Engilab Units 2018 V2.2

Total Page:16

File Type:pdf, Size:1020Kb

Engilab Units 2018 V2.2 EngiLab Units 2021 v3.1 (v3.1.7864) User Manual www.engilab.com This page intentionally left blank. EngiLab Units 2021 v3.1 User Manual (c) 2021 EngiLab PC All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. "There are two possible outcomes: if the result confirms the Publisher hypothesis, then you've made a measurement. If the result is EngiLab PC contrary to the hypothesis, then you've made a discovery." Document type Enrico Fermi User Manual Program name EngiLab Units Program version v3.1.7864 Document version v1.0 Document release date July 13, 2021 This page intentionally left blank. Table of Contents V Table of Contents Chapter 1 Introduction to EngiLab Units 1 1 Overview ................................................................................................................................... 2 2 Free Edition ................................................................................................................................... 4 Chapter 2 Program use 5 1 User interfac.e.. .a...n..d.. .g..e..n...e..r.a..l. .r..u..l.e..s.. ................................................................................................ 6 2 Standard use.. .e..x..a..m....p..l.e.. ................................................................................................................. 6 3 Web brows.e..r. ............................................................................................................................... 10 4 Calculation .o...f. .a..l.l. .o..u..t..p..u..t.s... .......................................................................................................... 11 Chapter 3 Units categories 13 1 Acceleratio.n.. .(.L..i.n...e..a..r.).. ................................................................................................................. 14 2 Angle ................................................................................................................................... 16 3 Angular Vel.o..c..i.t..y.. ......................................................................................................................... 17 4 Area ................................................................................................................................... 21 5 Computer s.t.o...r.a..g..e... .(.d..e..c..i.m....a..l. .&.. .b...i.n..a..r..y..). ..................................................................................... 23 6 Density ................................................................................................................................... 25 7 Energy and. .W...o..r..k.. ........................................................................................................................ 30 8 Force ................................................................................................................................... 35 9 Length and .D...i.s..t.a...n..c..e.. .................................................................................................................. 37 10 Mass ................................................................................................................................... 38 11 Power ................................................................................................................................... 40 12 Pressure an..d.. .S...t.r.e..s...s.. .................................................................................................................. 45 13 Second Mom...e...n..t. .o..f.. .A..r..e..a.. ............................................................................................................ 49 14 SI Prefixes ................................................................................................................................... 51 15 Solid Angle. .................................................................................................................................. 52 16 Speed (Velo..c..i.t.y..). .......................................................................................................................... 