, BookManager, CICS, CICS/ESA, COBOL/370, COBOL for MVS and VM, COBOL for OS/390 & VM, Common User Access, CORBA, CUA, DATABASE 2, DB2, DB2 Universal Database, DFSMS, DFSMSds, DFSORT, DOS/VSE, Enterprise System/3090, ES/3090, 3090, ESA/370, ESA/390, Hiperbatch, Hiperspace, IBM, IBMLink, IMS, IMS/ESA, Language Environment, MQSeries, MVS, MVS/ESA, MVS/XA, MVS/DFP, NetView, NetView/PC, Object Management Group, Operating System/400, OS/400, PR/SM, OpenEdition MVS, Operating System/2, OS/2, OS/390, OS/390 UNIX, OS/400, QMF, RACF, RS/6000, SOMobjects, SOMobjects Application Class Library, System/370, System/390, Systems Application Architecture, SAA, System Object Model, TSO, VisualAge, VisualLift, VTAM, VM/XA, VM/XA SP, WebSphere, z/OS, z/VM, z/Architecture, zSeries Trademarks of Microsoft Corp.: Microsoft, Windows, Windows NT, Windows ’95, Windows ’98, Windows 2000, Windows SE, Windows XP Trademark of Chicago-Soft, Ltd: MVS/QuickRef Trademark of Phoenix Software International: (E)JES Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX Registered Trademark of The Open Group: UNIX Trademark of Sun Microsystems, Inc.: Java Registered Trademark of Linus Torvalds: LINUX Registered Trademark of Unicode, Inc.: Unicode Preface This document came about as a result of writing my first course for UNIX on the IBM mainframe.
    [Show full text]
  • Breaking Through the Myths to Reality: a Future-Proof View Of
    Breaking Through the Myths to Reality A Future-Proof View of Fiber Optic Inspection and Cleaning Dear Viewer: As presented at BICSI® in February- 2018, this seminar has video and animations that Edward J. Forrest, Jr. are not available as a .pdf file. If you would like the RMS(RaceMarketingServices) original version, please contact BICSI or the author. Bringing Ideas Together Caution: This Presentation is going to be controversial! IT IS BASED ON 2,500 YEARS OF SCIENCE AND PRODUCT DEVELOPMENT 2 Fact OR FICTION of Fiber Optic Cleaning and Inspection This seminarWE WILL mayDISCUSS contradictAND currentDEFINE: trends ➢ There➢ Cleaningand are what OTHER you’ve is notWAYS been important…BESIDES taught. VIDEO ➢ ➢➢“Automatic99.9%Debris➢ ➢ExistingA “Reagent FiberonS Detection” CIENTIFICthe standards, Optic surface Grade” ConnectorR isEALITY of such“good Isopropanola fiber… as enough”.is optic a is IECconnector“Pass 61300Let’sanI NSPECTIONanythingeffective- Fail”separate- 3surface-35, is is bettereasy are Factsfiberto is “Best determine thantwoto from optic understand nothing!-dimensional Practice”Fiction cleaner What we’veTwoif the ( ALL-Dimensional connector) been taught/bought/soldand is Structure“clean” over the last 30+Myth yearsfrom may“diameter”. Scientific not be the same Reality thing! 3 Fact OR FICTION of Fiber Optic Cleaning and Inspection ➢ A Fiber Optic Connector is a Two-Dimensional Structure ➢ 99.9% “Reagent Grade” Isopropanol is an effective fiber optic cleaner ➢ Cleaning is not important… anything is better than nothing! ➢ There are OTHER WAYS BESIDES VIDEO INSPECTION to determine if the connector is “clean” ➢ Debris on the surface of a fiber optic connector surface is two-dimensional “diameter”. ➢ “Automatic Detection” is “good enough”.
    [Show full text]
  • File Organization and Management Com 214 Pdf
    File organization and management com 214 pdf Continue 1 1 UNESCO-NIGERIA TECHNICAL - VOCATIONAL EDUCATION REVITALISATION PROJECT-PHASE II NATIONAL DIPLOMA IN COMPUTER TECHNOLOGY FILE Organization AND MANAGEMENT YEAR II- SE MESTER I THEORY Version 1: December 2 2 Content Table WEEK 1 File Concepts... 6 Bit:... 7 Binary figure... 8 Representation... 9 Transmission... 9 Storage... 9 Storage unit... 9 Abbreviation and symbol More than one bit, trit, dontcare, what? RfC on trivial bits Alternative Words WEEK 2 WEEK 3 Identification and File File System Aspects of File Systems File Names Metadata Hierarchical File Systems Means Secure Access WEEK 6 Types of File Systems Disk File Systems File Systems File Systems Transactional Systems File Systems Network File Systems Special Purpose File Systems 3 3 File Systems and Operating Systems Flat File Systems File Systems according to Unix-like Operating Systems File Systems according to Plan 9 from Bell Files under Microsoft Windows WEEK 7 File Storage Backup Files Purpose Storage Primary Storage Secondary Storage Third Storage Out Storage Features Storage Volatility Volatility UncertaintyAbility Availability Availability Performance Key Storage Technology Semiconductor Magnetic Paper Unusual Related Technology Connecting Network Connection Robotic Processing Robotic Processing File Processing Activity 4 4 Technology Execution Program interrupts secure mode and memory control mode Virtual Memory Operating Systems Linux and UNIX Microsoft Windows Mac OS X Special File Systems Journalized File Systems Graphic User Interfaces History Mainframes Microcomputers Microsoft Windows Plan Unix and Unix-like operating systems Mac OS X Real-time Operating Systems Built-in Core Development Hobby Systems Pre-Emptification 5 5 WEEK 1 THIS WEEK SPECIFIC LEARNING OUTCOMES To understand: The concept of the file in the computing concept, field, character, byte and bits in relation to File 5 6 6 Concept Files In this section, we will deal with the concepts of the file and their relationship.