53 17 Temperatur.e.. ................................................................................................................................ 55 18 Time ................................................................................................................................... 57 19 Torque (Mo.m...e..n..t. .o...f. .f.o..r..c..e..). .......................................................................................................... 58 20 Volume ................................................................................................................................... 61 Chapter 4 License Agreement 65 1 End User Li.c..e..n...s..e.. .A..g...r.e..e..m....e..n..t. .(..E..U...L..A...). ..................................................................................... 66 (c) 2021 EngiLab PC This page intentionally left blank. Chapter 1 Introduction to EngiLab Units 2 EngiLab Units 2021 v3.1 User Manual 1 Introduction to EngiLab Units · Overview · Free Edition 1.1 Overview EngiLab Units 2021 v3.1 (v3.1.7864) Copyright (c) 2021 EngiLab PC All rights reserved www.engilab.com EngiLab Units is an easy-to-use yet powerful unit conversion tool for Windows. It features a clean, user-friendly interface which includes also a web browser with direct links to Wikipedia articles for details on the definition and use of each unit. The current version includes 584 Units in 20 Unit categories: 1. Acceleration (Linear) 2. Angle 3. Angular Velocity 4. Area 5. Computer storage (decimal & binary) 6. Density 7. Energy and Work 8. Force 9. Length and Distance 10.Mass 11.Power 12.Pressure and Stress 13.Second Moment of Area 14.SI Prefixes 15.Solid Angle 16.Speed (Velocity) 17.Temperature 18.Time 19.Torque (Moment of force) 20.Volume (c) 2021 EngiLab PC Introduction to EngiLab Units 3 Communication For general inquiries, please contact us at [email protected] Technical support EngiLab offers technical support via email at [email protected]. Email questions are normally answered within 48 hours. Considering our customer support team's busy work schedule, EngiLab strives to provide technical support, via email, to all users. Required Information for Support When sending us a question via email, please make sure to include the following information: · Operating system (Windows 7, Windows 8, Windows 10, etc.) · Name and exact version of the product being used. · Brief description of the problem. · Detailed instructions on how to duplicate the problem. You may find additional information, new releases, etc on the web at www.engilab.com. We take customer satisfaction very seriously and always welcome your feedback. Compatibility EngiLab Units is compatible with the following versions of Windows (32 bit and 64 bit): · Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10 · Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012 Limited Warranty - Disclaimer of Damages See the End User License Agreement (EULA). (c) 2021 EngiLab PC 4 EngiLab Units 2021 v3.1 User Manual 1.2 Free Edition EngiLab Units comes as a free edition with no limitations in its features and use. · Free of charge, available for download at www.engilab.com · It can be used for any purpose (personal, academic, educational or commercial use) · No missing features, no ads. No banners printed anywhere, no annoying pop- ups, no hidden fees. · Ideal for: Students, Hobbyists, Professional Engineers, Researchers, Universities. · Technical Support is provided via email at [email protected] (c) 2021 EngiLab PC Chapter 2 Program use 6 EngiLab Units 2021 v3.1 User Manual 2 Program use · User interface and general rules · Standard use example · Web browser · Calculation of all outputs 2.1 User interface and general rules The program has an easy-to-use yet powerful user interface. The main program window is the one below. The screenshots below are taken from v2.1 of the software. There may be small changes in newer versions of the program. Note that only the period "." is accepted as a decimal point from the program. You are not allowed to use the comma ",". In fact, all typed commas are automatically transformed to periods in the input value text box. In this help file, the comma "," is used as a thousands separator. 2.2 Standard use example Example use of the program: · We want to convert 100 feet (ft) to millimetres. Below are the instructions in order to do that using the program: (c) 2021 EngiLab PC Program use 7 1. First, we select the unit category with the radio buttons on top. In this case, we select the "Length - Distance" category above.