    [Show full text]
  • IBM-IS-DCI-UR-Newsletter.Pdf
    Monthly Newsletter Mar 2016 Monthly Journal on Technology Know-How of IBM’s Technology space Tech Updates on Mainframe Platform “Mainframe“ the IBM Dictionary Of Computing defines "mainframe" as "a large computer, in particular one to which other computers can be connected so that they can share facilities the mainframe provides (for example, a System/370 computing system to which personal computers are attached so that they can upload and download programs and data). The term “Mainframe “ usually refers to hardware only, namely, main storage, execution circuitry and peripheral units“ level, as opposed to trying to do it all from the System z platform. Did you know that mainframes and all other computers have two types of physical storage: Internal and external. Physical storage located on the mainframe processor itself. This is called processor storage, real storage or central storage; think of it as memory for the mainframe. Physical storage external to the mainframe, including storage on direct access devices, such as disk drives and tape drives. This storage is called paging storage or auxiliary storage. The primary difference between the two kinds of storage relates to the way in which it is accessed, as follows: Central storage is accessed synchronously with the processor. That is, the processor must wait while data is retrieved from central storage. Auxiliary storage is accessed asynchronously. The processor accesses auxiliary storage through an input/output (I/O) request, which is scheduled to run amid other work requests in the system. During an I/O request, the processor is free to execute other, unrelated work.
    [Show full text]
  • A Practical Introduction to Computer Architecture
    A Practical Introduction to Computer Architecture Daniel Page [email protected] h i git # ba293a0e @ 2019-11-14 © Daniel Page [email protected] h i git # ba293a0e @ 2019-11-14 2 © Daniel Page [email protected] h i MATHEMATICAL PRELIMINARIES In Mathematics you don’t understand things. You just get used to them. – von Neumann The goal of this Chapter is to provide a fairly comprehensive overview of theory that underpins the rest of the book. At first glance the content may seem a little dry, and is often excluded in other similar books. It seems clear, however, that without a solid understanding of said theory, using the constituent topics to solve practical problems will be much harder. The topics covered all relate to the field of discrete Mathematics; they include propositional logic, sets and functions, Boolean algebra and number systems. These four topics combine to produce a basis for formal methods to describe, manipulate and implement digital systems. Readers with a background in Mathematics or Computer Science might skip this Chapter and use it simply for reference; those approaching it from some other background would be advised to read the material in more detail. 1 Propositional logic Definition 0.1. A proposition is a statement whose meaning, termed the truth value, is either true or false (less formally, we say the statement is true if it has a truth value of true and false if it has a truth value of false). A given proposition can involve one or more variables; only when concrete values are assigned to the variables can the meaning of a proposition be evaluated.
    [Show full text]
  • The 2016 SNIA Dictionary
    A glossary of storage networking data, and information management terminology SNIA acknowledges and thanks its Voting Member Companies: Cisco Cryptsoft DDN Dell EMC Evaluator Group Fujitsu Hitachi HP Huawei IBM Intel Lenovo Macrosan Micron Microsoft NetApp Oracle Pure Storage Qlogic Samsung Toshiba Voting members as of 5.23.16 Storage Networking Industry Association Your Connection Is Here Welcome to the Storage Networking Industry Association (SNIA). Our mission is to lead the storage industry worldwide in developing and promoting standards, technologies, and educational services to empower organizations in the management of information. Made up of member companies spanning the global storage market, the SNIA connects the IT industry with end-to-end storage and information management solutions. From vendors, to channel partners, to end users, SNIA members are dedicated to providing the industry with a high level of knowledge exchange and thought leadership. An important part of our work is to deliver vendor-neutral and technology-agnostic information to the storage and data management industry to drive the advancement of IT technologies, standards, and education programs for all IT professionals. For more information visit: www.snia.org The Storage Networking Industry Association 4360 ArrowsWest Drive Colorado Springs, Colorado 80907, U.S.A. +1 719-694-1380 The 2016 SNIA Dictionary A glossary of storage networking, data, and information management terminology by the Storage Networking Industry Association The SNIA Dictionary contains terms and definitions related to storage and other information technologies, and is the storage networking industry's most comprehensive attempt to date to arrive at a common body of terminology for the technologies it represents.