Recommended publications
  • Summer 2018 Astron 9 Week 2 FINAL
    ORDER OF MAGNITUDE PHYSICS RICHARD ANANTUA, JEFFREY FUNG AND JING LUAN WEEK 2: FUNDAMENTAL INTERACTIONS, NUCLEAR AND ATOMIC PHYSICS REVIEW OF BASICS • Units • Systems include SI and cgs • Dimensional analysis must confirm units on both sides of an equation match • BUCKINGHAM’S PI THEOREM - For a physical equation involving N variables, if there are R independent dimensions, then there are N-R independent dimensionless groups, denoted Π", …, Π%&'. UNITS REVIEW – BASE UNITS • Physical quantities may be expressed using several choices of units • Unit systems express physical quantities in terms of base units or combinations thereof Quantity SI (mks) Gaussian (cgs) Imperial Length Meter (m) Centimeter (cm) Foot (ft) Mass Kilogram (kg) Gram (g) Pound (lb) Time Second (s) Second (s) Second (s) Temperature Kelvin (K) Kelvin (K)* Farenheit (ºF) Luminous intensity Candela (cd) Candela (cd)* Amount Mole (mol) Mole (mol)* Current Ampere (A) * Sometimes not considered a base cgs unit REVIEW – DERIVED UNITS • Units may be derived from others Quantity SI cgs Momentum kg m s-1 g cm s-1 Force Newton N=kg m s-2 dyne dyn=g cm s-2 Energy Joule J=kg m2 s-2 erg=g cm2 s-2 Power Watt J=kg m2 s-3 erg/s=g cm2 s-3 Pressure Pascal Pa=kg m-1 s-2 barye Ba=g cm-1 s-2 • Some unit systems differ in which units are considered fundamental Electrostatic Units SI (mks) Gaussian cgs Charge A s (cm3 g s-2)1/2 Current A (cm3 g s-4)1/2 REVIEW – UNITS • The cgs system for electrostatics is based on the assumptions kE=1, kM =2kE/c2 • EXERCISE: Given the Gaussian cgs unit of force is g cm s-2, what is the electrostatic unit of charge? # 2 ! = ⟹ # = ! & 2 )/+ = g cm/ s1+ )/+ [&]2 REVIEW – BUCKINGHAM’S PI THEOREM • BUCKINGHAM’S PI THEOREM - For a physical equation involving N variables, if there are R independent dimensions, then there are N-R independent dimensionless groups, denoted Π", …, Π%&'.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Z/OS ♦ Z Machines Hardware ♦ Numbers and Numeric Terms ♦ the Road to Z/OS ♦ Z/OS.E ♦ Z/OS Futures ♦ Language Environment ♦ Current Compilers ♦ UNIX System Services
    Mainframes The Future of Mainframes Is Now ♦ z/Architecture ♦ z/OS ♦ z Machines Hardware ♦ Numbers and Numeric Terms ♦ The Road to z/OS ♦ z/OS.e ♦ z/OS Futures ♦ Language Environment ♦ Current Compilers ♦ UNIX System Services by Steve Comstock The Trainer’s Friend, Inc. http://www.trainersfriend.com 800-993-8716 [email protected] Copyright © 2002 by Steven H. Comstock 1 Mainframes z/Architecture z/Architecture ❐ The IBM 64-bit mainframe has been named "z/Architecture" to contrast it to earlier mainframe hardware architectures ♦ S/360 ♦ S/370 ♦ 370-XA ♦ ESA/370 ♦ ESA/390 ❐ Although there is a clear continuity, z/Architecture also brings significant changes... ♦ 64-bit General Purpose Registers - so 64-bit integers and 64-bit addresses ♦ 64-bit Control Registers ♦ 128-bit PSW ♦ Tri-modal addressing (24-bit, 31-bit, 64-bit) ♦ Over 140 new instructions, including instructions to work with ASCII and UNICODE strings Copyright © 2002 by Steven H. Comstock 2 z/Architecture z/OS ❐ Although several operating systems can run on z/Architecture machines, z/OS is the premier, target OS ❐ z/OS is the successor to OS/390 ♦ The last release of OS/390 was V2R10, available 9/2000 ♦ The first release of z/OS was V1R1, available 3/2001 ❐ z/OS can also run on G5/G6 and MP3000 series machines ♦ But only in 31-bit or 24-bit mode ❐ Note these terms: ♦ The Line - the 16MiB address limit of MVS ♦ The Bar - the 2GiB limit of OS/390 ❐ For some perspective, realize that 16EiB is... ♦ 8 billion times 2GiB ♦ 1 trillion times 16MiB ❐ The current release of z/OS is V1R4; V1R5 is scheduled for 1Q2004 Copyright © 2002 by Steven H.
    [Show full text]
  • UNIT 1 ELECTROMAGNETIC RADIATION Radiation
    Electromagnetic UNIT 1 ELECTROMAGNETIC RADIATION Radiation Structure 1.1 Introduction Objectives 1.2 What is Electromagnetic Radiation? Wave Mechanical Model of Electromagnetic Radiation Quantum Model of Electromagnetic Radiation 1.3 Consequences of Wave Nature of Electromagnetic Radiation Interference Diffraction Transmission Refraction Reflection Scattering Polarisation 1.4 Interaction of EM Radiation with Matter Absorption Emission Raman Scattering 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION You would surely have seen a beautiful rainbow showing seven different colours during the rainy season. You know that this colourful spectrum is due to the separation or dispersion of the white light into its constituent parts by the rain drops. The rainbow spectrum is just a minute part of a much larger continuum of the radiations that come from the sun. These are called electromagnetic radiations and the continuum of the electromagnetic radiations is called the electromagnetic spectrum. In the first unit of this course you would learn about the electromagnetic radiation in terms of its nature, characteristics and properties. Spectroscopy is the study of interaction of electromagnetic radiation with matter. We would discuss the ways in which different types of electromagnetic radiation interact with matter and also the types of spectra that result as a consequence of the interaction. In the next unit you would learn about ultraviolet-visible spectroscopy ‒ a consequence of interaction of electromagnetic radiation in the ultraviolet-visible
    [Show full text]
  • Realization of a Micrometre-Sized Stochastic Heat Engine Valentin Blickle1,2* and Clemens Bechinger1,2
    Erschienen in: Nature Physics ; 8 (2012), 2. - S. 143-146 https://dx.doi.org/10.1038/nphys2163 Realization of a micrometre-sized stochastic heat engine Valentin Blickle1,2* and Clemens Bechinger1,2 The conversion of energy into mechanical work is essential trapping centre and k(t), the time-dependent trap stiffness. The for almost any industrial process. The original description value of k is determined by the laser intensity, which is controlled of classical heat engines by Sadi Carnot in 1824 has largely by an acousto-optic modulator. By means of video microscopy, the shaped our understanding of work and heat exchange during two-dimensional trajectory was sampled with spatial and temporal macroscopic thermodynamic processes1. Equipped with our resolutions of 10 nm and 33 ms, respectively. Keeping hot and cold present-day ability to design and control mechanical devices at reservoirs thermally isolated at small length scales is experimentally micro- and nanometre length scales, we are now in a position very difficult to achieve, so rather than coupling our colloidal to explore the limitations of classical thermodynamics, arising particle periodically to different heat baths, here we suddenly on scales for which thermal fluctuations are important2–5. Here changed the temperature of the surrounding liquid. we demonstrate the experimental realization of a microscopic This variation of the bath temperature was achieved by a second heat engine, comprising a single colloidal particle subject to a coaxially aligned laser beam whose wavelength was matched to an time-dependent optical laser trap. The work associated with absorption peak of water. This allowed us to heat the suspension the system is a fluctuating quantity, and depends strongly from room temperature to 90 ◦C in less than 10 ms (ref.
    [Show full text]
  • Mercury Barometers and Manometers
    NBS MONOGRAPH 8 Mercuiy Barometers and Manometers U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and pre- liminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Etir Code Lists
    eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet.
    [Show full text]
  • Z/OS, Language Environment, and UNIX How They Work Together
    The Trainer’s Friend, Inc. 256-B S. Monaco Parkway Telephone: (800) 993-8716 Denver, Colorado 80224 (303) 393-8716 U.S.A. Fax: (303) 393-8718 E-mail: [email protected] Internet: www.trainersfriend.com z/OS, Language Environment, and UNIX How They Work Together The following terms that may appear in these materials are trademarks or registered trademarks: Trademarks of the International Business Machines Corporation: AD/Cycle, AIX, AIX/ESA, Application System/400, AS/400, BookManager, CICS, CICS/ESA, COBOL/370, COBOL for MVS and VM, COBOL for OS/390 & VM, Common User Access, CORBA, CUA, DATABASE 2, DB2, DB2 Universal Database, DFSMS, DFSMSds, DFSORT, DOS/VSE, Enterprise System/3090, ES/3090, 3090, ESA/370, ESA/390, Hiperbatch, Hiperspace, IBM, IBMLink, IMS, IMS/ESA, Language Environment, MQSeries, MVS, MVS/ESA, MVS/XA, MVS/DFP, NetView, NetView/PC, Object Management Group, Operating System/400, OS/400, PR/SM, OpenEdition MVS, Operating System/2, OS/2, OS/390, OS/390 UNIX, OS/400, QMF, RACF, RS/6000, SOMobjects, SOMobjects Application Class Library, System/370, System/390, Systems Application Architecture, SAA, System Object Model, TSO, VisualAge, VisualLift, VTAM, VM/XA, VM/XA SP, WebSphere, z/OS, z/VM, z/Architecture, zSeries Trademarks of Microsoft Corp.: Microsoft, Windows, Windows NT, Windows ’95, Windows ’98, Windows 2000, Windows SE, Windows XP Trademark of Chicago-Soft, Ltd: MVS/QuickRef Trademark of Phoenix Software International: (E)JES Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX Registered Trademark of The Open Group: UNIX Trademark of Sun Microsystems, Inc.: Java Registered Trademark of Linus Torvalds: LINUX Registered Trademark of Unicode, Inc.: Unicode Preface This document came about as a result of writing my first course for UNIX on the IBM mainframe.