    [Show full text]
  • Units of Measure Used in International Trade Page 1/57 Annex II (Informative) Units of Measure: Code Elements Listed by Name
    Annex II (Informative) Units of Measure: Code elements listed by name The table column titled “Level/Category” identifies the normative or informative relevance of the unit: level 1 – normative = SI normative units, standard and commonly used multiples level 2 – normative equivalent = SI normative equivalent units (UK, US, etc.) and commonly used multiples level 3 – informative = Units of count and other units of measure (invariably with no comprehensive conversion factor to SI) The code elements for units of packaging are specified in UN/ECE Recommendation No. 21 (Codes for types of cargo, packages and packaging materials). See note at the end of this Annex). ST Name Level/ Representation symbol Conversion factor to SI Common Description Category Code D 15 °C calorie 2 cal₁₅ 4,185 5 J A1 + 8-part cloud cover 3.9 A59 A unit of count defining the number of eighth-parts as a measure of the celestial dome cloud coverage. | access line 3.5 AL A unit of count defining the number of telephone access lines. acre 2 acre 4 046,856 m² ACR + active unit 3.9 E25 A unit of count defining the number of active units within a substance. + activity 3.2 ACT A unit of count defining the number of activities (activity: a unit of work or action). X actual ton 3.1 26 | additional minute 3.5 AH A unit of time defining the number of minutes in addition to the referenced minutes. | air dry metric ton 3.1 MD A unit of count defining the number of metric tons of a product, disregarding the water content of the product.
    [Show full text]
  • Chapter 1: Data Storage
    Chapter 1: Data Storage 1.1 Bits and Their Storage 1.2 Main Memory 1.3 Mass Storage 1.4 Representing Information as Bit Patterns 1.5 The Binary System 1.6 Storing Integers 1.7 Storing Fractions 1.8 Data Compression 1.9 Communication Errors 1 Computer == 0 and 1 ? Hmm…every movie says so…. Chapter 2 2 Why I can’t see any 0 and 1 when opening up a computer?? Chapter 2 3 What’s really in the computer With the help of an oscilloscope (示波器) Chapter 2 4 HIGH Bits LOW Bit Binary Digit The basic unit of information in a computer A symbol whose meaning depends on the application at hand. Numeric value (1 or 0) Boolean value (true or false) Voltage (high or low) For TTL, high=5V, low=0V 5 More bits? kilobit (kbit) 103 210 megabit (Mbit) 106 220 gigabit (Gbit) 109 230 terabit (Tbit) 1012 240 petabit (Pbit) 1015 250 exabit (Ebit) 1018 260 zettabit (Zbit) 1021 270 6 Bit Patterns All data stored in a computer are represented by patterns of bits: Numbers Text characters Images Sound Anything else… 7 Now you know what’s a ‘bit’, and then? How to ‘compute’ bits? How to ‘implement’ it ? How to ‘store’ bit in a computer? Chapter 2 8 How to do computation on Bits? Chapter 2 9 Boolean Operations Boolean operation any operation that manipulates one or more true/false values (e.g. 0=true, 1=false) Can be used to operate on bits Specific operations AND OR XOR NOT 10 AND, OR, XOR 11 Implement the Boolean operation on a computer Chapter 2 12 Gates Gates devices that produce the outputs of Boolean operations when given
    [Show full text]
  • ESPPADOM Delivery Date: 30/03/2012 Comité Technique Statut: Travail Version: 00.02
    EDISANTE ESPPADOM_Delivery Date: 30/03/2012 Comité Technique Statut: Travail Version: 00.02 ESPPADOM_Delivery Modèle des données structurées Date: 30/03/2012 Statut: Travail Version: 00.02 EDISANTE ESPPADOM_Delivery Date: 30/03/2012 Comité Technique Statut: Travail Version: 00.02 ESPPADOM_Delivery: Modèle des données structurées Mention légale Clause de cession de droit de reproduction. L'auteur de ce document est : EDISANTE Comité Technique Le présent document est la propriété de l'auteur. Par la présente, l'auteur cède à titre gracieux à l’utilisateur du présent document, un droit de reproduction non exclusif dans le seul but de l’intégrer dans une application informatique. Cette cession est valable sur supports papier, magnétique, optique, électronique, numérique, et plus généralement sur tout autre support de fixation connu à la date de la reproduction, et permettant à l’utilisateur de créer l’application visée au paragraphe précédent. Cette cession est consentie pour l’ensemble du territoire national, et pour la durée de protection prévue par le code de la propriété intellectuelle. L’utilisateur fera son affaire personnelle de tout dommage qu’il causerait à un tiers et qui trouverait son origine dans une violation des termes de la présente cession. Toute atteinte aux droits d’auteur constitue un délit et est passible des sanctions indiquées aux articles L.335-1 et suivants du Code de propriété intellectuelle. EDISANTE ESPPADOM_Delivery Date: 30/03/2012 Comité Technique Statut: Travail Version: 00.02 Table des matières Documentation
    [Show full text]