    [Show full text]
  • UNEP Frontiers 2016 Report: Emerging Issues of Environmental Concern
    www.unep.org United Nations Environment Programme P.O. Box 30552, Nairobi 00100, Kenya Tel: +254-(0)20-762 1234 Fax: +254-(0)20-762 3927 Email: [email protected] web: www.unep.org UNEP FRONTIERS 978-92-807-3553-6 DEW/1973/NA 2016 REPORT Emerging Issues of Environmental Concern 2014 © 2016 United Nations Environment Programme ISBN: 978-92-807-3553-6 Job Number: DEW/1973/NA Disclaimer This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, 00100, Kenya. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any country, territory or city or its authorities, or concerning the delimitation of its frontiers or boundaries. For general guidance on matters relating to the use of maps in publications please go to: http://www.un.org/Depts/Cartographic/english/htmain.htm Mention of a commercial company or product in this publication does not imply endorsement by the United Nations Environment Programme.
    [Show full text]
  • Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping
    Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping Jaideep Singh, Peter A. M. Dolph, & William A. Tobias University of Virginia Version 1.95 April 23, 2008 Abstract Vapor pressure curves and number density formulas for the alkali metals are listed and compared from the 1995 CRC, Nesmeyanov, and Killian. Formulas to obtain the temperature, the dimer to monomer density ratio, and the pure vapor ratio given an alkali density are derived. Considerations and formulas for making a prescribed hybrid vapor ratio of alkali to Rb at a prescribed alkali density are presented. Contents 1 Vapor Pressure Curves 2 1.1TheClausius-ClapeyronEquation................................. 2 1.2NumberDensityFormulas...................................... 2 1.3Comparisonwithotherstandardformulas............................. 3 1.4AlkaliDimers............................................. 3 2 Creating Hybrid Mixes 11 2.1Predictingthehybridvaporratio.................................. 11 2.2Findingthedesiredmolefraction.................................. 11 2.3GloveboxMethod........................................... 12 2.4ReactionMethod........................................... 14 1 1 Vapor Pressure Curves 1.1 The Clausius-Clapeyron Equation The saturated vapor pressure above a liquid (solid) is described by the Clausius-Clapeyron equation. It is a consequence of the equality between the chemical potentials of the vapor and liquid (solid). The derivation can be found in any undergraduate text on thermodynamics (e.g. Kittel & Kroemer [1]): Δv · ∂P = L · ∂T/T (1) where P is the pressure, T is the temperature, L is the latent heat of vaporization (sublimation) per particle, and Δv is given by: Vv Vl(s) Δv = vv − vl(s) = − (2) Nv Nl(s) where V is the volume occupied by the particles, N is the number of particles, and the subscripts v & l(s) refer to the vapor & liquid (solid) respectively.
    [Show full text]
  • Breaking Through the Myths to Reality: a Future-Proof View Of
    Breaking Through the Myths to Reality A Future-Proof View of Fiber Optic Inspection and Cleaning Dear Viewer: As presented at BICSI® in February- 2018, this seminar has video and animations that Edward J. Forrest, Jr. are not available as a .pdf file. If you would like the RMS(RaceMarketingServices) original version, please contact BICSI or the author. Bringing Ideas Together Caution: This Presentation is going to be controversial! IT IS BASED ON 2,500 YEARS OF SCIENCE AND PRODUCT DEVELOPMENT 2 Fact OR FICTION of Fiber Optic Cleaning and Inspection This seminarWE WILL mayDISCUSS contradictAND currentDEFINE: trends ➢ There➢ Cleaningand are what OTHER you’ve is notWAYS been important…BESIDES taught. VIDEO ➢ ➢➢“Automatic99.9%Debris➢ ➢ExistingA “Reagent FiberonS Detection” CIENTIFICthe standards, Optic surface Grade” ConnectorR isEALITY of such“good Isopropanola fiber… as enough”.is optic a is IECconnector“Pass 61300Let’sanI NSPECTIONanythingeffective- Fail”separate- 3surface-35, is is bettereasy are Factsfiberto is “Best determine thantwoto from optic understand nothing!-dimensional Practice”Fiction cleaner What we’veTwoif the ( ALL-Dimensional connector) been taught/bought/soldand is Structure“clean” over the last 30+Myth yearsfrom may“diameter”. Scientific not be the same Reality thing! 3 Fact OR FICTION of Fiber Optic Cleaning and Inspection ➢ A Fiber Optic Connector is a Two-Dimensional Structure ➢ 99.9% “Reagent Grade” Isopropanol is an effective fiber optic cleaner ➢ Cleaning is not important… anything is better than nothing! ➢ There are OTHER WAYS BESIDES VIDEO INSPECTION to determine if the connector is “clean” ➢ Debris on the surface of a fiber optic connector surface is two-dimensional “diameter”. ➢ “Automatic Detection” is “good enough”.
    [Show full text]
  • File Organization and Management Com 214 Pdf
    File organization and management com 214 pdf Continue 1 1 UNESCO-NIGERIA TECHNICAL - VOCATIONAL EDUCATION REVITALISATION PROJECT-PHASE II NATIONAL DIPLOMA IN COMPUTER TECHNOLOGY FILE Organization AND MANAGEMENT YEAR II- SE MESTER I THEORY Version 1: December 2 2 Content Table WEEK 1 File Concepts... 6 Bit:... 7 Binary figure... 8 Representation... 9 Transmission... 9 Storage... 9 Storage unit... 9 Abbreviation and symbol More than one bit, trit, dontcare, what? RfC on trivial bits Alternative Words WEEK 2 WEEK 3 Identification and File File System Aspects of File Systems File Names Metadata Hierarchical File Systems Means Secure Access WEEK 6 Types of File Systems Disk File Systems File Systems File Systems Transactional Systems File Systems Network File Systems Special Purpose File Systems 3 3 File Systems and Operating Systems Flat File Systems File Systems according to Unix-like Operating Systems File Systems according to Plan 9 from Bell Files under Microsoft Windows WEEK 7 File Storage Backup Files Purpose Storage Primary Storage Secondary Storage Third Storage Out Storage Features Storage Volatility Volatility UncertaintyAbility Availability Availability Performance Key Storage Technology Semiconductor Magnetic Paper Unusual Related Technology Connecting Network Connection Robotic Processing Robotic Processing File Processing Activity 4 4 Technology Execution Program interrupts secure mode and memory control mode Virtual Memory Operating Systems Linux and UNIX Microsoft Windows Mac OS X Special File Systems Journalized File Systems Graphic User Interfaces History Mainframes Microcomputers Microsoft Windows Plan Unix and Unix-like operating systems Mac OS X Real-time Operating Systems Built-in Core Development Hobby Systems Pre-Emptification 5 5 WEEK 1 THIS WEEK SPECIFIC LEARNING OUTCOMES To understand: The concept of the file in the computing concept, field, character, byte and bits in relation to File 5 6 6 Concept Files In this section, we will deal with the concepts of the file and their relationship.
    [Show full text]